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Abstract: There has been a resurgence of applications focused on human activity recognition (HAR)
in smart homes, especially in the field of ambient intelligence and assisted-living technologies.
However, such applications present numerous significant challenges to any automated analysis
system operating in the real world, such as variability, sparsity, and noise in sensor measurements.
Although state-of-the-art HAR systems have made considerable strides in addressing some of these
challenges, they suffer from a practical limitation: they require successful pre-segmentation of
continuous sensor data streams prior to automated recognition, i.e., they assume that an oracle is
present during deployment, and that it is capable of identifying time windows of interest across
discrete sensor events. To overcome this limitation, we propose a novel graph-guided neural network
approach that performs activity recognition by learning explicit co-firing relationships between
sensors. We accomplish this by learning a more expressive graph structure representing the sensor
network in a smart home in a data-driven manner. Our approach maps discrete input sensor
measurements to a feature space through the application of attention mechanisms and hierarchical
pooling of node embeddings. We demonstrate the effectiveness of our proposed approach by
conducting several experiments on CASAS datasets, showing that the resulting graph-guided neural
network outperforms the state-of-the-art method for HAR in smart homes across multiple datasets
and by large margins. These results are promising because they push HAR for smart homes closer to
real-world applications.

Keywords: human-centered computing; ubiquitous and mobile computing; machine learning;
smart-home; human activity recognition; pattern recognition

1. Introduction

Human activity recognition (HAR) in the context of smart homes has recently been
regaining interest [1]. Two trends have been major drivers for the resurgence of interest:
The first is the proliferation of inexpensive yet accessible, engaging, and helpful [2–4] smart
home products such as Google Home and Amazon Alexa in a large number of households.
Secondly, with a rapidly growing aging population [5], many applications have focused on
the field of ambient intelligence and assisted living (AAL) technologies, which are aimed at
improving the quality of life of seniors through the use of ubiquitous sensors [6]. HAR is
one pertinent process in incorporating ambient intelligence in a smart home environment.
It comprises modeling, reasoning, and decision-making procedures [7,8] with the aim of
detecting and identifying complex human activities. Hence, improving the quality of life
with AAL technologies depends on how well an interconnected network of sensors, which
are capable of communicating and learning from user habits, can be used to detect and
then identify a plethora of complex human activities in real-world settings. This can be
achieved through processing collected spatial and temporal information [8,9].

A successful HAR system is one that is able to learn a user’s behavior during everyday
life, often through a network of domotic sensors (e.g., motion sensors, etc.). The real-world
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settings of such a system might pose several challenges: (1) Variability—Sensors can stop
working at any time, different sensors might record different values at different points in
time, and observations of sensors might not necessarily be aligned in time [10,11]. This can
be attributed to practical issues such as cost-saving measures, intermittent and unexpected
failure of sensors, external forces in systems, etc. [12]. (2) Sparsity—Some activities occur
rarely and/or activity occurrences may translate into a signal with a single value from one
sensor. (3) Noise and redundancy—The same set of sensors may be triggered for different
activities. (4) Limited data—It is challenging to collect large amounts of labeled data
due to issues such as privacy concerns [13]. The aforementioned challenges motivate the
implementation of machine learning (ML) techniques that are able to discover knowledge
from data and make consistent predictions about human behavior [14]. Focusing solely on
data-driven approaches that depend on large real-world datasets [15] is difficult because of
limited data. On the other hand, taking a primarily knowledge-driven approach, which
involves making numerous assumptions, tends not to be as robust because the assumptions
might not hold across different smart homes [16].

HAR in smart homes is a problem that requires both segmentation and classification to
be solved concurrently. Segmentation refers to identifying windows of interest (contiguous
windows of sensor events relevant to an activity) before performing classification (i.e.,
recognizing activities associated with the identified window of interest). This dual problem
is difficult to tackle for several reasons: (1) different activities have very different time
windows (e.g., walking out of the home only takes 5 s, while sleeping can take as long
as 10 h); (2) sparsity—most sensors are inactive in a typical day, (3) sensors have varying
sampling rates—every home sensor potentially has a varied sampling rate. Consequently,
defining an ideal window size is extremely challenging, leading to poorer performance,
especially for HAR applications in smart homes.

Prior works have attempted to address this by (a) using fixed sliding windows (with
limited success) or assuming the presence of an oracle (which is impractical) and/or
(b) relying on alternative encoding techniques [17–19]. Unfortunately, HAR systems that
rely on the assumption that an oracle can manually segment sensor streams are not very
applicable to real-world scenarios because it is very time-consuming for residents to identify
and filter segments in the deployment scenario [20]. Although a popular alternative in the
literature is to rely on a fixed-length sliding window [21], we show that modeling discrete
sensor events can outperform approaches with fixed-length sliding windows.

Building on the work by Ye at al. [21], we propose a novel graph neural network
that is able to capture relationships between sensors by pooling node embeddings in
a hierarchical manner. Since graphs are a natural way of representing networks, we
posit that learning an expressive graph structure that models (1) the dynamics of sensor
dependencies; (2) how those relationships evolve over time is key to addressing the main
challenges associated with HAR. Our approach outperforms the existing state-of-the-art
approaches on several publicly available smart home datasets. We also show how (1) it
is more robust to intermittently faulty sensors; and (2) it can be a preliminary step in
building more explainable HAR systems. Our compelling results across several scenarios
and ablations strongly advocate for graph-based approaches to human activity recognition
in smart homes.

The key contributions of this paper can be summarized as follows:

1. We present a novel and more expressive graph-based activity recognition system for
smart homes that better models inter-sensor relationships. This is built on top of a
discussion on how to address an irregular sampling of sensor data streams, which are
prevalent in smart homes.

2. We provide a thorough experimental evaluation of challenging, real-world smart
home problems which are encapsulated by a variety of CASAS smart home datasets.
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2. Background

The primary task of HAR in smart homes consists of recognizing what a human is
doing at what time, thereby analyzing sensor data that have been captured using a range
of modalities, from the ‘Internet of Things (IoT)’ to environmental sensors [22], wearables,
and cameras [23]. Given the trends of decreasing sensor costs and increasing demand for
home automation, in this paper, we focus on IoT-based HAR.

2.1. Problem

IoT-based HAR is an inherently difficult problem, as it requires solving two sub-
problems concurrently: segmentation (identifying contiguous–in time–sensor events that
correspond to yet unknown activities), and classification (recognizing the resident’s actual
activity covered by the previously identified segment of contiguous sensor events) [24].
Many HAR approaches, especially with wearables, rely primarily on the sliding window
method, which is essentially a workaround that circumvents the explicit segmentation step.
Specifically, contiguous sequences of sensor events in fixed time windows are treated as
input to a HAR system. The window sizes are typically determined by guessing the window
lengths that most likely capture a complete activity (e.g., a user wearing a smartwatch
running) [25]. The time window is shifted along with some overlap. It is then typically, yet
not always correctly [26], assumed that sliding windows are independent and identically
distributed (i.i.d.).

Unlike wearables HAR, IoT-based HAR in smart homes is different along several
dimensions. Primarily, the sensor data tend to be sparse (i.e., most sensors remain inactive
for most of the day) and contain activities that span over a more varied range of durations.
Consequently, no single window length can effectively capture all activities. Furthermore,
unlike wearables, smart home sensors typically do not have a fixed sampling rate, making it
more difficult to define an ideal window size. For these reasons, sliding window approaches
do not work as well for many HAR applications in smart homes.

Prior works have attempted to improve the effectiveness of HAR in smart homes by
(a) relying on an estimated fixed-length window (a workaround), (b) assuming access to
an oracle that effectively guides the classification systems towards the portions of a sensor
data stream that shall be classified, and/or (c) using different encoding techniques. We
can group works into three broad categories: (1) traditional approaches, (2) general deep
learning approaches, and (3) Graph Neural Network (GNN)-based methods. Traditional
approaches tend to ignore temporal relationships of sensor activity. More recent deep
learning approaches [17–19] tend to assume access to an oracle during deployment—the
HAR system takes manually segmented windows of sensor events as input. Though
feasible for developing and studying activity classification tasks, the assumption of having
access to segmented sensor event streams is not valid for practical applications. Recent
GNN methods [21], while promising, require fixed-length windows of sensor events which
might not fully cover the varied durations of activities.

2.2. Traditional Approaches to HAR in Smart Homes

A plethora of (conventional) algorithms have been proposed for the task of sensor-
based human activity recognition (HAR), ranging from naive Bayes (NB) and decision
trees [27] to conditional random fields (CRF), hidden Markov models (HMM), and sup-
port vector machines (SVM) [28]. Clustering-based classification methods have also been
proposed [29], where the k-nearest neighbors algorithm was used to determine resident
activity. Beyond this, several variants of SVM have been shown to outperform traditional
machine learning algorithms such as NB, CRF, and HMM [30]. Some authors have devel-
oped behavior classification models derived from SVM classifiers to differentiate/identify
residents [31]. An SVM classifier using multiple kernels was also proposed to identify indi-
vidual activities of residents [32]. Some authors focused on time-space feature importance
relevance and used random forests and SVMs to distinguish relevant features for activity
classification [33]. More complex probabilistic methods have also been proposed that
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leverage Bayesian networks [34], in addition to methods that estimate prior probabilities of
activities happening at different points in time [35], relying on Gaussian mixture models. A
disadvantage associated with many of these methods is that they typically require hand-
crafted feature extraction methods [36] or approximate kernel fusion methods [32]—an
issue that is directly addressed by deep learning methods.

2.3. Deep Learning Approaches to HAR in Smart Homes

The key benefit of deep learning (DL) methods lies in their ability to uncover features
from raw data (e.g., sensor measurements) [14]. Early successful DL works in the field
of sensor-based human activity recognition proposed the use of a Restricted Boltzmann
Machine (RBM) [22], which relied on a single-layer feed-forward network for feature
extraction. Later works progress beyond a simple-feed forward network by suggesting
the use of one-dimensional convolutional networks (CNNs) [37] and two-dimensional
CNNs [38,39] that capture local dependencies in a temporal sequence. Local dependencies
are captured through what is known as parameter sharing across time—the convolutional
kernel used has the same weights across time. Consequently, CNNs have a restricted ability
to capture dependencies between data samples [40].

LSTM networks have become more popular recently because of their ability to model
long-term dependencies in sequences. In fact, they have been shown to be a very successful
variant of recurrent neural networks (RNN) in automatically learning temporal information
from raw data and achieving reasonable performance in HAR in smart home settings [17].
The authors also demonstrate the effectiveness of extensions of LSTMs such as bidirectional
LSTMs and cascading LSTMs, attributing their success to explicit modeling of multi-modal
channels of domotic sensors. Recent work has also shown the importance of good feature
representations [41,42]. Bouchabou et al. [19] combine this insight with a popular natural
language encoding technique, namely term frequency encoding, in generating good feature
representations fed to a convolutional network. Although they seem to achieve state-of-the-
art HAR results, many of these deep-learning methods have drawbacks: A key limitation
is their reliance on oracle segmented sensor data, as outlined earlier. These segmented
windows are often used as inputs to a classification model that identifies a specific human
activity [17,19]. Yet, HAR systems that rely on manually segmented data are not very
applicable to real-world scenarios because it is not practically possible to identify and filter
segments that can be used for HAR in a deployment scenario.

2.4. Graph Neural Networks for HAR

In formulating the problem of HAR in smart home settings, most prior works implicitly
ignore the heterogeneous structure of the data collected from a network of sensors. At
any point in time, only a subset of all sensors will be activated, whereas other sensor
measurements are not necessarily meaningful—which is in stark contrast to, for example,
activity recognition scenarios using wearable sensors. Since different combinations of
sensors can fire together at different points in time when a resident engages in an activity,
sensor data associated with each resident activity are implicitly variable. Prior works ignore
this heterogeneous structure. Apart from TLGAT [21], which attempts to construct a graph
attention network across space and time, the state-of-the-art methods for HAR in smart
homes are convolutional neural networks (CNNs) [18,19] and/or variants of recurrent
neural networks (RNNs) [17], which do not factor in relational inductive biases and assume
a fixed input size. In this context, relational inductive biases refer to assumptions that
impose constraints on relationships and interactions between sensors. For example, when
a resident of a smart home decides to watch television in the living room, their activity
would probably trigger the living room light sensor and binary sensor, indicating if a couch
is being used. In the context of this example, imposing relational inductive biases translates
into encoding that the couch sensor and light sensor co-fired, and hence both of these
factors are correlated (i.e., dependent on each other).
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In real-world settings, where only limited labeled data are available and sensor data
are highly variable, inductive biases are an excellent way to train models that generalize
well [43]; better generalization leads to better adjustment to variations in resident behavior,
leading to more robust activity recognition systems in smart homes. When working with
heterogeneous data, relative inductive bias can be introduced through guiding models
in learning dependencies between sensors. Several works in HAR use wearable sensor
data and skeleton data that exemplify this: variants of spatial–temporal graph convolution
network [44,45] and variants of residual graph convolutional networks [46,47]. While graph
convolution networks have been successful in HAR for wearables, we show in this work
that they tend not to be as successful as attention-based graph neural networks in HAR
for smart homes, especially since attention-based models are able to leverage the prior
knowledge, indicating that some neighbors might be more informative than others.

Knowing how a set of sensors are co-firing (e.g., sensors that typically trigger and
do not trigger while a resident is watching the television) can provide more context when
deciding the activity of a resident, even when only a subset of the sensors are functioning at
a given point in time. Since graphs are an effective way to model dependencies in a network
of sensors, one meaningful problem formulation involves defining a sensor network as a
graph with nodes representing individual sensors and edges representing relationships
between sensors. This leads to one of the key ideas pertaining to GNNs: we want to
build representations of each sensor, which will comprise some learned combination of
the sensor’s observed data (encoded as a node feature vector) and the feature vectors of
correlated sensors.

Unlike prior works, we extend the work of Graph Neural Networks in the domain of
human activity recognition in smart homes in several ways:

• Our approach does not rely on designing separate networks for individual features
such as time, timestamp, and location. Our approach learns all the features automati-
cally and directly from raw sensor observations. We believe this is helpful because by
not splitting raw sensor data into separate features and training a unified graph neural
network (Section 3) on less sparse data, learning is improved. This translates into
better generalization, which is shown by the improved performance using our method.

• Secondly, our approach learns correlation relations between sensors across different
features where we explicitly prune edges with low attention weights, allowing the
learned graph structure to retain more pertinent information, allowing it to generalize
better. More details in Section 3.4.1.

• Thirdly, we discontinue the use of convolutional filters, which were often found in
prior works [21], by relying on the use of residual connections and hierarchical pooling
(Section 3.5). Our experiments find that the use of convolution filters can be extremely
sensitive to sensor behavior, window size, and chosen kernel size, potentially explain-
ing the worse performance in methods using these filters (Section 4.2) compared to
our approach.

• Another very important distinction lies in evaluation. Most prior works use a 70–30%
split for training and test data with a random shuffle [18,21,36]. Unfortunately, this
method is not representative of practical scenarios and is inappropriate for time
series data because of temporal dependencies [37]. We show evaluations across
several pertinent prior works using forward chaining. More details can be found in
Section 4.1.2.

3. Graph-Guided Networks for Activity Recognition in Smart Homes
3.1. Overview

A successful HAR system in a smart home is one that is able to leverage a multitude
of such sensors to effectively recognize user activities despite the challenges posed by
real-world deployment. We argue that explicitly modeling relationships and interactions
between sensors is a crucial step in addressing issues arising from variability, noise, redun-
dancy, and sparsity in sensor measurements, especially when labeled user activity data
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are scarce. Knowing how different sets of sensors are co-firing can provide more context
when determining the activity of a user even when sensors malfunction (e.g., due to poor
network connectivity) or are activated for a short duration (e.g., a door sensor when the
resident is leaving the home).

An elegant way to model relationships between an arbitrary number of entities is
through graphs (cf. Section 2.4). We propose a novel graph-based method to model rela-
tionships between sensors and then leverage the graph to perform HAR in smart homes
(see Figure 1 for an overview). Our approach consists of four main components:

1. Encoding. What: A way to encode each sensor’s values into a vector that encodes both
temporal information as well as sensor measurements into a vector. Why: Mapping
observations to a high dimensional space using a non-linear transformation allows
for sufficient expressive power [48].

2. Sensor Embedding Generation. What: A sensor-specific transformation to capture
the unique characteristics of each sensor. Why: Values recorded by each sensor can
follow different distributions and have distinct patterns—hereafter referred to as
‘sensor behavior’.

3. Attention-based Graph Structure Learning. What: A directed graph that represents
the dependency relationships between sensors. It is learned through an attention
function that attempts to quantify the strength of relationships between sensors.Why:
Modeling dependency relations can provide more context for the task of human
activity recognition. The graph is directed because dependency patterns need not
necessarily be symmetric. Attention is needed since not all sensor dependencies are
the same; some are perhaps more important compared to others.

4. Activity Recognition. What: A modified fully connected neural network that uses
hierarchically pooled information encoded in the learned graph to predict users’
activity. Why: The resultant graph from the previous step contains several dimensions
of information: each node encodes temporal information and measurements from
one sensor as well as weighted contributions from its neighbors; each edge encodes
the strength and presence of dependence between sensors. By iteratively clustering
and aggregating node embeddings using a fully connected neural network, the HAR
system would be better able to piece all the dimensions of data encoded in the graph
to make an informed prediction about a user’s activity.

In what follows, we provide detailed descriptions for each of the components of
our approach.

Figure 1. Overview of the proposed GNN-based approach to human activity recognition in smart
homes. Inputs {x1, . . . xN} correspond to each of the N sensor observations. (1) Preprocessing:
Forward imputation is performed if necessary. (2) Encoding: In the encoding step, an encoder applies
non-linear transformations to inputs {x1, . . . xN} to generate representation vectors, {h1, . . . hN}.
(3) Sensor Embedding Generation: The encoded inputs are then used to generate sensor-specific em-
beddings {s1, . . . sN}. (4) Attention-based Graph Structure Learning: The sensor-specific embeddings
are used to learn dependency relations, i.e., the edges between nodes. (5) Activity Recognition: All
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sensor embeddings are combined with the learned graph structure {z1, . . . zN} using a modified
one-layer feed-forward neural network to predict user activity (we perform a hierarchical pooling of
node embeddings to maximize the learning of global and local sensor relations).

3.2. Encoding

As outlined as one of the challenges in Section 1, variability in sensor measurements
can manifest as signals that may be missing at random periods and for arbitrary durations.
Several ways to address the issue of irregular sampling of sensor signals have been devel-
oped. Traditional imputation techniques, which are based primarily on averaging [49] or
linear regression [50], do not necessarily encode the complexity that plagues smart home
sensor signals. More robust approaches tend to be: (a) probabilistic, such as Gaussian
Processes [51–53]; (b) kernel-based [54]; or (c) deep learning based, such as Generative
Adversarial Networks (GANs) [55–57], Recurrent Neural Networks (RNN) [58–60], and
attention mechanisms [61]. A major challenge associated with both probabilistic and kernel-
based approaches for imputation is the complexity that arises from designing appropriate
kernel functions or covariance functions for Gaussian processes in the multivariate case. In
practice, because there are often limited labeled data when it comes to HAR in the context
of smart homes, training GAN-like generative approaches to convergence is extremely chal-
lenging [62]. End-to-end deep learning approaches such as Neural Ordinary Differential
Equation (ODE) networks [63,64] and Gated Recurrent Unit (GRU) networks with hidden
states decayed towards zero [60] add too much model complexity, making the HAR system
more prone to overfitting to a specific resident or smart home environment.

We found that a straightforward solution that adds minimal complexity and works
well is forward imputation, i.e., assuming any missing value is the same as its last mea-
surement and thus using the most recent sensor measurement. Hence, the main data
transformation we perform for raw sensor events is to perform forward imputation (the
first step in Figure 1). Discrete sensor events are then fed into an encoder that is able to
capture contextual information across time. The encoder converts xi to hi as shown in the
second step in Figure 1. Since variants of Recurrent Neural Networks (RNN) such as LSTM
and Bidirectional LSTMs are known to be effective in capturing long-term dependencies,
we chose to use an RNN-based encoder to extract feature vectors, {h1, . . . hN}, from the
raw sensor data, {x1, . . . xN}, as shown in step 2 of Figure 1.

3.3. Embedding Generation

Across various smart homes, different sensors might have different behaviors and
characteristics along several dimensions: (i) frequency of activation, e.g., sensors placed
along hallways might trigger more frequently compared to sensors at the door for a resident
who mostly stays at home; (ii) periodicity of triggering, e.g., bedroom sensors might be
activated daily at night while the guest bathroom sensors might only activate during the
holiday season when a guest visits; (iii) range of measured values—discrete-value sensors
such as binary sensors with two values (On and Off) versus continuous-value sensors such
as temperature sensors and air-quality sensors, which can take a wide range of values. We
refer to variations along these dimensions as ‘sensor behavior’.

In order to capture the aforementioned dimensions of variations in ‘sensor behavior’,
our approach includes an embedding layer with a size N, which represents the number of
sensors. Each sensor’s embedding, si, is defined as follows:

si = ReLU(hi · Wi) (1)

si ∈ Rd, for i ∈ {1, 2, 3, . . . N} (2)
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where ReLU is a non-linearity function, Wi is a sensor-specific trainable weight vector,
and d refers to the dimension of the embedding. Together, the non-linear transformation
projects feature vector hi ∈ {h1, . . . hN} from the encoding step (Section 3.2) to a new
feature space. In this new feature space, sensors that have similar ‘sensor behaviors’ share
similar embeddings, indicating a high tendency to be related to one another. The learned
embeddings are used to construct the graph structure, which maps the relationship between
sensors. They are also used to compute attention scores, which determine how much each
sensor affects the values of related sensors. This provides a way to address variability in
sensor measurements, e.g., when sensors malfunction. Initialized randomly, the sensor
embeddings, which are essentially semantic clusters, are learned alongside the rest of
the model.

3.4. Attention-Based Graph Structure Learning

Knowing how a set of sensors are co-firing can provide more information when deter-
mining the activity of a user in real-world settings. By explicitly modeling relationships
and interactions between sensors using graphs and then leveraging the graphs to recognize
human activities, we believe that HAR systems would be better equipped in addressing
issues arising from variability, noise, redundancy, and sparsity. For example, when sensors
malfunction due to poor network connectivity or are activated for an extremely short
duration (e.g., a door sensor activating only when a user leaves home), being able to rely
on information from other sensors would allow a HAR system to have sufficient context to
predict user activity. Concretely, we refer to the process of modeling relationships between
sensors using graphs as attention-based graph structure learning.

A graph is a collection of nodes and edges. In the context of our proposed HAR
model, the graph comprises nodes that represent features associated with specific sensors
and edges that indicate relations between sensors. A directed edge −→euv from a sensor u
to another sensor v can be interpreted as sensor u potentially influencing the behavior of
sensor v. Since the dependency between u and v might not be symmetric, we explicitly
model a directed graph implemented as an adjacency matrix A, where Auv ∈ {0, 1}
represents the presence of a relationship between sensor u and sensor v: when sensor
u captures an observation, sensor v will receive a neural message. If there is no edge
connecting sensor u and sensor v, there is no exchange of neural information between both
sensors, indicating that the sensors are unrelated. As detailed in Section 2.4, neural message
passing is equivalent to incorporating the hidden state (i.e., feature vectors) of any given
sensor u into the feature vectors of all potentially dependent (i.e., co-firing) sensors using a
weighted aggregation function. Serving as an illustrative example, consider the CASAS
Milan smart home that has a regular layout. Each sensor (e.g., M07, M08, and M26) in the
house (Figure 2) has a corresponding node in the subgraph on the right representing its
feature vector. The presence of directed edges, e.g., between M07 and M26, indicates that
M07 influences M26, and vice versa. Consequently, the neural message-passing algorithm
incorporates the features of M07 into the the feature vector of M26.
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Figure 2. Layout of CASAS Milan smart home with labels (with permission from [65]) with the
corresponding subgraph for the workspace and television room. The remaining nodes and edges of
the graph are hidden for brevity.

3.4.1. Edge Pruning

Since it is reasonable to assume that not every sensor will influence every other
sensor, the dependency relations between sensors need to be determined. Unlike prior
works [21], we include an explicit edge pruning step where at each training step we prune
edges between nodes with small attention weights, allowing the learned graph to primarily
focus on sensor relations that are actually pertinent for the task of activity recognition.
We believe this directly addresses the high level of sparsity present in smart home sensor
observations. Starting with a fully connected graph where every sensor i has directed edges
going to and coming from all other sensors, we can remove unnecessary connections—in
other words, relations that do not necessarily provide additional information. Note that
we can also start with a partially connected graph if we have prior information about
the sensor relationships. The importance of edges can be determined by comparing the
similarity of sensor embeddings, which were designed to encode sensor behaviors.

More formally, we use the normalized dot product of sensor embeddings generated
from the embedding layer, which is computed between every pair of candidate relations
(step 2 in Figure 3) as follows:

Figure 3. An overview of how we perform edge pruning on a 4-node sample graph. (1) A fully
connected or partially connected graph is constructed. (2) simij between sensors i and j are computed.
(3) The similarity scores of all sensors are sorted in descending order. (4) Only the edges corresponding
to top-k similarity scores are retained, while the rest are discarded.
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simij =
s⊺i sj

∥si∥ · ∥sj∥
for j ∈ Ci (3)

where si is the embedding of sensor i and Ci is a set of all potentially related sensors to i
(i.e., sensors that co-fire). For each sensor i, we sort and only keep edges corresponding to
the top k similarity scores, where k is a hyperparameter (steps 3 and 4 in Figure 3), which
we have chosen to be five through empirical study. Discarding non-top-k edges translates
into updating the adjacency matrix A of the graph.

3.4.2. Attention Mechanism

Some sensor pairs can be more closely related (i.e., correlated) to each other than
others. For instance, sensors associated with a ceiling light and fan in the living room are
probably more likely to co-fire when a resident is sitting and watching television in the
living room. Compare this to a ‘weaker’ dependence between sensors associated with a
bed lamp in the bedroom and hallway. A resident walking through the hallway could be
on their way to carry out any activity: to the bedroom to read, to the living room to watch
television, or to the kitchen to cook, to name but a few examples. Clearly, it is reasonable to
expect the dependence between light and fan sensors in the living room to be stronger than
the dependence between sensors associated with the hallway and bed lamp in the bedroom.
In order to effectively learn such nuanced sensor relations, we include attention-based [66]
weights for every directed edge −→euv between sensors u and v where {u, v} ∈ S and S is the
set of all sensors in a given smart home.

More specifically, a graph attention-based feature extractor performs a weighted
aggregation of feature vectors from related neighbors to update each node’s representation
zi, i.e., sensor i’s hidden state. It is defined as follows:

z(t)i = ReLU

βi,iWx(t)i + ∑
j∈N (i)

βi,jWx(t)j

, (4)

where x(t)i ∈ RN×v and N is the number of sensors, and v is the window size on input
sensor readings. N (i) is the set of neighboring sensors of (i.e., sensors related to) sensor
i, obtained from the adjacency matrix A. W is a trainable weight matrix, which is used to
apply a shared linear transformation to the model input xi. βi,j are the normalized (using
softmax) attention weights, which are computed using the following equations:

βi,j =
exp(ϕ(i, j))

∑k∈N (i)∪{i} exp(ϕ(i, k))
(5)

ϕ(i, j) = LeakyReLU
(

b⊤
(

g(t)i ⊕ g(t)j

))
(6)

g(t)i = si ⊕ Wx(t)i (7)

where g(t)i is the concatenation of sensor i’s embeddings with the corresponding trans-
formed feature vector of sensor i and b is a set of learned coefficients. Note that our
approach specifically factors each sensor’s behavior encoded in the embeddings, si, unlike
prior graph attention mechanisms.

The attention mechanism in conjunction with the edge-pruning strategy allows us to
learn a directed graph that encodes both sensor-specific features as well as inter-sensor
relationships. In the next subsection, we outline how this rich representation can be used to
recognize the activity a user is engaged in.

3.5. Activity Recognition

An effective HAR system that learns dependencies between sensors ought to answer
several questions:
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1. Are sensors co-firing in patterns we have observed before?
2. Which sensors have been active?
3. What can we learn about user activities by looking at sensors that are active as well as

those that are not?

These questions can be answered by querying the learned graph structure. More
specifically, we apply a function fpool , which pools the information encoded in the graph
to predict user activity. This function ought to meaningfully map the set of node feature
vectors {z1, . . . zN} in a learned directed graph to a specific user activity (Step 5 in Figure 1).
A natural implementation of fpool would be to use a single fully connected layer, since they
are known to be universal function approximators [67]. Unlike prior works, we modify
the standard fully connected layer using a differentiable soft assignment of the graph by
mapping nodes to sets of clusters based on their learned embeddings (in a method similar
to that described in [68]). Essentially, this translates into nodes being pooled iteratively
to aggregate both local and global graph embeddings. The aggregated embeddings are
then used to learn to map features from sensors and information encoded in the directed
graph to specific user activities. Also, unlike prior works, each of the N representations
{z(t)1 , · · · , z(t)N } are element-wise multiplied with the corresponding sensor embedding si
and fed into the fully connected layer of a size equivalent to the total number of desired
activities for classification. This is equivalent to having a skip connection, minimizing
the effects of over-smoothing [69]. Consequently, we have a complete HAR system that
takes as input discrete sensor measurements {x1, . . . xN} (data preprocessing is outlined in
Section 4.1.1) and predicts user activity for that duration. In practice, our system can be
used as is without the need for any oracle manually segmenting windows or for having to
guess the ideal window size of input window sequences.

4. Experimental Evaluation

In this section, we report on our extensive and rigorous experimental evaluation,
which aims to test the effectiveness of our proposed approach in plausible, real-world
scenarios, and compare our approach to state-of-the-art methods. The natural choice for
datasets to be explored in a rigorous experimental evaluation is the CASAS datasets [65].
They contain diverse collections of daily activities data collected in both single and multi-
person households with real users, thereby covering time spans between two and eight
months and covering a range of demographics, from young adults to older adults with
dementia, and even pets. The houses from which data were collected featured a varied
set of sensors, including temperature sensors, motion sensors, and binary sensors such as
door sensors (which capture whether or not a door was opened). Together, the diversity
of residents (and their behaviors) as well as the variety of sensors used make the CASAS
datasets reflective of real-world settings.

The subset of CASAS datasets we utilize for evaluations portray the previously men-
tioned four main challenges that are pervasive in real-world settings: sensor variability,
sparsity in measurements, the presence of noise, and limited availability of activity data. In
fact, they even contain months of labeled activities that are severely imbalanced, i.e., certain
activities occur way more frequently than others, rendering the problem more challenging.
What follows are evaluations performed using several CASAS datasets from Aruba, Cairo,
Kyoto7, Kyoto8, and Milan (Table 1).

Table 1. Details of CASAS datasets used for experimental evaluation.

Properties Aruba Cairo Kyoto7 Kyoto8 Milan
Residents 1 2 + pet 2 2 1 + pet
Number of sensors 39 27 58 61 33
Number of activities 12 13 13 12 16
Number of days 219 56 46 58 82
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4.1. Evaluation Setup
4.1.1. Data Preprocessing

For each of the datasets, we follow a process of cleaning up, which is similar to
the process described by Bouchabou et al. [18]. Specifically, we address the following
major anomalies found in each of the raw datasets: (1) the presence of duplicate data—for
example, sequences of sensor activations for some days are repeated—and (2) incorrect
ordering of sensor activations, i.e., some sensor activations do not appear chronologically.
Duplicate data are removed and incorrectly ordered sensor activations are reordered to be
chronologically consistent. Furthermore, since the raw data only contain the “start” and
“end” of activity labels at specific timestamps, we process raw data into steps, where a step
for a dataset is defined as the smallest interval in time between consecutive sensor events.
For steps during which no observation data are available, we use forward imputation, i.e.,
we use the last known observation data. More details are provided in the Appendix B.

4.1.2. Evaluation Methodology

Unlike prior works [17–19], we are unable to use the stratified K-fold cross-validation
method [70] since the adjacent segments of observed data are not statistically independent.
Relying on stratified K-fold cross-validation results in bias towards approaches that pre-
serve similarity between adjacent segments of time-series data, affecting the generalizability
of classifiers [26]. Hence, we use a more principled procedure: forward chaining [71,72]. We
split each dataset into three consecutive segments for three-fold evaluation, as illustrated
in Figure 4. In each fold, a subsequence of sensor events is used in the training process,
which is called the training subsequence (highlighted in yellow in Figure 4). The training
subsequence is further split into a training subset (highlighted in purple in Figure 4) and a
validation subset, which comprises 10% of the training subsequence (highlighted in green
in Figure 4). In the same fold, an adjacent unseen subsequence is identified for testing
(highlighted in red in Figure 4). In the next fold, the training and testing subsequences
from a previous fold are used for training in the next fold, and an unseen subsequence
of sensor events is used for testing. This process is repeated three times to obtain three
different F1 scores that cover all samples. The reported scores are the average of all three
folds of evaluation over several runs.

Figure 4. Overview of evaluation methodology involving forward-chaining for a three-fold evaluation.

We compare validation and training losses to determine if training should terminate
early, i.e., before overfitting. This is achieved through early stopping [73], where training is
terminated if the validation loss does not decrease for S epochs; we chose S to be 15. Setting
a larger value for S led to models overfitting. With early stopping, all models, even those
set to train for 300 epochs, terminated early, at between 50 and 80 epochs, depending on
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the dataset. The learning rate is set to 0.001 using the Adam optimizer with a weight decay
of 0.5%.

Model hyperparameters. We have used a batch size of 128. The number of nodes in the
graph is dependent on the number of sensors in the dataset (Refer to Table 1). We start with
fully connected graphs and retain the top five edges in each step of edge pruning (refer to
Section 3.4.1). In order to ensure a fair and consistent comparison with other state-of-the-art
methods, we use a window size of 20 with a 50% overlap. A window size of 20 in our case
means that in each window there are 20 timesteps, where the duration of each timestep is
determined to be the shortest interval for which any sensor has observations.

4.2. Results for Different Evaluation Settings
4.2.1. Setting 1: Classic Time Series Classification

The first experiment evaluates how well the proposed approach is able to identify
resident activities using sensor measurements across time windows. Each of the chosen
datasets is pre-processed as outlined in Section 4.1.1.

Our graph-guided approach outperforms prior works across several CASAS datasets.
We compare our approach to several other approaches: (1) Common recurrent baselines—
Long Short-Term Memory (LSTM) and One-dimensional Convolutional Neural Network
(CNN), (2) recent Graph Neural Network approaches used in HAR for wearable devices,
(3) language embedding-based methods single-resident daily activity recognition in smart
homes (4) several other benchmarks for single-resident daily activity recognition in smart
homes. Note: Several of the baselines had to be modified to be suitable for comparison (e.g.,
A3TGCN [74] was designed for forecasting but had to be modified to be made suitable for
classification—the change loss function was altered and the forecasting head was replaced
with a classification layer. There are some related works such as that of Cook et al. [30],
who evaluated only private datasets to which we do not have access; hence, we cannot
compare our results with these works.

We have had several key findings. Firstly, several prior works that focused on deep
learning methods relying on natural language processing (NLP) techniques [18,19], though
seemingly effective, required an oracle to segment windows of sensor events. Fundamen-
tally, these methods require external segmentation information in the form of text labels
(e.g., ON, START, etc.) during deployment. It is unrealistic and impractical to expect resi-
dents to label time windows before performing activity recognition. Secondly, graph-based
methods typically tend to outperform common recurrent approaches such as Convolutional
Neural Networks and LSTMs, as can be seen from the F1 scores in the first two sections of
Table 2.

Table 2. Classification performance on multiple CASAS datasets, on a per-sample basis. Comparisons
are made across five categories of works: (1) Common recurrent baselines—Long Short-Term Memory
(LSTM) and One-dimensional Convolutional Neural Network (CNN)—(2) recent Graph Neural
Network approaches used in HAR for wearable devices, (3) language embedding based methods for
single-resident daily activity recognition in smart homes (4) all other benchmarks for single-resident
daily activity recognition in smart homes, and (5) our proposed approach, which does not require
fixed windows or oracle specified time windows. We report the mean and standard deviation of the
three-fold test F1-score across three runs.

Methods\Datasets Kyoto8 Milan Kyoto7 Aruba Cairo
F1 Score F1 Score F1 Score F1 Score F1 Score

CNN1D 26.6 ± 0.66 36.6 ± 0.36 74.9 ± 0.29 65.6 ± 0.43 80.5 ± 1.67
LSTM 22.7 ± 1.95 30.6 ± 0.85 76.4 ± 0.88 83.7 ± 0.26 81.1 ± 1.07
TCN-AE [75] 26.2 ± 1.22 43.5 ± 2.32 69.4 ± 2.84 85.5 ± 1.01 80.44 ± 1.75
LSTM-CNN [76] 24.9 ± 0.22 40.1 ± 0.39 81.5 ± 0.72 88.9 ± 0.40 83.95 ± 0.48
GraphConvLSTM [45] 30.1 ± 1.56 41.0 ± 1.98 77.3 ± 0.73 87.6 ± 0.12 84.2 ± 0.11
ResGCNN [46] 52.3 ± 2.26 55.6 ± 1.34 68.6 ± 1.17 85.7 ± 1.44 81.1 ± 1.03
ST-GCN [77] 55.3 ± 0.48 54.4 ± 1.03 73.2 ± 0.77 85.5 ± 0.44 82.6 ± 1.40
A3TGCN [74] 57.5 ± 0.75 61.3 ± 0.57 77.4 ± 0.96 85.6 ± 1.12 84.0 ± 0.16
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Table 2. Cont.

Methods\Datasets Kyoto8 Milan Kyoto7 Aruba Cairo
F1 Score F1 Score F1 Score F1 Score F1 Score

ELMOBiLSTM[18] 50.6 ± 0.83 53.1 ± 0.22 70.5 ± 1.55 84.2 ± 0.99 81.8 ± 1.42
E-FCN [19] 61.6 ± 0.34 69.9 ± 1.11 78.5 ± 1.31 90.7 ± 0.33 84.6 ± 0.73
Bi-LSTM [17] 27.5 ± 2.05 45.5 ± 2.69 77.5 ± 1.56 90.1 ± 0.89 84.2 ± 0.47
TLGAT [21] 72.8 ± 0.63 74.5 ± 1.09 83.4 ± 1.72 91.8 ± 0.17 85.1 ± 0.83
OUR GNN APPROACH 78.3 ± 0.95 80.4 ± 0.52 88.7 ± 0.60 92.4 ± 0.34 88.7 ± 0.22

Thirdly, graph-based methods that rely on graph convolutions tend to perform worse
than graph-based methods that use self-attention at their core. This is evident from the sig-
nificant improvement of at least ≈10% in F1 scores (Table 2) on CASAS Kyoto8, Milan, and
Kyoto7 by using Graph Attention Networks (TLGAT [21] and our approach) as opposed
to Graph Convolutional Networks such as A3TGCN [74], ST-GCN [77] and, GraphCon-
vLSTM [45]. Unlike TLGAT [21], our approach takes the benefits of a graph attention
network a step further in several ways: 1. Our approach combines LSTM encoders with a
single unified graph instead of performing 1D convolutions over several different networks.
2. Our approach explicitly relies on learned attention weights at each training iteration to
prune edges that do not strongly represent the correlation relationship between any pair
of sensors. 3. We propose the use of residual connections (connecting sensor embeddings
directly to graph embeddings) instead of using a set of convolution layers to aggregate node
embeddings. We attribute the improvement in performance to architecture modifications
that allowed our network to minimize the effects of over-smoothing [69]. Over-smoothing
occurs when node-specific information is lost after iterations of message passing (i.e., node
representations converge to indistinguishable vectors). Incorporating skip connections
between sensor encodings (before and after message passing), our GNN approach does
not seem to suffer from over-smoothing. Furthermore, the hierarchical pooling of node
embeddings allows for learning multiple relationships that leverage the graph structure.
Unlike prior works, we do not just concatenate all node embeddings randomly; we perform
soft clustering of node embeddings iteratively, allowing for the co-firing relationships to
persist after pooling. Consequently, our approach is able to achieve significantly higher
than state-of-the-art F1 scores across several CASAS datasets.

Fourthly, the gain in performance by using our approach as measured by the F1 score
is largest in Kyoto8 and lowest in Cairo. This phenomenon can be explained in part by the
difficulty of the datasets. There are approximately four times more sensor activations in the
Aruba dataset as opposed to the Milan dataset. Having limited collected data exacerbates
the difficulty of HAR, since fewer examples are available to effectively learn user behavior.
The fact that our approach significantly outperforms the state-of-the-art method on both
more challenging datasets such as Milan and Kyoto8, as well as on less challenging CASAS
datasets, is a testament to the robustness of our proposed approach.

4.2.2. Setting 2: Fixed Sensors Dropped

In smart homes, it is reasonable to expect missing observation data because sensors
can suddenly stop working—perhaps because they malfunction when exposed to external
forces or their battery runs out. We posit that learning dependencies between sensors can
be extremely beneficial in such scenarios. To this end, we evaluate if our approach is robust
to scenarios where observation data from a subset of sensors is not available. One way to
test this would be to permanently hide all measurements from the most informative sensors
in the test data, keeping the training data unchanged. Training data are (still) required to
learn dependencies between sensors. Informativeness is determined by how often each
sensor is activated.

As shown in Table 3 (under ‘Set. 2 F1’ columns), our approach (evaluated on three
CASAS datasets) is very effective. For instance, for the Milan and Kyoto7 datasets, our
approach achieves F1 scores of 53.8 and 79.9, even when observation data from 40%
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of the most informative sensors are missing. Another recent graph-based baseline [21]
also remains robust to sensor dropping, which makes the case for graph-based methods,
although it still does not perform as well as our approach. In comparison, the RNN-based
state-of-the-art approach collapses to an F1 score of only 8.00 and 35.1 correspondingly.
Another finding is that the drop in effectiveness is not as significant (less than 10%) for
our approach (and [21]) when the percentage of missing sensor data is 10%, 20%, or 30%)
across all three datasets. On the other hand, the decrease in the effectiveness of the prior
state-of-the-art approach is much larger. For instance, when just 10% of sensor data are
missing (Milan), the F1 score of Deep CASAS BiLSTM drops from 45.5 to 31.7, while that of
graph-based approaches like ours only drops by less than five points, from 80.4 to 75.5.

Table 3. Classification performance on samples with a fixed set of left-out sensors (Setting 2) or
random missing sensors (Setting 3) on several CASAS datasets. Set. 2 F1 stands for F1 score obtained
in Setting 2 and Set. 3 F1 stands for an F1 score obtained in Setting 3. We report the mean and
standard deviation of F1 scores across the runs.

Missing Sensor Ratio Approach\Datasets Milan Kyoto8 Kyoto7
Set. 2 F1 Set. 3 F1 Set. 2 F1 Set. 3 F1 Set. 2 F1 Set. 3 F1

0% BiLSTM [17] 45.5 ± 1.42 45.5 ± 1.42 27.5 ± 2.05 27.5 ± 2.05 77.5 ± 1.56 77.5 ± 1.56
TLGAT [21] 74.5 ± 1.09 74.5 ± 1.09 72.8 ± 0.63 72.8 ± 0.63 83.4 ± 1.72 83.4 ± 1.72
OUR GNN
APPROACH

80.4 ± 1.23 80.4 ± 4.68 78.3 ± 0.95 78.3 ± 0.95 88.7 ± 0.60 88.7 ± 0.60

10% BiLSTM [17] 31.7 ± 2.48 32.1 ± 5.15 21.3 ± 2.11 26.2 ± 2.19 66.4 ± 1.26 69.2 ± 3.56
TLGAT [21] 69.7 ± 1.89 70.2 ± 4.34 67.9 ± 1.11 63.8 ± 2.53 81.3 ± 0.93 82.0 ± 2.63
OUR GNN
APPROACH

75.5 ± 2.85 77.6 ± 4.74 75.3 ± 1.96 71.3 ± 3.96 85.8 ± 0.58 86.4 ± 2.04

20% BiLSTM [17] 24.4 ± 3.62 30.5 ± 4.93 12.0 ± 2.46 20.1 ± 2.45 50.1 ± 1.34 61.7 ± 3.78
TLGAT [21] 67.1 ± 1.73 67.0 ± 2.13 55.6 ± 1.33 60.4 ± 3.11 80.8 ± 1.42 85.8 ± 1.98
OUR GNN
APPROACH

71.3 ± 2.36 72.4 ± 4.42 65.2 ± 2.33 67.4 ± 3.87 85.6 ± 0.99 86.1 ± 0.39

30% BiLSTM [17] 17.1 ± 2.95 22.7 ± 4.98 10.3 ± 1.26 12.2 ± 3.74 44.3 ± 1.97 59.1 ± 2.70
TLGAT [21] 62.2 ± 2.41 65.1 ± 3.38 50.0 ± 1.87 51.1 ± 2.99 80.4 ± 0.88 84.5 ± 0.91
OUR GNN
APPROACH

67.8 ± 2.86 67.6 ± 4.87 58.5 ± 2.01 55.5 ± 4.56 84.2 ± 1.66 84.5 ± 0.67

40% BiLSTM [17] 8.0 ± 3.42 11.7 ± 5.18 8.1 ± 2.33 12.2 ± 4.67 35.1 ± 1.32 57.8 ± 0.89
TLGAT [21] 53.7 ± 3.02 53.5 ± 4.26 42.4 ± 1.67 40.5 ± 4.73 79.8 ± 2.07 80.9 ± 0.24
OUR GNN
APPROACH

53.8 ± 2.17 62.6 ± 4.88 47.5 ± 1.95 40.5 ± 4.95 79.9 ± 2.17 80.9 ± 0.17

4.2.3. Setting 3: Random Sensors Dropped

Instead of only hiding observation data from the most informative sensors, as
described in Setting 2 (Section 4.2.2), it is also possible for different subsets of sensors to
malfunction over time. We test this by hiding the observation data of randomly selected
subsets of sensors for each window in the test set, again with several CASAS datasets. The
results are reported under ‘Set. 3 F1’ of Table 3. The evaluation for each missing sensor
ratio is repeated 10 times to prevent selection bias from strongly influencing the results.

We found that, generally, the effectiveness of both methods was better in Setting 3 than
in Setting 2 because in the former it was still possible for data from the more informative
sensors to help with activity recognition. In the latter, we systematically removed data
from the most informative sensors. Similar to our finding in Section 4.2.2, our approach
continues to be robust even when we randomly remove observation data from up to 40% of
the sensors. In contrast, the effectiveness of non-graph-based approaches such as BiLSTM
drops steeply. In both scenarios, our approach still outperforms or at least performs as well
as other smart home HAR baselines.

Through both evaluation scenarios (Settings 2 and 3), we show that our graph-based
approach is more robust to different degrees of missing sensor data as opposed to the state
of the art. One takeaway from this is that graph-based approaches can be more useful
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than RNN-based methods in real-world deployments where sensor data can be missing
for several reasons, including (but not limited to) frequent power cuts and external forces
of nature.

4.3. Ablation Study

Considering that our approach contains several components, as outlined in Section 3.1,
we investigated the contributions of the different components to the effectiveness of HAR.
Table 4 summarizes our findings, which were obtained by conducting several ablations.
For example, the graph structure seems to contribute the most towards being effective in
recognizing user activity (measured by a ≈30% improvement in the F1 score). Although
the inclusion of an embedding layer seems to only improve the F1 score by approximately
2% across several datasets (comparing Graph and Graph + Embedding in Table 4), the
inclusion of the attention mechanism seems to improve F1 scores by at least ≈5%. Table 4
shows that all components are necessary and that the proposed graph structure helped
improve the effectiveness of our proposed approach across several diverse CASAS datasets.

Table 4. Ablation studies on CASAS datasets: Kyoto8, Milan, Kyoto7, Aruba, and Cairo. The baseline
is a 2-layer fully connected network comparable to the graph in terms of the network size (measured
by the number of parameters). The graph approach involves the use of the neural message-passing
framework (outlined in Section 2.4). Embedding refers to adding the embedding layer (outlined in
Section 3.3). Attn refers to the inclusion of the attention mechanism (outlined in Section 3.4.2). We
report the mean and standard deviation of F1 scores across five runs.

Methods\Datasets Kyoto8 Milan Kyoto7 Aruba Cairo
F1 Score F1 Score F1 Score F1 Score F1 Score

Baseline 20.2 ± 2.47 41.3 ± 1.71 54.9 ± 1.84 66.7 ± 3.07 72.6 ± 0.88
Graph 71.5 ± 0.62 70.9 ± 0.89 76.8 ± 0.83 83.7 ± 1.68 78.4 ± 0.84
Graph + Embedding 73.5 ± 0.24 72.2 ± 2.11 80.6 ± 0.09 87.3 ± 0.94 82.2 ± 1.11
Graph + Embedding +
Attn 78.3 ± 0.95 80.4 ± 0.52 88.7 ± 0.60 92.4 ± 0.34 88.7 ± 0.22

5. Discussion

In designing and evaluating the graph-guided neural network presented in Section 3,
we have gained several insights with respect to design decisions and what future research
directions could entail. For brevity, we only discuss some of these insights that contextualize
our work. We have deferred additional discussion to the Appendix C.

5.1. What Are Some Limitations & Future Work?

Evaluation. As detailed in Section 4.1.2, our evaluation methodology uses nested
forward-chaining. Specifically, we create several train/test splits and average the results
across all the splits in order to reduce bias in evaluation and factor temporal dependencies
in sensor events. However, in our evaluation setup, there is a possibility for bias arising
from delays (in days) between train and test splits. We minimize the bias by repeating the
evaluation with different values of K in K-fold and averaging it.

GNN architecture limitation(s). The message-passing framework (detailed in
Section 2.4) is a crucial component in learning the graph structure (Step 4 of Figure 1).
One of the unintended effects of message passing is over-smoothing [69], where a single
node’s representation becomes dominated by too much information from all of its neigh-
boring nodes. In the context of a sensor network, this is equivalent to irrelevant sensors
corrupting the representation of any single sensor. As a corollary, the representations
encoded by each node in the graph are less useful, leading to poorer accuracy in recogniz-
ing resident activity. One solution is to include skip connections to minimize the loss of
information, as detailed in Section 3.5. Another intuitive solution we incorporate, unlike
prior works, is to constrain information between a node and its top-K most important
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neighbors, where importance is determined using attention scores (or attention weights),
as detailed in Section 3.4.2.

Figure 5 shows how the effectiveness of the HAR system varies with the number of
neighbors each sensor receives neural messages from. We noticed that empirically choosing
k to be between four and six yields the best performance across several real-world datasets.
For the rest of the values of K, we observe a non-monotonic trend—any value of K less
than five is insufficient information, and above that, there is too much information flowing
into any specific node during message passing. This directly translates into concave curves
centered approximately where K equals five, a pattern which has been observed in several
CASAS datasets (Figure 5). A potentially meaningful direction for future work would be to
look into whether we can overcome the limitation of choosing a fixed value for K.

(a) Milan (b) Kyoto7

(c) Kyoto8 (d) Aruba

Figure 5. Plots comparing how the F1-score varies with the number of neighbors K chosen to
aggregate information. The subfigures above show how varying the number of neighbors for each
sensor affects the effectiveness of the HAR system. At each step of AGGREGATE in the neural
message passing framework (Section 2.4), if a sensor has too many or too few neighbors, the graph is
not able to learn a good representation, which reduces the effectiveness of the HAR system. Based on
empirical evidence, we make a heuristic decision and select the choice of K to be five, which happens
to generalize well across all datasets considered in our evaluations.

Generalizability. Theoretically, our proposed graph approach can be easily used to
bootstrap homes with similar layouts. However, since transfer learning is out of the scope of
this work, we do not conduct any studies where we test how well learned graph structures
can be used in new home layouts. We leave this for future work.

5.2. How Scalable Is the Proposed Approach?

One of the main strengths of our approach is its scalability. Since every node in the
graph represents a sensor’s embedding and every edge is the co-firing relationship between
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a pair of sensors, removing sensors in a smart home would be equivalent to removing
nodes in the learned graph representation. From experiments in Sections 4.2.2 and 4.2.3, it
is evident that our graph-based HAR system is pretty robust to both random and specific
sensors being removed, without any retraining. In scenarios where only 1–2 random
sensors are removed, we observed that, with retraining, we can improve the F1 score to
within 2% of the setup where no sensors are removed. The caveat is that if a specific
sensor that is removed is important for a specific activity, we observe a sharp drop in the
effectiveness of activity recognition. For instance, removing the bedroom sensors altogether
resulted in the HAR system barely being able to recognize the resident activity of ‘sleep’ on
the CASAS Milan dataset.

In the case where new sensors need to be added to the system, it is also easy to
add them without having to retrain everything from scratch; only finetuning is needed
to refine the edge connections of the new sensors to all existing sensors in the learned
graph representation. No modifications to the training paradigm are necessary. If we know
that a newly added sensor behaves similarly to an existing sensor, we can bootstrap the
new sensor’s embedding using the similar sensor’s embedding. We can further improve
the effectiveness of the HAR system by finetuning the graph structure with the existing
attention-based graph structure learning paradigm by starting with a partially trained
graph. In future work, we aim to create datasets with realistic removal and addition of
sensors, using which we can robustly quantify the scalability of our and other similar works
in the context of HAR in smart homes.

5.3. Can We Explain the Classifications Performed by Our Proposed HAR System?

Most activity recognition systems are not perfectly accurate. Current HAR systems
are not able to recognize every activity of every resident in households without any error.
Although it is reasonable to expect activity recognition systems to improve, expecting
them to be perfectly accurate seems unrealistic, specifically in the smart home setting,
where there is a lot of diversity in terms of occupants and their behaviors. Unexplained,
inconsistent behavior of activity recognition systems can give rise to smart home operations
that tend to be surprising or even inappropriate to the resident. Given this context, we
investigate the potential for explainability that our proposed approach might carry.

The graph-guided model inherently allows for more explainable classifications because
we are explicitly modeling both the presence of a relationship between any two sensors in
a sensor network and the strength of such a relationship using attention. The strength of
relationships between sensors, as measured by the attention score, can be very informative
in explaining classifications. For instance, in accurately recognizing the activity of sleeping
for the resident from the Milan dataset, we can identify which sensors were deemed
important by the model. To achieve this, we rely on attention scores (or attention weights),
which are similarity scores that are computed by taking the normalized dot product of
observations for all pairs of input sensor events as well as between any two sensors’
feature vectors. If we were to plot the normalized attention scores (a proxy for relationship
strength) between all pairs of sensors in Milan, we would obtain an attention map as shown
in Figure 6a. It is evident that sensor 28 (M028) has the highest attention score.

Looking at the annotated layout of the household used in Milan (Figure 6b), we can
see that sensor M028 is located in the master bedroom. From this, we could infer that for an
input window of sensor measurements, the model predicts sleep as the resident’s activity
based on the high sensor activity of the sensor in the master bedroom.

Explanations have also been useful in determining the need for curriculum learning.
When analyzing incorrect activity predictions, we found that they often corresponded to
high attention weights associated with incorrect sensors. For example, the activity of leaving
home was often incorrectly identified and the sensors deemed most pertinent were the
hallway sensors (M011 and M019). What makes this outcome unsurprising is that not only
were the wrong sensors identified but the corresponding activity was one that occurred
more frequently, such as doing chores. We used this insight to structure the training process
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such that we reintroduce difficult training samples–training samples that more intensely
demonstrated the issue of noise and redundancy–as training evolved. We hope that such
explanations will not only help improve training processes but that they will also instill
more trust in HAR systems, especially in extenuating circumstances where such a system
is bound to fail.

(a) (b)
Figure 6. (a) Attention map, (b) Milan layout (with permission from [65]). Explanation for one
occurrence of sleeping activity of a resident from the Milan dataset. The attention map on the left
(Figure 6a) shows that sensor 28 (M028) has the highest attention score, with the darkest cell on the
map. Looking at the Milan layout on the right (Figure 6b), M028 is the sensor identifying if a resident
is on the bed in the Master Bedroom. Based on this information, we can infer the following: Since
the resident is on the bed, the HAR system recognizes that the resident is sleeping. Being able to
attribute recognized activities to its associated sensors through attention can help shed some light
on the decision-making process of the HAR system, which, in turn, allows trust to be built with
such systems.

6. Conclusions

A growing number of applications have focused on Human Activity Recognition
(HAR) in smart homes, specifically in the field of ambient intelligence and assisted-living
technologies. Real-world deployments of HAR systems pose several challenges, such
as variability, sparsity, and noise in sensor measurements. The complexity of the afore-
mentioned challenges motivates the implementation of machine learning (ML) techniques
that are able to discover knowledge from data and recognize human activities. Although
deemed effective in recognizing resident activities, most recent works assume that during
deployment, smart home residents are able to segment sequences of discrete sensor events
before the HAR system is able to perform activity recognition. We call this the oracle-
guided segmentation problem. Unfortunately, relying on such data is not very applicable
to real-world scenarios, since it is not practical to expect residents to identify and filter
sequences of sensor data. Similarly, relying on fixed window lengths is another common
limitation of prior works.

In an attempt to address the aforementioned issues, we have developed a graph-
guided neural network for HAR, thereby avoiding the previously mentioned limitations.
The key insights leveraged in our work are as follows: (1) explicitly learning dependencies
between sensors in a hierarchical manner can make for a robust HAR system; (2) discrete
sensor events can be effectively used for smart home HAR without the need for oracle-
specified segmentation or fixed window lengths. In our evaluations, we demonstrated
the effectiveness of our proposed HAR system in several settings. We also showed how
our proposed approach allows for more explainable classifications. Ultimately, we hope
that graph-based approaches will become integral in designing HAR systems in real-world
deployments of smart homes.
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Appendix A. Aggregated Sensor Triggers to Explain the Difficulty of CASAS Datasets

(a) Aruba dataset (b) Milan dataset

Figure A1. Sensor triggers aggregated over a 24-h period across all days. Without regard for the
function and location of each sensor, if we compare sensor activity in Aruba and Milan, it is evident
that sensor activity is more evenly spread in the Milan dataset—indicated by the more even spread of
colors on the map in Figure A1b. Couple this with the observation that there are approximately four
times more sensor activations in the Aruba dataset as opposed to the Milan dataset. Both of these
observations illustrate how the Aruba dataset is an ‘easier’ dataset compared with the Milan dataset.

The gain in performance by using our approach (shown earlier in Table 2) as measured
by the F1 score is largest in Kyoto8 and lowest in Cairo. This phenomenon can be explained
in part by the difficulty of the datasets. Difficulty can be measured by observing the
distribution of sensor triggers for different datasets. Figure A1 shows the aggregated device
trigger plots for two exemplary datasets: Aruba and Milan. Each cumulative device trigger
plot is a two-dimensional plot with the sensor IDs on the vertical axis and time in a 24-h
day on the horizontal axis. The brightness of the color on the plot indicates the aggregated
count of a specific sensor triggering at a specific time for everyday data was collected.
Comparing Figure 6a,b, most sensor activity for the Aruba dataset is concentrated on
sensor M009 and most other sensors are barely active. In contrast, sensor activity is more
evenly spread in the Milan dataset. Consequently, the problem of noise and redundancy

https://casas.wsu.edu/datasets/
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in the sensor data is worse in Milan. Furthermore, there are approximately four times
more sensor activations in the Aruba dataset as opposed to the Milan dataset. Having
limited collected data exacerbates the difficulty of HAR, as it means that fewer examples
are available to effectively learn user behavior. The fact that our approach significantly
outperforms the state-of-the-art method on both more challenging datasets such as Milan
and Kyoto8, as well as on less challenging CASAS datasets, is a testament to the robustness
of our proposed approach.

Appendix B. On the Need for Forward Imputation

The need for forward imputation arises from the irregularity of the collected sensor
data, caused by missing observations, different sampling rates, sensor failures, etc. [12].
For instance, irregularities could mean that data collected from various sensors might not
be aligned in time, and/or different numbers of observations might be recorded at different
time intervals for each sensor. As a consequence, the raw data collected from sensors in
smart homes tend to be irregularly sampled time series data. Although there are several
ways to deal with irregularly sampled time series data using kernel methods, interpolation,
etc. [10,60,78], we chose to use forward imputation between the smallest intervals in
time between consecutive sensor events. This is because it is a straightforward method
of achieving a reasonably effective HAR system which avoids the need for (1) complex
interpolation methods [79]; and (2) overly complex model designs [52,80]. Note: there is no
reliance on oracle-provided segment data or use of fixed-length sliding windows.

Appendix C. Additional Studies

Appendix C.1. Does Including an Auxiliary Task Improve Classification Performance?

Considering that it is one of the main challenges associated with real-world deploy-
ments of smart home systems, sparsity is a problem that is worth addressing. Recall that
the sparsity problem refers to the phenomenon where some activities occur rarely and/or
activity occurrences may translate into a signal with a single value from one sensor. Prior
works [17–19] have circumvented this issue by using a combination of oracle-provided
segmentation and weighted resampling of data to extract meaningful subsets of data for
HAR. As highlighted earlier, oracle-guided segmentation is not viable in deployment sce-
narios. Furthermore, our empirical results have shown that weighted resampling (both
upsampling and downsampling) does little to alleviate the problem (at most ≈1% on our
proposed GNN and several baselines).

Table A1. Contribution of the auxiliary task of forecasting to the effectiveness of HAR using OUR

GNN APPROACH . We report the mean and standard deviation of the three-fold test F1-score across
five runs.

Methods\Datasets Kyoto8 Milan Kyoto7 Aruba Cairo
F1 Score F1 Score F1 Score F1 Score F1 Score

No Forecasting 78.3 ± 0.95 80.4 ± 0.52 88.7 ± 0.60 92.4 ± 0.34 88.7 ± 0.22
With Forecasting 80.7 ± 0.13 81.3 ± 0.09 89.8 ± 0.37 92.7 ± 0.20 88.9 ± 0.39

Another way to resolve the sparsity problem is to introduce auxiliary task(s). The
intuition is that auxiliary tasks could act as self-supervisory signals to guide the model
during training to focus on useful signals while ignoring irrelevant sensor measurements.
One such auxiliary task is forecasting future measurements based on historical measure-
ments of each sensor. The hypothesis was that it is easier to learn better representations
for each sensor by concurrently attempting to classify resident activity and predict future
sensor measurements based on historical measurements. Also, better representations trans-
late into a higher accuracy on the task of HAR. Although including such a task gives an
improvement in effectiveness, we found that the accuracy gains are not uniform across
datasets. For example, it was more significant on the Kyoto8 dataset with an approximate
2% improvement in F1 score but negligible (∼0.3%) on the less noisy Aruba dataset. We
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attribute the difference to the predictability of resident behavior. Forecasting seems to
improve activity recognition results in scenarios where the resident behavior has more
repeated patterns. We have omitted the forecasting task from our final architecture because
it adds unnecessary complexity to the model, especially when there is no guaranteed
(significant) improvement.

Appendix C.2. Do We Really Need Forward Imputation While Preprocessing Data?

While preprocessing the raw data, we chose to use forward imputation. In Section 4.1.1,
we explained that the reason for using imputation can be traced back to the irregularity of
the collected sensor data. If data collected from various sensors are not aligned in time or
different numbers of observations are recorded at different time intervals for each sensor,
it is reasonable to expect that the raw data might have intervals of time where there are
no observations. In order to determine the extent to which the lack of imputation affects
the effectiveness of the HAR system, we compared three different ways of addressing the
irregularity issue: (1) No preprocessing—use the raw data with no interpolation. (2) A
deep learning method, IP-Net [79], which learns to interpolate missing values using a
combination of low-pass, high-pass, and cross-channel interpolations, relying on historical
trends. (3) Forward imputation—use the last known observation data. Note that we were
not able to try the more recent state-of-the-art methods for dealing with irregularly sampled
time series data [10,60,80,81], since they do not offer a solution to impute missing values;
instead, they propose a complex model that is not necessarily applicable to the problem of
HAR in smart homes.

The results in Table A2 show that forward imputation provides a significant increase
in the effectiveness of our approach across several CASAS datasets. For instance, we
see an increase of ≈28% in the F1 score on the Kyoto8 dataset. The deep learning-based
approach, IP-Net, seems only to come close to using forward imputation but does not seem
to be better than using forward imputation. This should not be surprising because IP-Net
relies heavily on historical data to learn how to interpolate. Given that the duration for
which residents’ data is collected in each of the five CASAS datasets is limited and resident
behavior is quite dynamic, it was probably challenging to learn to interpolate effectively.
Despite all the complexity introduced by using additional deep learning modules in IP-Net,
it was not possible to improve the effectiveness of the HAR system. The stark difference
in F1 scores between not performing any preprocessing and using forward imputation is
also expected. Without using forward imputation, most sliding windows would have no
recorded sensor activities. It is difficult for a HAR system to learn any resident behavior
when a significant percentage of input windows have missing sensor readings. A direct
implication of this study is that forward imputation is a straightforward method to achieve
a reasonably effective HAR system, which avoids the need for (1) complex interpolation
methods [79]; (2) overly complex model designs [52,80].

Table A2. Classification performance on multiple CASAS datasets using different preprocessing
techniques—applying forward imputation, using a deep learning based interpolation network IP-
Net [79], and applying no preprocessing. We report the mean and standard deviation of the 3-fold
test F1-score across three runs.

Methods\Datasets Kyoto8 Milan Kyoto7 Aruba Cairo
F1 Score F1 Score F1 Score F1 Score F1 Score

No preprocessing 50.9 ± 0.45 64.6 ± 1.05 76.1 ± 2.10 75.3 ± 1.22 69.4 ± 0.89
IP-Net [79] 55.3 ± 0.42 68.8 ± 1.43 82.7 ± 1.84 90.4 ± 0.64 83.8 ± 0.42
Forward imputation 78.3 ± 0.95 80.4 ± 0.52 88.7 ± 0.60 92.4 ± 0.34 88.7 ± 0.22

Appendix C.3. How to Address Poor Performance Arising from Uneven Distribution of Activities
in Training Data?

Not all activities carried out by residents are equally challenging to recognize auto-
matically. This is because the issues associated with real-world settings—variability, noise,
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redundancy, sparsity, and uneven distribution of activity labels—do not necessarily mani-
fest evenly across all time windows. For example, in households with a child and a parent,
detecting that the parent is watching television is probably more difficult than detecting
if they are sleeping. When the parent is watching the television, sensors in the bedroom
might be activated because the child might be playing in the bedroom. The activation of
bedroom sensors adds noise to the parent’s activity of watching television. On the other
hand, when both the parent and child are sleeping at night in the same room, we can expect
only a single-bedroom sensor to be activated. Not activating unrelated sensors translates
into less confusion for the HAR system, especially when learning the dependence between
sensors. If some activities are more challenging to recognize than others, e.g., due to noise,
how might we facilitate the learning process to factor in this difficulty?

We performed a preliminary experiment where we designed a tailored training pro-
cess that focuses on learning more difficult examples, improving the effectiveness of the
HAR system. Concretely, it is a variant of curriculum learning, where for each epoch of
model training, a subset of training samples is selected based on their difficulty and/or
informativeness, which are quantified by feedback provided during training (i.e., value
of loss during model training). We define a training sample as a tuple consisting of the
following: (1) all sensor values at a given time stamp OR a window size w for baselines
ending at time t; (2) its corresponding activity label. At each training step, we record the loss
of each training sample. We define the difficulty of each training sample as the magnitude
of the loss function, i.e., cross-entropy loss between the model’s predicted activity and the
ground-truth label. In the next step, training examples are sampled for training with a
probability value that is proportional to its difficulty, i.e., the loss value in the previous
step. This process is repeated until the training procedure is completed. Our preliminary
experiments show that the aforementioned curriculum learning algorithm boosts the F1
scores of our graph-based HAR system by at least 5% on CASAS Milan, CASAS Kyoto7,
and CASAS Kyoto8 datasets. In future work, we intend to further explore curriculum
learning-based training paradigms for graph-based HAR systems.

Appendix C.4. Do We Really Need a Sequential Encoder?

Many turn to sequential models for HAR tasks [82–84]. Given that smart home HAR
is based on the analysis of sequential data, sequential models such as LSTMs and other
Recurrent Neural Network (RNN) variants are popular choices. The often-cited benefits
of LSTMs include the ability to extract highly discriminative features and learn long-term
dependencies. Keeping in mind the benefits sequential models confer, the initial choice of
encoder in our proposed approach was an LSTM. We evaluated a variety of widely used
sequential models on five CASAS datasets with a fixed window size that corresponds to
20-timestep windows, where each timestep is the shortest duration between which sensor
observations are observed. The reason for this choice is that most daily activities in the
dataset range from short events such as leaving the house to long activities such as sleeping,
which can take place for hours. Empirically, we have found this window size to be able to
capture a diverse range of activity durations. We kept the comparison fair by ensuring each
encoder had a similar number of parameters to a two-layer LSTM with a hidden dimension
size of 64.

From Table A3, it is evident that a linear layer connected to the message-passing
framework of the graph-guided network is as good as or even better as a choice for
encoding raw sensor data as compared to some deep sequential approaches. For example,
using a linear encoder for the Kyoto8 dataset is better than using an LSTM or even a
Transformer (Table A3). Although a linear layer is better than several deep sequential
approaches (LSTM and GRU), the BiLSTM encoder is still the best choice of encoder across
several CASAS datasets, with the linear encoder not too far behind. The strong performance
of a linear layer hints at an interesting finding: for smart home HAR systems, it is probably
more important to know how sensors are related and the measurements observed from
related sensors instead of needing to capture longer-term context.
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Table A3. Evaluating choice of the encoder in our proposed approach on several CASAS datasets.
The mean and standard deviation of F1 scores across 5 runs are reported.

Methods\Datasets Kyoto8 Milan Kyoto7 Aruba Cairo
F1 Score F1 Score F1 Score F1 Score F1 Score

GRU 75.5 ± 1.43 80.3 ± 0.08 88.7 ± 0.84 91.2 ± 0.18 88.3 ± 2.94
LSTM 74.6 ± 2.86 79.2 ± 0.23 84.7 ± 0.99 90.1 ± 0.23 88.3 ± 2.33
Transformer 75.5 ± 1.74 79.8 ± 0.47 84.6 ± 1.01 90.4 ± 0.04 88.4 ± 2.63
Linear 75.5 ± 0.25 80.1 ± 0.36 85.6 ± 0.95 91.1 ± 0.15 88.2 ± 2.56
BiLSTM 78.3 ± 0.95 80.4 ± 0.52 88.7 ± 0.60 92.4 ± 0.34 88.7 ± 0.22
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