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Abstract: The data fusion of a 3-D light detection and ranging (LIDAR) point cloud and a camera
image during the creation of a 3-D map is important because it enables more efficient object clas-
sification by autonomous mobile robots and facilitates the construction of a fine 3-D model. The
principle behind data fusion is the accurate estimation of the LIDAR–camera’s external parameters
through extrinsic calibration. Although several studies have proposed the use of multiple calibration
targets or poses for precise extrinsic calibration, no study has clearly defined the relationship between
the target positions and the data fusion accuracy. Here, we strictly investigated the effects of the
deployment of calibration targets on data fusion and proposed the key factors to consider in the
deployment of the targets in extrinsic calibration. Thereafter, we applied a probability method to
perform a global and robust sampling of the camera external parameters. Subsequently, we proposed
an evaluation method for the parameters, which utilizes the color ratio of the 3-D colored point cloud
map. The derived probability density confirmed the good performance of the deployment method in
estimating the camera external parameters. Additionally, the evaluation quantitatively confirmed the
effectiveness of our deployments of the calibration targets in achieving high-accuracy data fusion
compared with the results obtained using the previous methods.

Keywords: extrinsic calibration; LIDAR; camera; calibration target; data fusion

1. Introduction

Three-dimensional (3-D) mapping is essential for a mobile robot to perform several
tasks, including surrounding environment identification, self-location estimation, object
recognition, and autonomous navigation. The simultaneous localization and mapping
(SLAM) algorithm is the principal method for constructing a 3-D map of the surroundings
of a mobile robot using onboard sensor data, such as camera images and 3-D light detection
and ranging (LIDAR) point clouds. The LIDAR SLAM algorithm can provide a wide and
accurate 3-D map [1–3]. However, a 3-D map constructed from the LIDAR point cloud
conventionally has a low resolution and no color information. The map obtained using
only point clouds may be insufficient for the detailed identification of environments and
objects around a robot. As a solution, data fusion of the 3-D LIDAR point clouds and the
camera images is generally implemented to construct a map with detailed information. A
camera image can provide color and texture data, enhancing a LIDAR point cloud map.
Notably, the data fusion method is highly effective for the classification and identification
of multiple objects around autonomous vehicles [4–7], as well as the construction of fine
subcentimeter 3-D models [8].

The requirement for achieving effective data fusion is accurate data matching of the
camera image and the LIDAR point cloud. Data matching requires knowledge of the
appropriate camera external parameters, which represent the transformation between
the coordinate frames of the LIDAR and the camera and the camera intrinsic parameters
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corresponding to the camera specifications. Moreover, LIDAR–camera calibration (extrinsic
calibration) is required to estimate the camera external parameters, for which many methods
have been proposed. These extrinsic calibration methods can be classified into two groups:
target and targetless methods. Here, we concentrate on the target methods. In target
methods, one or more calibration targets are employed, which are observed by the LIDAR
and camera simultaneously. The feature points of the 2-D image and the 3-D point clouds
of the targets are extracted, and the 3-D feature points are projected on the 2-D image
using the camera intrinsic and external parameters. In the extrinsic calibration, the camera
external parameters are estimated by matching the 3-D feature points projected on the
2-D plane to those in the 2-D image. The key to achieving accurate extrinsic calibration
is the utilization of multiple targets or multiple poses of a single target [9,10]. However,
no study has established a clear relationship between the positions of the multiple targets
and/or poses and those of the objects used in data fusion quantitatively. Clarifying the
effects of the calibration target deployments on data fusion results will provide insights for
deploying calibration targets during extrinsic calibration.

Another key factor for achieving precise extrinsic calibration is the estimation method
of the camera external parameters. Conventionally, the external parameters are estimated
using the least squares method to reduce the differences between the feature points on
the 2-D image and the same points projected from the 3-D LIDAR data. This is a non-
linear inversion problem for parameter optimization. Most studies related to extrinsic
calibration [11,12] utilize the Levenberg–Marquardt [13] or Gauss–Newton [14] method
to solve the nonlinear optimization problem. However, these least-square-based methods
tend to derive the local minimum, and insufficient parameter sampling may prevent the
determination of the best parameter.

Thus, the estimated camera external parameters should be practically applied to the
LIDAR–camera data fusion in the real 3-D world, e.g., outdoor environments, and the
parameters should be evaluated in environments similar to a real scenario quantitatively.
However, most evaluations of the camera external parameters are performed in simula-
tors and/or limited laboratory spaces [15–17]. While some data fusion experiments are
performed in real roads and/or broad outdoor areas, they are mostly qualitative [12,18,19].

Therefore, in this paper, we propose three concepts regarding extrinsic calibration.
First, we reveal the relationship between the positions of the calibration targets in the

extrinsic calibration and the data fusion accuracy, considering the positions quantitatively.
This will enable the optimization of the data fusion of the objects set at specified posi-
tions and provide useful information regarding the deployment of the calibration targets
during calibration.

Second, we propose a probability-based method for estimating the camera external
parameters, i.e., the Monte-Carlo Markov-chain method. This method enables robust
parameter sampling and the selection of appropriate parameters from a global search. Thus,
our proposed method can be useful when working with a sparse 3-D LIDAR point cloud.

Third, we propose a method for evaluating the adaptability of the camera external
parameters obtained by the extrinsic calibration. This method uses a 3-D colored data
fusion map obtained in a real outdoor environment. The evaluation result is useful for
assessing the practicality of the camera external parameters in more realistic situations.

The remainder of this paper is organized as follows. In Section 2, we discuss related
works on extrinsic calibration and expound on the novelty of our concepts. Thereafter,
the proposed probability-based methods for the extrinsic calibration and estimation of the
camera external parameters using the probability function are explained in Section 3. In
Section 4, we describe our measurement system and the experimental conditions under
which the appropriate deployment approach for the calibration targets is verified. The
camera external parameters estimated using our probability-based method are presented in
Section 5. In Section 6, we discuss the relationship between the positions of the calibration
targets and the accuracies of the data fusion of objects, considering the positions in the
3-D colored data fusion map. Next, the quantitative method in a 3-D space is applied to
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evaluate the data fusion results, and the deployment methods for the calibration targets
are verified. Finally, the proposed concepts are discussed in Section 8, and the paper is
concluded in Section 9.

2. Related Works

In this section, we introduce several existing extrinsic calibration methods and ex-
pound on the novelty of our proposed concepts. In target extrinsic calibration methods,
several types of artificial targets can be employed. The checkerboard is the most used
target [11,12,15–18,20–24]. Zhang and Pless [11] proposed a classical method using a single
checkerboard to estimate the camera external parameters. The several poses of the checker-
board observed by a 2-D laser range finder and a camera provided geometric constraints
on the rigid transformation between the camera coordinate system and the laser coordinate
system. Although some calibration methods using 2-D LIDAR, similar to that of Zhang
and Pless [11], have been proposed [20,21], Unnikrishnan and Herbert [18] were the first
to apply a 3-D laser scanner for extrinsic calibration using a checkerboard. Therefore,
most studies employed 3-D LIDAR. A single checkerboard with several poses [15–17]
or additional objects, such as hollows [22] and reflectors [12], have been employed for
extrinsic calibration, and the method based on Zhoug et al. [23] made available recently in
the Matlab R2021a open-source software [25]. Conversely, Ginger et al. [9] and Fu et al. [24]
proposed calibration methods using multiple checkerboards. Although the multiple target
method requires more time compared to the single board one for the setting, it can provide
strict constraints on the LIDAR–camera transformation using only single-view data [9].

Apart from the checkerboard, several calibration targets have also been applied, such
as planar square boards [19,26,27], triangle boards [28], spheres [29], 3-D boxes [30,31],
and a square board with reflected markers [32]. The combination of planar boards and
AR markers [33] or checkerboards [34] has also been researched. A planar board with
circles is often applied as a calibration target next to a checkerboard [10,35–39]. Velas
et al. [37] confirmed that circular halls on planer markers can be distinguished, even if
horizontally oriented edges of other geometrical shapes, such as squares and triangles,
cannot be distinguished in 3-D LIDAR point clouds using a single point of view. Thus,
circles can also be restored even if only the center and a part of a circle are detected in sparse
point clouds. Beltrain et al. [10] and Yamada and Yaguchi [39] demonstrated the usefulness
of multiple poses and/or multiple targets using a planar board with circular holes. While
many studies related to target methods have indicated that the utilization of multiple poses
and/or multiple targets is useful for obtaining optimized camera external parameters,
no study strictly focuses on the position of each calibration target. For this reason, using
multiple planar boards with circular holes, we investigated the relationship between the
positions of the calibration targets and the accuracy of the data fusion considering the
object’s positions.

Target-less methods do not require any special artificial targets. Scramuzza et al. [40]
used a natural scene, and the features of the scene highlighted on both the camera images
and the 3-D range information for the calibration were consistent. The reflectance informa-
tion measured by the 3-D laser and the grayscale image are also utilized. The transforma-
tions between the LIDAR and the camera are examined to maximize the mutual information
between the sensor-measured surface intensities [41–45]. Some researchers [46–48] have
proposed a method based on line information. The line features extracted from objects
in office floors [46], buildings [47], and road scenes [48] from both the camera and the
3-D LIDAR data are utilized to derive the camera external parameters. Recent targetless
methods also use the semantic information extracted from both 3-D point clouds and
camera images [49,50]. Although these targetless methods are not time-consuming and can
achieve high calibration accuracy comparable to that of the target methods, they can be af-
fected by the surrounding environments and data acquisition conditions (light and weather
conditions). In addition, recent advances in deep learning have provided new methods
for LIDAR–camera calibration, including RegNet [51], CalibNet [52], and LCCNet [53].
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However, these methods conventionally require a large amount of accurately labeled data
pairs for training [10,12], and they consume more time than the simple methods. For these
reasons, we focus on target methods.

Although many studies [11,23] utilize traditional methods, such as the Levenberg–
Marquart method, in the analysis of the calibration data, we adopt the Monte-Carlo Markov-
chain algorithm [54] to solve the nonlinear inverse problem. Our selected algorithm
performs a global search of the model parameters by sampling the parameters using the
random walk method based on probability. It provides the result of the parameter search as
a posteriori probability density and prevents the derivation of a local minimum. Since the
algorithms are already implemented to solve complicated nonlinear inversion problems in
some geophysical studies [55–57], we first adopt the Monte-Carlo Markov-chain algorithm
for a more robust search of the camera external parameters.

Using the obtained camera external parameters as the result of the extrinsic calibra-
tion, 3-D point clouds with RGB values can be generated, and some related studies have
proposed examples of 3-D colored point cloud maps [18,40,41,43]. However, these fusion
maps are created in the laboratory and the limited outdoor areas and none of these studies
utilized the color information in the fusion data to evaluate the goodness of the derived
camera external parameters. The 3-D colored point cloud map is a product of data fusion,
and the completeness of the fusion map should be an important factor in validating the
goodness of the estimated camera external parameters. We propose an evaluation method
that involves using the color information in the 3-D colored point cloud in outdoor areas
similar to realistic scenarios.

3. Methods

Here, we provide more information on our extrinsic calibration approach, encom-
passing the method for estimating the camera external parameters, the calibration target
adopted, and the method for extracting the feature points from the target. Thereafter,
the design of the likelihood function and the parameter sampling using the Monte-Carlo
Markov-chain algorithm are explained.

3.1. Estimation of the Camera External Parameters

Following Zhang and Press [11] and Cai et al. [22], a pixel coordinate of a point,
p = [u, v, 1]T , in a camera coordinate system and a coordinate of a point, P = [x, y, z]T , in a
LIDAR coordinate system can be represented as follows:

sp = K(RP + t), (1)

where K is the camera intrinsic parameter; R is a 3 × 3 rotation matrix, which represents the
angular rotation relationship between the two coordinate systems; t is a 3 × 1 translation
vector, which represents the relative positional relationship between the two coordinate
system; and s is the projective transformation’s arbitrary scaling factor, which is not part of
the camera model. Here, the camera intrinsic parameter is represented as follows:

K =

 fu 0 Ou
0 fv Ov
0 0 1

, (2)

where fu and fv are the focal lengths of a camera, and Ou and Ov are the central positions
on an image in the u- and v- axes, respectively. Thus, the camera external parameters, T, to
be estimated are expressed as a 4 × 3 consisting of R and t:

T = [R t]. (3)

If we can determine K and T, we can project a 3-D LIDAR point cloud on a 2-D camera
image using Equation (1) and perform a data fusion. We estimate the camera intrinsic
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parameter, K, using well-known checkerboard calibration, and the method can be utilized
in some open software [58]. Our proposed extrinsic calibration is employed to estimate only
the camera external parameters T. If we provide the known camera intrinsic parameter, K,
the camera external parameters are simply derived by solving the PnP problem [59] using
the coordinates of p and P in Equation (1).

3.2. Calibration Targets

Figure 1 shows the adopted calibration target, which is a red board with circular holes,
similar to that employed by Velas et al. [37]. However, the board has only two holes: one
small hole (radius: 9 cm) and one large hole (radius: 12 cm), as employed in Yamada
and Yaguchi [39]. We observe the target board using the 3-D LIDAR and the RGB camera
simultaneously. In this study, we deploy multiple calibration boards while controlling
their positions. Figure 1 shows an example where three boards are set at various distances
of near (1.5 m), middle (3.0 m), and far (4.5 m). The two circles on each board in both
the camera image and the 3-D point clouds are extracted as the feature points for the
extrinsic calibration.
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Figure 1. The calibration boards set at various distances in both the (a) camera image and the 3-D
point cloud taken at distances of (b) 1.5 m and (c) 4.5 m.

3.3. Circle Detection

The circles on the board in the camera image shown in Figure 1a can be detected by
the Hough transform [60], and the center point and circle radius of each circle are obtained
as 2-D pixel values. We calculate the subpixel coordinates of the circumferences at arbitrary
steps of the center angle using the center point and radius. Thereafter, we apply the
coordinates of the center point and circumferences as the feature points in the calibration.

The 3-D LIDAR point cloud data can be analyzed using the Point Cloud Library (PCL),
which is an open-source library. The circle detection in the 3-D point cloud, as shown in
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Figure 1b,c, is performed based on random sample consensus (RANSAC) functions [61]
and [Kd-tree] [62], which is a space-partitioning data structure that stores k-dimensional
points in a tree structure that enable efficient range searches and nearest neighbor searches,
available in the PCL. These can be used to find correspondences between groups of points
and extract a circle shape in the 3-D space. The 3-D coordinates of the center point and
radius of each circle are also obtained from the circle detection. Similar to the detected circle
on the image, we derive 3-D coordinates of the circumferences of the large and small circles.
Here, we also consider the resolution of the 3-D point clouds. As shown in Figure 1b,c, the
point clouds obtained at relatively far distances are conventionally sparse, and the circular
shape is not perfectly restored. Further, the noise included in the point cloud could interfere
with the shape restoration. Although the deployment of multiple calibration targets is
important in extrinsic calibration, as described in previous studies [9], the low resolution
and point cloud distortion can prevent the usage of the board set at far ranges. Thus, we
sample the radii of the small and large circles in the 3-D point cloud by random walk [54],
as described in the following section. The optimized circle radii obtained through a global
parameter search can generate the appropriate circles in the 3-D point clouds, even if it is
highly sparse and error-prone, improving data fusion accuracy.

In this study, we calculate the coordinates of the circumferences of the circles at a
step of 10◦ of the center angle in both the image and the 3-D point cloud. Thereafter, we
obtained 74 data points, consisting of the coordinates of the circumferences and the center
points of the small and large circles as the feature points per board. These data points
corresponded to the coordinates of p in the image and those of P in the 3-D point cloud in
Equation (1). We applied them as input data to estimate the camera external parameters.
Although previous studies [10,37] employed calibration boards with four circular holes,
we obtained sufficient input data using circle circumference and multiple boards with two
circular holes. Figure 2 shows an example of the detected circles on both the camera image
and the 3-D point clouds.
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Figure 2. Example of the detected circles on (a) camera image (blue line) and (b) 3-D point clouds
(red line).

3.4. Design of the Likelihood Function and Parameter Sampling

We set the 2-D pixel coordinates of the centers and circumferences of the circles
extracted from an image as

(
uc

i , vc
i
)
(i = 1, N). N is 222 for the three boards. The 3-D

coordinates of those in the point clouds are also defined as
(
xc

i , yc
i , zc

i
)
(i = 1, N). When

we substitute values for K and T in Equation (1), the 3-D points in the point cloud can be
projected onto the image, and we set the 2-D projected points as

(
up

i , vp
i

)
, derived from(

xc
i , yc

i , zc
i
)
. As described in the above section, we vary the radii of the circles by random

walk without searching for the camera external parameters directly. This is because the
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circle detected in the 3-D point clouds may not be perfectly restored because of noise and
sparseness. Here, we represent the circle radius as cr. If we apply three boards, as shown
in Figure 1a, cr will have six components, corresponding to the radii of the small and large
circles of each board for one sampling:

cr = [cr1s cr1l cr2s cr2l cr3s cr3l ], (4)

where cr1s and cr1l are the radii of the small and large circles of board 1; cr2s, cr2l , cr3s,
and cr3l are the radii for boards 2 and 3, respectively, the values of which vary for each
sample. Thus, the coordinates of the circumferences of the detected circles in the 3-D point
clouds also vary with cr and we represent them as

(
xcm

i (cr), ycm
i (cr), zcm

i (cr)
)
(i = 1, N),

including the coordinates of the fixed circle centers. Subsequently, the 2-D pixel values of
the projected 3-D circle points are changed as follows:

(
upm

i (cr), vpm
i (cr)

)
(i = 1, N).

Here, we define the likelihood function, L(cr), based on Masegaard and Tarantola [54]
as follows:

L(cr) = k exp

(
−α∑i

∣∣PI
i − PL

i (cr)
∣∣2

2σ2
p

)
, (5)

PI
i = (uc

i , vc
i ) (i = 1, N), (6)

PL
i (cr) =

(
upm

i (cr), vpm
i (cr)

)
(i = 1, N), (7)

where k is an appropriate normalization constant, α is the scaling factor, and σp is the
uncertainty in pixel scale. Although the detected circle on the 2-D image is generally
accurate in the subpixel scale, we define σp as 1.0 conservatively.

Next, we sample cr and derive a posteriori probability density of the camera external
parameters by following the random walk rule:

1. First, we employ the values of the radius extracted from the 3-D circles using PCL, as
described in Section 3.3, as the first sample. We define the radius as crcurrrent.

2. We estimate the camera external parameters by solving the PnP problem [59] using
crcurrent, after which we derive PL

i (crcurrent) in Equation (7). Thereafter, L(crcurrent) is
calculated using Equation (5).

3. We sample the next parameter, crnew, randomly based on a priori information and
derive the camera external parameters using crnew and PL

i (crnew), following which
we calculate L(crnew).

4. The acceptance or rejection of crnew is assessed using the following probability rela-
tion [54,55]:

Pr = min
[

1,
L(crnew)

L(crcurrent))

]
. (8)

If the likelihood function, L(crnew) ≥ L(crcurrent), crnew is accepted, and if L(crnew) <
L(crcurrent), crnew is accepted with a probability of Pr (L(crnew)/L(crcurrent)).

5. If crnew is accepted, the camera external parameters derived using the crnew are
applied to obtain a posteriori probability density, and crnew is replaced with crcurrent.
If crnew is rejected, new radii are sampled and crcurrent remains unchanged.

6. We repeat processes 2–5 at a designed count and obtain a posterior probability density
consisting of the accepted parameters.

The flow of the derivation of the a posteriori probability density is summarized in
Figure 3. Following this process, the radius of the 3-D circler can be sampled to ensure better
data matching between the LIDAR and camera data. The obtained probability density is
utilized to select the appropriate camera external parameters.
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Figure 3. The flow of the derivation of the a posteriori probability density of the camera external
parameters.

4. Experiments

We describe our measurement system for obtaining data on the camera and the 3-D
LIDAR for the extrinsic calibration and the 3-D mapping. Thereafter, we explain the
deployments of the calibration targets for investigating the effects of target positions on the
data fusion accuracy.

4.1. Measurement System

Figure 4 displays the measurement system constructed as a mobile wagon. It has
onboard sensors: 3-D LIDAR (VLP-32C (Velodyne LIDAR, SanJose, CA, USA), a visible
camera (ZED stereo camera (SteroLabs, SanFrancisco, CA/USA)), and IMU (3DM-GX5-
25 (Microstrain by HBK, Williston, ND/USA)). The 3-D LIDAR and the visible camera
are rigidly fixed on the wagon, and their measurement data are employed for extrinsic
calibration. The 3-D point cloud data and IMU data are employed for the 3-D mapping
using the LIDAR-SLAM algorithm described in Section 7. All sensors are controlled by
a robot operation system (ROS) installed on the onboard PC (Figure 4), and their data
are recorded in ROS format. The sensors and the PC are powered by an onboard battery
(Figure 4), and the system on the mobile wagon can be operated in stand-alone mode.
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Figure 4. Measurement system used for the extrinsic calibration and 3-D mapping. The coordinate
system drawn using white arrows indicates the world coordinate system, corresponding to that of
the 3-D LIDAR.

4.2. Experimental Setups

Table 1 summarizes all the experimental patterns of the extrinsic calibration performed
in this study, and Figure 5 indicates the deployments of the calibration boards used. We
vary the deployment distances of the calibration boards to investigate the effect of the
distance between the sensors and the calibration targets on the estimation of the camera
external parameters and the accuracy of data fusion (Figure 5a–d) at the same height (0.7 m).
Three boards are deployed at distances of 3.0, 1.5, and 4.5 m from left to right, as shown
in Figures 1a and 5a (Case A in Table 1). In Figure 5b–d, three boards are deployed at
even distances of 1.5, 3.0, and 4.5 m (Cases B, C, and D). In Case E, the three calibration
boards are set at different heights of 1.0, 0.7, and 1.3 m and distances of 3.0, 1.5, and 4.5 m
(Figure 5e) to investigate the effect of the height of the calibration target. Figure 5f displays
the deployment of two boards, one above the other, at a distance of 3.0 m from the sensors
(Case F). This deployment of four circles at a fixed distance is comparable to the setup
in previous studies [10,37,38]. As shown in Figure 5g, we also attempted the extrinsic
calibration using a checkerboard. In this case, we employed a state-of-the-art method [23]
available in the Matlab R2021a open-source software [25] for the extrinsic calibration.
For a fair comparison, we use the data on three poses of a single checkerboard taken at
approximately 1.5, 3.0, and 4.5 m (Case G), and the derived camera external parameters are
referenced for our evaluation. Additionally, to verify the effect of the algorithm, we derive
the camera external parameters without using the Monte-Carlo Markov-chain algorithm
described in Section 3.4 but using the deployment in Figure 5a (Case H).

Table 1. Experimental patterns of the extrinsic calibration.

Conditions

Case A Three boards set at distances of 3.0, 1.5, and 4.5 m (Figure 5a)
Case B Three boards set at a distance of 1.5 m (Figure 5b)
Case C Three boards set at a distance of 3.0 m (Figure 5c)
Case D Three boards set at a distance of 4.5 m (Figure 5d)
Case E Three boards set at distances of 3.0, 1.5, and 4.5 m and heights of 1.0, 0.7, and 1.3 m (Figure 5e)

Case F Two boards, one above the other, set at a distance of 3.0 m
(Figure 5f)

Case G Checkerboard taken at three poses at ~1.5, 3.0, and 4.5 m (Figure 5g)
Case H Same as Case A. The radii of the boards are fixed, and parameter sampling is not performed
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Figure 5. Deployments of the calibration boards applied in this study. (a) The three red boards with
two circular holes (calibration targets) are deployed at distances of 3.0, 1.5, and 4.5 m from left to
right. The calibration targets are deployed at even distances of (b) 1.5, (c) 3.0, and (d) 4.5 m. (e) The
three boards are set at the same distances as in (a) and have different heights of 1.0, 0.7, and 1.3 m.
(f) Deployment of two calibration targets, one above the other, at a distance of 3.0 m. (g) One shot of
the extrinsic calibration using a checkerboard.

5. Camera External Parameter Results

For Cases A–F in Table 1, we perform parameter sampling of the radii of the 3-D point
cloud circles using random walk and obtain the a posteriori probability density of each
component of the camera external parameters. The VLP-32C LIDAR (Velodyne LIDAR,
SanJose, CA, USA) used in our experiments has an accuracy of ±3 cm for laser ranging, and
we provide a range of 2 σ (6 cm) for the radius sampling as a priori information. Further,
any value within the range is sampled with the same probability. Here, we derive the
probability densities of the rotational vector components, Rx, Ry, and Rz. These vectors
correspond to the rotational angles along the x, y, and z-axes and are directly converted
into a rotational matrix in T. Next, the probability densities of the translational vector
components, tx, ty, and tz, are also derived. During the parameter sampling, components of
the rotational and translational vectors are restricted within a realistic range, i.e., ±2π rad
and 1.0 m.
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Figures 6 and 7 show the a posteriori probability densities of the rotational and
translational vector components for Cases A, B, and F, respectively. In each figure, the
derived components of both vectors for Cases G and H are plotted for comparison (the
blue bold and red bold dashed lines, respectively). The probability densities encompass the
accepted samples during the parameter sampling in 500,000 iterations. In the parameter
sampling, we set k = 1.0 and vary the scaling factor (α) from 1 × 10−5 to 5 × 10−4 in
Equation (5), depending on the case. The numbers of the accepted samples are 106,314,
9540, 63, 54, 43,896, and 75,075 for Cases A, B, C, D, E, and F, respectively. The large number
of acceptances indicates that the experimental data taken can provide strict constraints on
the parameter estimation.

Figures 6 and 7 show the distribution of the ±3 σ range in the most possible bin.
Figure 6a,d,g indicate the probability densities of the three components

(
Rx, Ry, Rz

)
of

the rotational vector for Case A, and Figure 6b,e,h, as well as Figure 6c,f,i, show those for
Cases B and F. The probability densities of the rotation vector for Case A represent almost
Gaussian shapes, and the models are sampled within a very sharp range (approximately
9 × 10−4 rad in 3 σ range of Rx). Conversely, the models for Case B are sampled as split
shapes, although the values in the most possible bin are similar to the results obtained from
the nonsampling case (Case H) and the checkerboard calibration (Case G). The deployment
of multiple boards at even distances, as in Case B, interferes with the determination of the
rotational components, as shown in Figure 6b,e,f. This indicates that the deployment of the
target boards set in multiple ranges is more effective in constraining the rotational matrix
compared to the deployment at an even range. The probability densities for Case F have
shapes that slightly deviate from Gaussian, and the 3 σ range is ~0.5 rad broader than Case
A. The utilization of multiple board sets at various distances in contrast to a single board
can also effectively constrain the model parameters.
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Figure 6. A posteriori probability densities of the rotational vector components: (a–c) Rx for Cases A,
B, and F; (d–f) Ry for Cases A, B, and F; and (g–i) Rz for Cases A, B, and F, respectively. The blue and
red bold dashed lines indicate the value of each component for Cases G and H.
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Figure 7. A posteriori probability densities of the translational vector components: (a–c) tx for Cases
A, B, and F; (d–f) ty for Cases A, B, and F; and (g–i) tz for Cases A, B, and F, respectively. The blue
and red bold dashed lines indicate the value of each component for Cases G and H.

Figure 7a,d,g indicate the probability densities of the three components
(
tx, ty, tz

)
of

the translational vector for Case A, whereas Figure 7b,e,h, as well as Figure 7c,f,i, show those
for Cases B and F. The probability distributions obtained for Case A also have Gaussian
shapes similar to those for the rotational vector, and the deployment in Case A can provide
better constraints to sample the translational vector. The translational vector for Case B has
been sampled in a narrower range than Case F, differing from the rotational vector. The
utilization of multiple boards is effective in constraining the translational vector, regardless
of the positions of the calibration targets. Although we do not show the probability densities
for Cases C and D due to the small number of acceptances, their distributions are similar to
those for Case B, where the multiple calibration targets are set at even distances.

The shapes of the probability density distributions for Case E are similar to a Gaussian,
although they are slightly distorted and have a broader 3 σ range compared with those for
Case A. For example, the 3 σ ranges of Rx are 5.8 × 10−3 rad for Case E and 9 × 10−4 rad
for Case A. In Case E, the heights of the boards are different from those in Case A, and the
3-D point clouds of the highest board (right board in Figure 5e) are very sparse. This is
because scanning lasers of the employed LIDAR are sparse in the upper and lower parts
of the sensor. The broader range of the accepted parameters in Case E could be due to
the sparseness, and the dense point cloud of a calibration target should provide a strict
constraint on the parameter estimation.

In their recent research using a planer board with circular holes, Beltrán et al. [10]
highlighted the effectiveness of using multiple poses of the board for extrinsic calibration.
In their evaluation, they indicated the differences in the estimated external parameters ob-
tained using their method and the ground truth in a virtual environment (i.e., 8.2 × 10−3 m
in the translation vector and 2.4 × 10−4 rad in the rotation matrix when three poses were
applied). We acknowledge that we cannot compare their results with ours directly because
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we performed our experiments in real environments, and we do not know the ground
truth. However, if we assume the dispersion of the probability density as deviation from
the true value, the average 1 σ errors of the translational and rotational components are
5.6 × 10−3 m and 2.97 × 10−4 rad for Case A, respectively. The performance of our applied
method, using three boards set at various distances, is sufficiently comparable to those of
the state-of-the-art methods.

6. Evaluation of Data Fusion for the Objects Set at Fixed Positions

We have estimated the camera external parameters for several deployments of the
calibration targets. The results showed that the usage of multiple targets set at various
distances can provide a strict constraint on the parameter estimation using probability
density. Conversely, the effects of the positions of the calibration targets on the data fusion
accuracy have not been clearly investigated. In particular, when an object is observed by
both a camera and a 3-D LIDAR at a mutually fixed position, it is important to know the
appropriate deployment approaches for extrinsic calibration to obtain good data fusion
results. In this section, we evaluate the accuracies of data fusion of objects set at fixed
positions between the objects and the sensors for each deployment of the calibration targets,
as shown in Figure 5. Thereafter, the relationship between the positions of the objects used
in the data fusion and the deployment of calibration targets is investigated quantitatively.

In the evaluation, we use a red board as the fixed object and obtain the camera images
and 3-D point cloud data using the mobile wagon (Figure 4). The 3-D point cloud can
be projected on the 2-D image using the camera intrinsic and external parameters, and
each projected 3-D point can obtain the RGB values of a corresponding pixel of the image.
Thereafter, a 3-D colored point cloud is generated, and we use the colored data to evaluate
the accuracy of the data fusion. If the camera intrinsic and external parameters used in the
data fusion are accurate, the colors in the 3-D colored point cloud can be restored perfectly
in noise-free environments. Therefore, we measure the red color ratios of the red boards in
the 3-D colored point cloud as the data fusion accuracy for each calibration listed in Table 1.

As shown in Figures 6 and 7, the camera external parameters are obtained as proba-
bility densities except for Cases G and H. For the evaluation, we extract the parameters
corresponding to the 10 largest likelihoods, L(cr), in Equation (5) from the probability
density distribution and calculate the red color ratios using the 10 selected camera external
parameters for Cases A–F.

6.1. Experimental Setup

We deploy the three red square boards with each size of 0.4 m, corresponding to the
deployment of the calibration targets in Cases A, B, C, and D, as shown in Figure 5. This
is because we can investigate the relationship between the positions of the objects used
in the data fusion and those of the calibration targets. As shown in Figure 8, three red
boards are set at distances of 3.0, 1.5, and 4.5 m from left to right (Figure 8a) and 1.5 m
(Figure 8b), 3.0 m (Figure 8c), and 4.5 m (Figure 8d). These deployments of the red square
boards (Figure 8a–d) correspond to those of the calibration targets shown in Figure 5a–d,
respectively. Then, we have also deployed the five red boards at various distances and
heights. They are spread out in the front field of view of the camera and the 3-D LIDAR
(Figure 8e). It is also useful to evaluate the practical adaptability of each calibration pattern
if the objects are deployed at various positions.
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Figure 8. Deployment of the 2-D red boards used for the evaluation of data fusion. Three red boards
are deployed at distances of (a) 3.0, 1.5, and 4.5 m; (b) 1.5 m and (c) 3.0 m; and (d) 4.5 m, respectively.
(e) The five red boards are deployed at various positions: distances of 1.0, 4.5, 3.0, 4.0, and 2.0 m and
heights of 0.7, 1.2, 1.0, 1.1, and 0.8 m.

6.2. Evaluation Results

Figure 9a–e show the averages of the red color ratios of the three or five red boards,
corresponding to the deployment shown in Figure 8a–e for Cases A–G, respectively. As
described above, the red color ratio has been calculated using the 10 selected camera exter-
nal parameters, and the average and standard deviations of the average red color ratio are
represented as a blue square point in Figure 9. The red dashed horizontal line in each figure
of Figure 9 indicates the red color ratio obtained for Case G (checkerboard calibration).

Figure 9 indicates that a high red color ratio is achieved when the positions of the red
boards and the calibration targets are consistent. For example, when the red boards are set
at a distance of 1.5 m, a high red color ratio is achieved in Case B (Figure 9b), where all
calibration targets are located at 1.5 m (Figure 5b). Similarly, Figure 9d shows that the red
color ratio is high when the red boards are located at 4.5 m and the calibration boards are
set at 4.5 m (Case D: Figure 5d). This indicates that the calibration target set at a suitable
distance from the sensors can yield appropriate camera external parameters, enabling the
effective data fusion of objects set at similar positions. Contrarily, extrinsic calibration using
targets set at a fixed distance (Cases B, C, D, and F) can be less effective for the data fusion
of an object deployed at other distances, as shown in Figure 9. In that case, the red color
ratio also has a high standard deviation. The calibration using the targets set at multiple
distances (Cases A and E) is useful for achieving high red color ratios and low standard
deviations for all deployments (Figure 9). The red color ratios obtained from the calibration
results in Case E are slightly higher (~1–2%) than those in Case A for all deployments,
as shown in Figure 9. Since the calibration boards in Case E are deployed with varying
the heights, the height variation may be slightly useful for obtaining appropriate external
parameters in the various deployments for data fusion.
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The red color ratios derived from the calibration using the checkerboard (Case G) also
indicate high values for all deployments (red dashed line in Figure 9). This is because the
checkerboard data are also obtained at three positions (distances of ~1.5, 3.0, and 4.5 m).
However, the red color ratios for Cases A and E and those derived from the measurements
where the red boards and the calibration targets are located at the same positions are still
higher than those for Case G. This indicates that the calibration using circle detection as the
calibration target is more effective than the checkerboard calibration and/or effectiveness
of the global parameter sampling using the probability-based method.
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Figure 9. The average red color ratios of the red boards in the 3-D colored point cloud for Cases A–G.
Each figure (a–e) represents the color ratios corresponding to the deployment of the red boards in
Figure 8a–e, respectively. The blue square point in each figure indicates the average and standard
deviations of the average red color ratios of the boards for 10 selected camera external parameters in
each case. The red dashed horizontal line indicates the red color ratio obtained in Case G.

The red color proportions for Case F (Figure 5f) are approximately 60–75%, except
for when the calibration targets are located at a distance of 3.0 m (Figure 9). These results
are better than those for Cases B, C, and D, where all calibration targets are set at even
distances. As described in Section 5, the calibration using the multiple boards set at even
distances can impede the determination of the rotational components, resulting in a large
deviation in the probability densities of the rotational vector (Figure 6b,e,h). Thus, the
utilization of multiple boards cannot necessarily generate better projections compared to
the single board case if we do not consider appropriate deployment.

We do not indicate the red color ratios for Case H in Table 1 because the values are
only slightly lower than those for Cases A and E. Conversely, when we applied the fixed
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radii (12 cm and 9 cm for the large and small circles, respectively) without performing
model sampling for other cases, we could not obtain any camera external parameters for
decent projections. Thus, we establish that the selection of appropriate radii for generating
3-D point cloud circles using the probability method is important for improving the data
fusion accuracy.

Figure 10 indicates examples of the 3-D colored point cloud for the deployment of the
red boards shown in Figure 8e. These figures show the best data fusion results for Cases A–
F, respectively. We can also observe a clear relationship between the accuracy of data fusion
and the deployment of the calibration targets. Although the extrinsic calibration using
boards set at far distances (Case D) (Figure 5d) is useful for performing the data fusion of
objects set at similar distances, it is ineffective for objects at near distances (Figure 10d).
Similar tendencies are also observed for Cases B, C, and F (Figure 10b,c,f). In more practical
situations where multiple objects are deployed at various positions, as shown in Figure 8e,
we can determine the effectiveness of deployments of multiple calibration targets set at
various distances and heights as Cases A and E.
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of the best data fusion obtained for Cases A–F, respectively.

7. Evaluation of Data Fusion in 3-D Mapping

Finally, we propose an evaluation method using the color ratio in a 3-D mapping
scenario. We construct a 3-D data fusion map with a scale of a few tens of meters using
the LIDAR-SLAM algorithm in an outdoor environment. This is close to a more realistic
scenario, and the evaluations of the obtained camera external parameters are appropriate
for assessing their practicality and the applied camera extrinsic calibration methods.

7.1. Experimental Setup

We prepared nine red cube boxes with side lengths of 50 cm and built three box towers,
each consisting of three cube boxes. In each box tower, the top two boxes are painted red.
We deployed the three towers in the court of the Fukushima Robot Test Field, as shown
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in Figure 11a. The top two red boxes in each tower are denoted as “upper” and “lower”
chronologically (Figure 11a). Next, we obtained both the camera image and 3-D point
clouds of the three box towers using the running mobile wagon (Figure 4). As shown in
Figure 11b, the wagon moved around each tower, and we could obtain data on all four
sides of the six red boxes.
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Figure 11. (a) Photograph of the deployed three box towers in the court of the Fukushima Robot Test
Field. (b) The top view of the route of the movable wagon around the three towers. The orange and
blue arrows indicate the travel direction of the wagon.

We constructed a 3-D point cloud map including the three towers using the LIDAR-
SLAM algorithm (LIO-SAM [3]). Since we obtained timestamps of each 3-D point cloud
data and camera image simultaneously, we constructed a 3-D colored point cloud map by
projecting a 3-D point cloud on the synchronized 2-D color image using the timestamp data.
For the data fusion, we applied the camera external parameters obtained for Cases A–G
and determined the appropriate case for the 3-D data fusion using the red color ratio of the
six red cube boxes. Although we evaluated the red color ratios for the targets located at the
fixed positions in the previous section, we employed the data obtained at various distances
and heights in this 3-D evaluation as the realistic situation.

7.2. Evaluation Results

We constructed a 3-D colored point cloud map consisting of approximately 3700 point
cloud frames, including the three box towers. In this evaluation, we applied the same cam-
era external parameters employed in the evaluation in Section 6, especially the 10 selected
parameters for Cases A–F. Figure 12 shows examples of the 3-D colored point clouds of
Tower 1 in the constructed map for Cases A, B, E, F, and G. Figure 13 shows the red color
ratios of the six red boxes constituting the three towers, i.e., the upper and lower red boxes
of Towers 1, 2, and 3, as well as the average of the six boxes for Cases A–G. The red color
ratios in Figure 13 for Cases A–F indicate the average and standard deviations of the values
derived using the 10 selected camera external parameters.

Figures 12 and 13 indicate that the highest red color ratios are achieved for Cases A
and E, similar to the results shown in Figure 9. In Figure 12, although the red colors of the
upper and lower boxes for all cases are almost completely restored, some misprojections
and false colors are included. Such wrong projections are not significant for Cases A and E.
The red color ratios for Cases C, D, and F have values of ~70–80%, and these calibrations
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(Figure 5c,d,f) are less effective for constructing 3-D data fusion map compared with those
in other cases. The red color proportions for Cases B and G are also over 80%. In the
calibration of Case B, all calibration boards are set at a near distance of 1.5 m, and dense
point clouds are obtained, in contrast with those obtained for further targets. This indicates
that the density of the point cloud of the calibration target is also important for obtaining
good external parameters, as described in Section 5.
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Figure 12. The 3-D colored point cloud of Tower 1 (Figure 11). (a–e) The result of data fusion using a
selected camera external parameter derived from Cases A, B, E, F, and G, respectively.
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Figure 13. The red color ratio of each box type and the average for Cases A–G. “UBT1” and “LBT1”
denote the upper and lower box of Tower 1, respectively. “UBT2”, “LBT2”, “UBT3”, and “LBT3”
denote the upper and lower boxes of Tower 2 and 3, respectively. “Average” indicates the average of
the red color ratios of the six boxes for each case.
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Notably, it is difficult to identify the clear relationship between the distances at which
the data are taken and those where the calibration targets are located because the 3-D
colored map includes the data taken at various distances and heights. Additionally, we
cannot find a significant difference between the average red color ratio for Case A and Case
E. The variations in the heights of the calibration targets may not considerably affect the
data fusion accuracy in the complex combined 3-D case due to the sparseness of the point
cloud of the high calibration targets. However, the variation in the distances of multiple
calibration targets is vital for effective data fusion in realistic situations.

8. Discussion

In this paper, we first clarified the relationship between the positions of the calibration
targets and those of objects in the data fusion map quantitatively. The extrinsic calibration
implemented using targets set at fixed distances from the sensors is useful for obtaining
the camera external parameters for achieving good data matching for the objects located
at similar distances. However, the utilization of calibration targets at fixed distances is
ineffective for obtaining the parameters that provide strict constraints on the data fusion of
the objects located at other distances. The results of the extrinsic calibrations in Cases B, C,
and D (Figures 6 and 7) indicate that the utilization of multiple calibration targets set at
even distances is effective for estimating the translational vector components. However,
this approach impedes the estimation of the rotational vector components. Therefore, we
establish that extrinsic calibration using multiple calibration targets set at various distances
is a superior method.

Notably, the best data fusion accuracies are obtained in Cases A and E, where multiple
targets are deployed at various distances. These results are superior to those obtained using
the recent checkerboard calibration method (Case G) [23] and comparable to those obtained
using a calibration board with circular holes [10]. In a previous study where circular
shapes [10] were explored, only a single board with four circular holes was employed. While
the researchers successfully improved the estimation accuracy of the external parameters
using multiple poses, additional information, such as AR marker and multiple settings,
was required. Our method uses only single-view data of the multiple simple boards, and
no additional analysis and targets are required. A comparative study between our method
(Case A) and the checkerboard calibration method (Case G) highlighted the usefulness of
the board with circular holes as the calibration target and/or effectiveness of the Monte-
Carlo Markov-chain method. The automatic checkerboard detection algorithm in the
Matlab R2021a open-source software [25] often omits information. Then, occasionally, the
edge of the checkerboard is not perfectly captured because of the sparseness of the 3-D point
cloud [32]. Consequently, the algorithm may generate some errors in the derivation of the
camera external parameters. Circle detection could be a more robust method of extracting
feature points for the calibration. In this study, we deployed only three calibration targets
at distances of 1.5, 3.0, and 4.5 m (Case A) and several heights (Case E). The automatic
detection of targets with circular shapes whose positions are numerously changed towards
the sensors should be a refined method for achieving high-accuracy data fusion.

Through the data analysis of the extrinsic calibration data using the Monte-Carlo
Markov-chain algorithm, the probability distribution of the camera external parameters can
be derived. The probability distribution shows the configurations of the extrinsic calibration
that are effective for constraining each component of the rotational and translational vectors.
Although we establish the effectiveness of multiple targets set at various distances, in
practice, a target shape set at a far distance in the LIDAR 3-D point clouds cannot be
perfectly restored because of sparseness and noise. Thus, our global sampling of the target
shape, such as the circle radius, using the probability-based method can be applied to
restore the appropriate shape in the sparse point cloud and obtain the optimal external
parameters. While it is difficult to obtain the appropriate parameter when we apply fixed
circle radii, as described in Section 5, our proposed probability-based method can largely
improve the estimation of the external parameters. The global parameter sampling using
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the Monte-Carlo Markov-chain algorithm for the optimization of the model parameters
should be incorporated into the several extrinsic calibration methods.

Additionally, we proposed an evaluation method based on the color ratio in the 3-D
data fusion map. This is similar to a realistic, complex scenario, and the evaluation can
be useful for verifying, practically, the adaptability of the camera external parameters in
relation to data fusion. In this evaluation, we applied only the red color ratio. If we applied
different colors and reflectors for the evaluation, the absolute values of the restoration
might have changed. Conversely, the relative accuracy for each calibration method remains
constant when a common benchmark, such as red color, is applied. Future studies can
explore the appropriate benchmarks for this 3-D evaluation.

9. Conclusions

In this study, we investigated concepts related to the deployment of the targets in
LIDAR–camera calibration, parameter search in the analysis of the calibration data, and the
evaluation method of data fusion accuracy. We established a clear relationship between the
position of the calibration targets in the extrinsic calibration and those of the objects used in
data fusion. Additionally, we demonstrated the value of the global parameter search using
the Monte-Carlo Markov-chain algorithm for the calibration data encompassing sparse and
noisy point clouds. Finally, we developed a method for evaluating the obtained camera
parameters using a 3-D data fusion map. Based on our research, we propose the following
as key points for achieving good extrinsic calibration:

- Usage of multiple targets or poses set at various distances.
- Matching the positions of the calibration targets to the object positions in data fusions,

if the latter positions are determined.
- Usage of the dense LIDAR point cloud of the calibration target.
- Restoring the shapes of the calibration target to a circular shape using appropriate

parameter control.

These concepts are important for LIDAR–camera calibration. Finally, our deployment
approaches for the calibration targets (as in Cases A and E) (Figure 5a,e) and the parameter
search using the probability-based method yielded good estimations of the camera external
parameters and a high data fusion accuracy. However, perfect data fusion remains elusive,
as shown in Figure 13. Future works concerned with the automatic detection of multiple
targets, fine adjustment of target shapes, and data acquisition will yield improved data
fusion results.
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