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Abstract: This article shows an all-dielectric metasurface consisting of “H”-shaped silicon disks
with tilted splitting gaps, which can detect the temperature and refractive index (RI). By introducing
asymmetry parameters that excite the quasi-BIC, there are three distinct Fano resonances with nearly
100% modulation depth, and the maximal quality factor (Q-factor) is over 104. The predominant
roles of different electromagnetic excitations in three distinct modes are demonstrated through
near-field analysis and multipole decomposition. A numerical analysis of resonance response based
on different refractive indices reveals a RI sensitivity of 262 nm/RIU and figure of merit (FOM)
of 2183 RIU−1. This sensor can detect temperature fluctuations with a temperature sensitivity of
59.5 pm/k. The proposed metasurface provides a novel method to induce powerful TD resonances
and offers possibilities for the design of high-performance sensors.

Keywords: toroidal dipole; optical sensor; all-dielectric metasurface; fano resonance

1. Introduction

Sensing, which can detect and sense a specific physical quantity or environmental pa-
rameter and acquire essential chemical and physical information, has emerged as a swiftly
developing technology. Compared to electrical and chemical sensors, optical sensors exhibit
significant promise for temperature monitoring [1], environmental monitoring [2], chemical
monitoring [3,4], and food safety [5–7] due to resistance to electromagnetic interference,
high sensitivity, and good electrochemical stability [8]. In recent years, metasurfaces, as
artificially aligned arrays of periodic subwavelength structures, have been shown to have
remarkable properties in manipulating electromagnetic waves, which can be used to modu-
late phase, amplitude, and polarization direction [9–13]. Meanwhile, the metasurfaces can
measure the positional shift of the resonance wavelength due to changes in the surrounding
effective refractive index. They have been widely used in high-performance sensors [14,15],
optical switches [16], and optical modulators [17].

Moreover, metasurfaces can excite electric and magnetic Mie resonances such as a
magnetic dipole (MD), electric dipole (ED), and toroidal dipole (TD) [18]. Based on the
polarization current distribution, the toroidal dipole can be categorized into electrical
TD and magnetic TD [19]. The electrical TD arises from the circular polarization current
encircling the torus, represented by the electric dipole moment formed by linking the head
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and tail [20]. The magnetic TD arises from the polar current flowing along the meridian
of the torus, represented by the magnetic dipole moment formed by linking the head
and tail [21]. It is worth noting that the TD resonance intensity in plasma structures is
suppressed due to the inherent Joule loss [22]. However, the high Q-factor TD response
has been extensively applied in all-dielectric metasurfaces [23–25] due to its high laser
damage threshold and low inherent resistive loss [26]. The proposed metasurface structure
is widely used in nonlinear optics [27], lasers [28], and filters [29].

In optical applications, a strong connection exists between TD metasurfaces with high
Q-factor and bound states in the continuum (BIC). BIC is a localized state supported by
a continuum spectrum with zero linewidth [30,31]. With its electromagnetic near-field
enhancement and exceptionally high Q-factor [15], BIC offers new ways to enhance matter
and light interactions in the radiation continuum. When the spatial symmetry of the mode
does not match the spatial symmetry of the external radiated wave, the mode cannot
couple to the external radiation, leading to an infinite lifetime, which implies an infinitely
high Q-factor. Introducing symmetry breaking into the structure allows for creating an
external radiation channel, converting the symmetry-protected BIC into a quasi-BIC mode
capable of radiating into the external continuum. This results in resonance linewidths and
Q-factors being limited. Quasi-BIC leakage resonance has been successful in applications
in optical emitting devices, optical filters, and the detection of biological and chemical
nanomembrane analyzers [32,33]. It has been shown that there is a strong correlation
between BIC and high Q-factor TD metasurfaces [34]. Specifically, the toroidal dipole
bound state (TD-BIC) observed in the Fano resonance induced by the continuum exhibits
characteristics of both TD and BIC.

This article introduces an all-dielectric metasurface consisting of silicon disks with
tilted splitting gaps on a silica substrate. The metasurface exhibits three Fano resonance
responses when illuminated by normally incident polarized light. Multipole decompo-
sition and near-field analysis show that the double resonance excited by introducing an
asymmetry in the near-infrared wavelengths originates from the TD resonance. The sensing
performance of the structure is simulated at different refractive indices and temperatures,
showing that the metasurface can serve as both a temperature sensor and a refractive index
sensor, which is important in biomedical applications. In addition, the effects of incident
light angle and geometrical parameters on the properties of the metasurface are investigated.
The present work introduces a new method to excite strong TD quasi-BIC resonances.

2. Structural Design and Theoretical Analysis

The proposed metasurface structure consisting of “H”-shaped silicon disks with tilted
splitting gaps is shown in Figure 1. The initial geometric parameters are: the unit cycle
of the metasurface is Px = Py = 750 nm, the height h of the silicon disc is 500 nm, and the
tilt gap angle θ is 5◦. The length l1 of the nanorod is 105 nm, the length l2 is 400 nm, the
width w is 602 nm, the gap width g is 100 nm, and the gap length d is 80 nm. The FDTD
solution is used to simulate and analyze the structural characteristics of the metasurface.
Periodic boundary conditions are utilized in the x and y directions, while perfectly matched
layers (PML) are applied in the z direction. The material parameters for Si and SiO2 can be
found in the Palik refractive index database [35]. The structure is placed in the air with a
refractive index of 1 and is illuminated by normally incident x-polarized light.

The asymmetry factor is defined as the angle θ of the silicon splitting gap, which
breaks the symmetry of the structure to excite the Fano resonance. Figure 2a illustrates the
transmission spectra curves of the structure for both symmetry and symmetry breaking.
The red curve shows a significant Fano resonance, called FR2, occurring at 1175.55 nm
under the symmetric metasurface. When the asymmetry factor θ is 5◦, the appearance of
the double Fano resonance at 1119.71 nm and 1216.23 nm, as shown by the blue curves in
Figure 2a, results from the creation of radiative channels between the free-space radiative
and non-radiative bound states, named FR1 and FR3. Additionally, all curves achieve a
spectral contrast ratio of approximately 100%, defined as:
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Tpeak − Tantipeak

Tpeak + Tantipeak
× 100% (1)

Sensors 2024, 24, x FOR PEER REVIEW 3 of 13 
 

 

Figure 2a, results from the creation of radiative channels between the free-space radiative 
and non-radiative bound states, named FR1 and FR3. Additionally, all curves achieve a 
spectral contrast ratio of approximately 100%, defined as: 

%100×
+
−

antipeakpeak

antipeakpeak

TT
TT  (1)

 
Figure 1. (a) Diagram of the metasurface array. (b) Diagram of the unit metasurface. (c) The x–z side 
view of the unit metasurface. 

  
Figure 2. (a) The transmission spectra curves of metasurface structure at symmetry and symmetry 
breaking. (b) The blue solid line shows the simulation curve for the resonant mode FR3, and the red 
dashed line indicates the fitted curve. 

In Figure 2b, the transmission spectrum of the resonance mode FR3 is matched using 
the classical Fano equation [36,37]: 

2

0
21 || 

γωω j
bjaaTFano +−

++=  (2)

In Equation (2), the resonant frequency is represented by 𝜔, while 𝑎ଵ, 𝑎ଶ, and b are 
real numbers. Additionally,  𝛾  denotes the overall attenuation rate of the resonant cavity. 
For resonance mode FR3, 𝑎ଵ = 0.16714, 𝑎ଶ = 0.96508, b = 72.31972, γ = 0.0507 × 10−3 eV, and 

1100 1150 1200 1250
0.0

0.2

0.4

0.6

0.8

1.0

Tr
an

sm
iss

io
n

Wavelength (nm)

 δ = 0°
 δ = 5°

(a)

1212 1214 1216 1218 1220 1222
0.0

0.2

0.4

0.6

0.8

1.0

Tr
an

sm
iss

io
n

Wavelength (nm)

 Simulation
 Fitting

(b)

Figure 1. (a) Diagram of the metasurface array. (b) Diagram of the unit metasurface. (c) The x–z side
view of the unit metasurface.
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Figure 2. (a) The transmission spectra curves of metasurface structure at symmetry and symmetry
breaking. (b) The blue solid line shows the simulation curve for the resonant mode FR3, and the red
dashed line indicates the fitted curve.

In Figure 2b, the transmission spectrum of the resonance mode FR3 is matched using
the classical Fano equation [36,37]:

TFano = |a1 + ja2 +
b

ω − ω0 + jγ
|2 (2)

In Equation (2), the resonant frequency is represented by ω0, while a1, a2, and b are
real numbers. Additionally, γ denotes the overall attenuation rate of the resonant cavity.
For resonance mode FR3, a1 = 0.16714, a2 = 0.96508, b = 72.31972, γ = 0.0507 × 10−3 eV, and
ω0 = 1.0217 eV. The method of calculating the Q-factor (Q) for the resonance peaks of the
metasurface can be expressed as follows:

Q =
ω0

2γ
(3)
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Figure 3a shows the variation of the transmission spectrum with the parameter θ from
0◦ to 10◦. In a symmetric metasurface with θ equal to 0◦, no Fano resonances occur at modes
FR1 and FR3, and the resonant linewidth completely disappears, indicating no energy
leakage from the bound state to the free-space continuum. Thus, the resonant modes FR1
and FR3 are supported by the symmetry-protected BIC state. As the tilt angle θ increases,
new Fano resonances appear near 1119.71 nm and 1216.23 nm and exhibit an expansion of
the line widths, which is due to the leakage of radiation channels between the metasurface
and free space radiates the BIC energy, transforming the BIC mode into a high Q-factor
and limited quasi-BIC mode [38,39]. Moreover, reducing the symmetry break narrows the
radiation channel and decreases energy radiated into free space, thereby increasing the
Q-factor [39,40]. In Figure 3b, the asymmetric parameter α (α = sinθ) is defined, to analyze
the correlation between the α−2 and the Q-factor. The Q-factor gradually increases as α
decreases, reaching infinity when α is 0, indicating a symmetric metasurface structure.
The correlation between α and the Q-factor of Fano resonance modes FR1 and FR3 can be
quantitatively expressed as follows [41]:

Q ∝ α−2 (4)
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Figure 3. (a) Transmission spectra of metasurface at different values of tilt angle θ. (b) The correlation
of the Q-factor and α−2 of the modes FR1 and FR3.

The result implies that the high Q-factor can be manipulated by θ. Altering θ essentially
modifies the symmetry of the metasurface structure, thereby influencing the degree of
magnitude of the Q-factor.

As previously mentioned, the resonance modes closely correlate with the asymmetric
parameter θ of the metasurface. Hence, analyzing the influence of other structural pa-
rameters on the resonance is necessary. Figure 4 calculates the relationship between the
transmission spectrum and the geometrical parameters of the structure, and an asymmetric
structure with θ = 5◦ chosen for the analysis. Figure 4a depicts the variation of the trans-
mission spectra for different splitting gaps g. The metasurface is symmetric at g = 0 nm.
As g increases, resonance modes FR1 and FR3 with high Q-factors appear. The positions
of modes FR1 and FR2 have not significantly shifted, but mode FR3 exhibits a slight red
shift. Figure 4b shows the variation of the transmission spectra for silicon disc widths w,
keeping other parameters constant. Both resonant modes FR1 and FR2 exhibit a significant
red shift as w increases, and the resonant mode FR3 exhibits a slight red shift, which is due
to the increase in the effective refractive index of the structure with increasing width w of
the silicon disc. Thus, the parameter w does not affect the symmetry of the structure but
influences the resonance wavelength shift of modes.
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Figure 4. (a) The variation of the transmission spectrum with the splitting gap g when other parame-
ters are held constant. (b) The variation of the transmission spectrum with the silicon disc width w
when other parameters are held constant.

To clearly understand the physical mechanism of the three resonances excited by this
metasurface, the contributions of different multipoles to the resonance response, including
the electric dipole (ED), the magnetic dipole (MD), the toroidal dipole (TD), the electric
quadrupole (EQ), and the magnetic quadrupole (MQ), are evaluated in Figure 5 using the
formulae in the Cartesian coordinate system [36,42,43].

P =
1

iω

∫
jd3r (5)

M =
1
2c

∫
(r × j)d3r (6)

T =
1

10c

∫
[(r × j)r − 2r2j]d3r (7)

Q(e)
αβ =

1
2iω

∫
[(rα jβ + rβ jα −

2
3
(r × j)δα,β]d3r (8)

Q(m)
αβ =

1
3c

∫
[(r × j)αrβ + (r × j)βrα]d3r (9)

where α, β, and γ denote the directions of the x, y, and z axes, respectively, c is the speed of
light in a vacuum, the spatial position vector is represented by r, ω denotes the angular
frequency, and j is the current density. The multipole decomposition results reveal the
primary multipole components near three resonance wavelengths, which are TD, MD and
TD, respectively. The results show that the designed all-dielectric metasurface can excite
quasi-BIC modes that support TD.

To further analyze the physical mechanisms of the resonant modes, the electromag-
netic distributions of the three resonant modes are simulated, with white arrows indicating
the electric field vectors and black arrows indicating the magnetic field vectors. As shown
in Figure 6 for modes FR1 and FR3, the electric field in the x–z plane forms two oppos-
ing vortices, in the x–y plane forming a closed magnetic vortex magnetic field vectors
circulating counterclockwise in the structure, indicating a typical toroidal dipole (TD)
feature [21,44–46]. For mode FR2, the electric field forms a closed electric field vector circu-
lating clockwise in the x–z plane, and the magnetic field vector is linearly aligned along the
y-axis in the y–z plane, which can be recognized as a MD response along the y direction.
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Figure 6. The near-field distributions of the normalized electric and magnetic fields of the nanostruc-
ture in the three resonance modes. The vectorial distribution of the electric field in the resonance
modes is indicated with white arrows. The vector distribution of the magnetic field in the resonance
modes is indicated with black arrows.

With the proposed metasurface, the surface roughness of silicon will cause absorption
and scattering losses, impacting the metasurface responses. Here, the imaginary part of the
refractive index of silicon, i.e., the extinction coefficient k, is used to quantify the optical
loss. Transmission spectra of asymmetric structures at θ = 5◦ for different loss levels k are
shown in Figure 7. When k < 10−4, the metasurface resonance response is almost unaffected
by the loss and maintains the original Fano resonance spectrum. With increasing k, the
transmission waveform gradually deteriorates. FR1 and FR3 exhibit high sensitivity to
optical loss, with the modulation depth and Q-factor experiencing significant reduction
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when k exceeds 5 × 10−4. However, FR2 is less affected. When k < 10−2, the Q-factor of the
mode FR2 decreases, with no significant change in modulation depth. At k = 5 × 10−2, the
standard Fano resonance spectral lines become difficult to observe due to the significant
reduction in both modulation depth and the Q-factor of FR2. Indeed, the extent to which
resonances are suppressed is similarly affected by the size of the asymmetric fracture. A
metasurface with minor asymmetric breaks is more sensitive to the introduced losses [47].
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Figure 7. Transmission spectra of asymmetric structures at θ = 5◦ for different loss levels k.

3. Applications

The polarization dependence of the metasurface on the light source is investigated
for potential applications in optical devices. Here, the polarization angle φ is the angle
between the direction of polarization of the incident light and the x-axis. Figure 8 displays
transmission spectra at various polarization angles φ for the asymmetric structure, which
effectively modulates the transmission amplitude of the Fano resonance. The modulation
depth of the three resonant modes decreases with increasing polarization angle without
significant wavelength shift. At a polarization angle of 90◦, the three resonant modes
vanish. The analysis of the metasurface transmission spectra in Figure 8a,b shows that
changing the polarization angle of the light source changes the modulation depth of the
resonance peaks without affecting their wavelength positions. Therefore, the proposed
metasurface depends on the incident polarization. By adjusting the polarization angle of
the incident light, a switching state transition can be achieved, which is of great application
in the field of optical switching.

The temperature-sensing properties of asymmetric metasurfaces are analyzed in Figure 9,
where the refractive index of the material changes due to thermo-optic effects when the tem-
perature in the environment where the structure is located changes. The correlation between
the temperature and RI of the material can be defined as n(T) = n(T0) + γ(T − T0), where
the initial temperature T0 is set to 295 K, and the thermal-optical coefficient is denoted by γ.
The thermo-optic coefficients of Si and SiO2 obtained from experimental measurements are
2.01 × 10−4 and 8.40 × 10−6, respectively [48,49]. In Figure 9a, the transmission spectra
vary as the temperature ranges from 295 K to 375 K. All resonance peaks are red-shifted.
Figure 9b shows the wavelength shift with temperature for the three resonance modes.
The temperature sensitivity can be defined as S(T) = ∆λ/∆T , ∆λ denotes the wavelength
position shift, and ∆T denotes the temperature difference. The temperature sensitivities of
the three resonance modes of the structure are calculated to be 46.5 pm/k, 59.5 pm/k, and
55 pm/k.
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Figure 8. (a,b) Transmission spectra of asymmetric structures at different polarization angles φ.
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Figure 9. (a) Transmission spectra of resonant modes at various temperatures. (b) The relationship
between wavelength shift and temperature is analyzed in three resonance modes.

In view of the high Q-factor and strong field enhancement effect of the proposed
metasurface, it has excellent potential for a wide range of applications in the sensing field.
Therefore, the performance of refractive index sensing is investigated by choosing an asym-
metric structure with θ = 5◦. As the refractive index of the surrounding environment ranges
from 1 to 1.04, Figure 10a–c depicts three sharp Fano resonance modes in the transmission
spectra. These resonance positions are significantly red-shifted. Figure 10d depicts the
correlation between wavelength offset and refractive index, which is analyzed through
simulation across three resonance modes. Two key performance indicators determine the
excellence of a sensor. The RI sensitivity (S) of the sensor can be expressed as S = ∆λ/∆n
(nm/RIU), ∆λ denotes the wavelength position shift, and ∆n denotes the refractive index
difference. The figure of merit (FOM) can be expressed as FOM = S/∂λ, representing the
ratio of refractive index sensitivity (S) to resonant linewidth (∂λ). The evaluated S for the
three Fano resonances is 186 nm/RIU, 158 nm/RIU, and 262 nm/RIU, with FOM values
reaching 701 RIU−1, 19 RIU−1, and 2183 RIU−1, respectively. The difference in sensitivity
between these resonant modes is mainly attributed to the field distribution. It has been
demonstrated that adjusting the surrounding refractive index enables manipulation of the
multipolar far-field scattering within dielectric particles, leading to a customized optical
response [50,51]. It is worth noting that the above-evaluated parameters can be further



Sensors 2024, 24, 3943 9 of 13

enhanced by reducing the asymmetry if future fabrication techniques permit. Thus, the
multi-Fano resonance proposed in this paper offers promising applications in multichannel
biosensing. In addition, the simulated performance of this sensor is compared with other
sensors, as shown in Table 1, indicating that the sensor has excellent sensing characteristics.
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Figure 10. (a–c) Transmission spectra of the proposed metasurface structure with refractive in-
dices of 1, 1.01, 1.02, 1.03, and 1.04, respectively. (d) Correlation between wavelength shift and
refractive index.

Table 1. Performance parameters of different sensors.

Sensor Structure Q-Factor Sensitivity of Refractive Index
(nm/RIU) FOM (RIU−1) Reference

Cylindrical silicon disk with splitting gap 54,757 746 18,650 [14]
V-shaped TiO2 antennas 5126 186.96 721 [52]
Photonic crystal metasurface 2000 178 445 [53]
Two semicircular cylinders’ metasurface 3210 265 883 [54]
Silicon nanoblock array metasurface 7894 171 804 [55]
Silicon disk with tilted split gap 10,135 262 2183 This work

The feasibility of experimentally preparing an all-dielectric metasurface, which is
compatible with popular nano-preparation techniques such as electron beam lithography
and directional reactive ion beam etching, is analyzed. Figure 11 shows the fabrication
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scheme of the designed metasurface structure. First, silicon films are deposited on the
substrate using electron beam evaporation, and a PMMA photoresist is spin-coated onto
the silicon film. Next, the inverted nanostructures are obtained by inductively coupled
plasma etching. Cr films are deposited by electron beam evaporation, and the patterns are
transferred onto Cr tilt-etched Si films with Cr nanostructures as masks. The metasurface
structure is achieved by removing the Cr mask with a Cr etchant. Then, the PMMA
films are spin-coated onto the nanostructures. Subsequently, the structure is obtained by
inductively coupled plasma etching using electron beam lithography, and the structure is
transferred into the silicon layer by reactive ion etching. Finally, the photoresist is removed
and cleaned with deionized water. The complexity of the designed structure itself makes
its preparation challenging.
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4. Conclusions

In summary, this article theoretically investigates the proposed all-dielectric meta-
surface consisting of tilted splitting gap silicon discs. The field distribution in the excited
state Fano resonance mode at tilted gap angle θ = 5◦ exhibits two toroidal dipoles with
high Q-factors, calculated by fitting to be 4225 and 10,135, respectively. The effects on the
resonance modes are analyzed by adjusting the key geometrical parameters, in which the
resonance modes are highly sensitive to the polarization angle of the light source, providing
a broad application prospect for realizing optical switching. The maximum refractive index
sensitivity of 262 nm/RIU and a figure of merit reaching 2183 for the sensor are obtained
through simulation analysis using the optimized structural parameters. In addition, the
thermo-optic coefficient of the material used in the metasurface enables the proposed sensor
for temperature sensing with a sensitivity of 59.5 pm/k. It is noteworthy that, by adjusting
the geometrical parameters of the structure, the resonant wavelengths of the two modes
can be optimized for greater application potential.
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