
Citation: Song, S.; Zhao, X.; Zhang, Z.;

Luo, M. A Data Compression Method

for Wellbore Stability Monitoring

Based on Deep Autoencoder. Sensors

2024, 24, 4006. https://doi.org/

10.3390/s24124006

Academic Editor: Francesco

Carlo Morabito

Received: 21 May 2024

Revised: 17 June 2024

Accepted: 18 June 2024

Published: 20 June 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

A Data Compression Method for Wellbore Stability Monitoring
Based on Deep Autoencoder
Shan Song 1, Xiaoyong Zhao 2, Zhengbing Zhang 1,* and Mingzhang Luo 1

1 School of Electronic Information and Electrical Engineering, Yangtze University, Jingzhou 434023, China;
songs_yzu@163.com (S.S.); lmz@yangtzeu.edu.cn (M.L.)

2 Directional Drilling Branch of China National Petroleum Corporation Bohai Drilling Engineering Co., Ltd.,
Tianjin 300280, China; xiaoyong2810@163.com

* Correspondence: zhangzb@yangtzeu.edu.cn

Abstract: The compression method for wellbore trajectory data is crucial for monitoring wellbore
stability. However, classical methods like methods based on Huffman coding, compressed sensing,
and Differential Pulse Code Modulation (DPCM) suffer from low real-time performance, low com-
pression ratios, and large errors between the reconstructed data and the source data. To address these
issues, a new compression method is proposed, leveraging a deep autoencoder for the first time to
significantly improve the compression ratio. Additionally, the method reduces error by compressing
and transmitting residual data from the feature extraction process using quantization coding and
Huffman coding. Furthermore, a mean filter based on the optimal standard deviation threshold is
applied to further minimize error. Experimental results show that the proposed method achieves an
average compression ratio of 4.05 for inclination and azimuth data; compared to the DPCM method,
it is improved by 118.54%. Meanwhile, the average mean square error of the proposed method is
76.88, which is decreased by 82.46% when compared to the DPCM method. Ablation studies confirm
the effectiveness of the proposed improvements. These findings highlight the efficacy of the proposed
method in enhancing wellbore stability monitoring performance.

Keywords: wellbore safety monitoring; deep autoencoder; well trajectory; data compression; logging
while drilling (LWD)

1. Introduction

Wellbore instability is a significant challenge encountered during drilling operations
in diverse oil and gas reservoirs [1,2]. It encompasses issues such as collapse, shrinkage,
diameter enlargement, and fracture, all of which can impede drilling efficiency and, if
left unchecked, result in serious incidents. Therefore, it is imperative to monitor wellbore
stability to ensure safe drilling practices.

At present, the primary method for monitoring wellbore health [1,3] involves the use
of logging while drilling (LWD) tools to gather real-time data on the wellbore’s condition.
The data are then evaluated using established rock mechanics principles and correlations
with logging data. However, this approach is limited by the low data transmission rates
of LWD. The most common data transmission technology used in LWD is mud pulse
telemetry (MPT), which operates at a rate of 0.5 bit/s to 1.0 bit/s [4–6]. Consequently, it is
challenging to meet the real-time logging engineering requirements with this transmission
rate. While stress wave-based communication using piezoceramic transducers offers higher
data transmission rates [7–9], this technology is still in the laboratory research stage and
has not yet been commercialized [10].

Given the current constraints of MPT or stress wave-based communication bandwidth,
transmitting compressed data for wellbore stability monitoring can significantly enhance
real-time performance. This improvement is crucial for maintaining wellbore safety and
stability while enhancing drilling efficiency. Among the parameters vital for wellbore stability

Sensors 2024, 24, 4006. https://doi.org/10.3390/s24124006 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s24124006
https://doi.org/10.3390/s24124006
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://doi.org/10.3390/s24124006
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s24124006?type=check_update&version=1

Sensors 2024, 24, 4006 2 of 25

monitoring, inclination, azimuth, and depth are particularly critical [11]. During drilling oper-
ations, continuous monitoring and adjustment are essential to ensure the wellbore trajectory
aligns optimally, especially in formations with narrow safety margins [12]. Consequently,
researching compression methods for inclination and azimuth data becomes imperative.

Currently, the predominant compression techniques for logging while drilling (LWD)
data include the methods based on Huffman coding [13], compressed sensing [14], wavelet
transform [15], long short-term memory (LSTM) [16], and the Differential Pulse Code
Modulation (DPCM) method [17]. Huffman coding, a classic lossless compression method,
allows for complete restoration of original data from the compressed data, albeit with
relatively low compression rates. For instance, Song et al. [18] employed Frame Prediction
Huffman Coding (FPHC) in their 2021 study to compress various logging data, achieving a
compression ratio of only 1.41. Although this ratio surpasses that of traditional Huffman
and arithmetic coding, its impact on enhancing data transmission efficiency remains lim-
ited. The compressed sensing method utilizes the sparsity of logging while drilling data
to collect logging data at a rate much lower than Nyquist sampling, thereby reducing the
amount of data collected and achieving the effect of data compression. For instance, in 2020,
Li et al. [19] proposed a compressed sensing method based on dictionary machine learn-
ing, which constructs and adjusts a dictionary through machine learning to compress the
downhole density data. Compared with traditional averaging and interpolation methods,
this method has a compression ratio of 3.33 and a mean square error 18 times smaller
than traditional methods. However, this method requires obtaining enough sampling
data (128 sampling data) before compression and transmission can begin, resulting in
low real-time performance. Wavelet transform represents a signal as a scaled and shifted
“mother wavelet” oscillation waveform. After matching the signal, only the correspond-
ing parameters need to be transmitted to effectively represent the original signal, thus
achieving effective compression of the signal. For instance, Jarrot et al. [20] proposed
the method of directional wavelet transform to compress downhole image data in 2018.
The results showed that for images with a width of 80 pixels and a height of 256 pixels,
the rate reached 0.1 bits/pixel (with a compression ratio of 80), and the tilt angle could
still be clearly identified. However, this method requires obtaining two-dimensional data
with a width of 80 pixels and a height of 256 pixels for compression. Even if each pixel
occupies an average of 0.1 bits, when transmitting compressed data, it still needs to transmit
2048 bits to express a downhole image. As a result, for the currently widely used MPT
system, the waiting time for transmission would be very long. The LSTM method achieves
data compression mainly by predicting the signal and then compressing and encoding the
difference between the original data and the predicted data. Yan Zhidan et al. [21] used
the LSTM and XGBoost method [22] to predict the main and detailed data of LWD after
discrete wavelet transform, and then quantified and encoded the difference between the
original data and the predicted data. The compression ratio reached two, and the distortion
rate was only 0.01%. However, this method uses wavelet transform and the LSTM network,
which requires a long time to obtain sufficient data volume to achieve ideal prediction
results and a sufficient compression ratio. Therefore, the real-time performance of this
method is also poor. The DPCM method is easy to implement, with no requirement for
the amount of collected data; thus, it has good real-time performance. For instance, Zhang
et al. [23] proposed in 2009 to use the DPCM method to compress gamma and resistivity
data. The predictor used was a first-order predictor, while the quantizer used three-bit
and four-bit quantization bits, respectively. The results showed that the compression ratio
of the DPCM could reach more than two, and the distortion remained within 5%. The
following year, Zhang et al. conducted further research on the DPCM method [24]. They
used multiple predictor orders and multiple quantization bits to compress various logging
data, such as gamma, resistivity, and temperature, for a wider range of logging parameters,
achieving a compression ratio of two and a distortion rate below 5%. Despite its superior
compression ratios compared to Huffman coding and good real-time performance, the
DPCM method still falls short in practical engineering applications due to its relatively

Sensors 2024, 24, 4006 3 of 25

low compression efficiency. Additionally, abrupt data changes often result in significant
decoding errors with the DPCM method [17,24]. Given the commonplace occurrence of
rapidly changing LWD data in practice, these decoding errors render the DPCM method
unreliable. Among the above methods, the compression ratio of Huffman coding-based
compression methods is very low and difficult to improve. Although compression sensing,
wavelet transform, and LSTM-based compression methods have higher compression ra-
tios, these methods require a large amount of collected data, often requiring hundreds or
thousands of data points to achieve effective compression. In M/LWD engineering, the
sampling interval of inclination, azimuth, gamma, and other logging data is usually in
seconds. If these methods are used, it will take a long time to complete the compression
and transmission of data, which will inevitably cause serious information lag. Relatively,
the DPCM method can achieve real-time transmission of logging data, and its compression
ratio is higher than the lossless compression method based on Huffman coding. However,
the compression ratio of this method is still relatively low and the error is large, making
it difficult to meet the needs of real-time monitoring of wellbore stability. Addressing
the limitations of existing compression methods, it becomes imperative to develop novel
compression methods tailored to wellbore trajectory data.

In recent years, machine learning methods have emerged as potent tools for signal
processing [25–27]. Among these, the autoencoder stands out as an unsupervised artificial
neural network renowned for efficiently learning data features, often utilized for data
dimensionality reduction [28,29]. Comprising two main components—the encoder and the
decoder—the autoencoder operates by first reducing the dimensionality of the data, thereby
reducing the volume of data and facilitating data compression. Subsequently, the decoder
reconstructs the data to closely resemble the input data [30,31]. Leveraging its capacity for
dimensionality reduction and reconstruction, autoencoders find widespread application in
data compression. For instance, Nuha et al. [32] introduced a stacked autoencoder extreme
learning machine (AE-ELM) for seismic data compression. Achieving a compression ratio
of 10, the normalized mean square error (NMSE) between the reconstructed seismic data
and the original data was recorded at 1.28 × 10−3, surpassing the performance of the classic
Discrete Cosine Transform (DCT) method. This underscores the efficacy of autoencoder-
based approaches in seismic data compression. Similarly, in 2021, Liu et al. [33] conducted a
pioneering compression study on HPC (high-performance computing) scientific data using
an autoencoder. Notably, the compression ratio of the HACC dataset in the scientific data
reduction benchmark dataset reached 241.67, marking a four-fold increase compared to the
classic Squeeze (SZ) [34] compression method and a fifty-fold increase over the ZFP [35]
method. This study underscores the compelling compression capabilities of autoencoders
for HPC scientific data. Moreover, autoencoders have found substantial applications in
image compression for both research and practical purposes [36–38].

Compared to classical autoencoders, the deep autoencoder proposed by Hinton
et al. [39] demonstrates superior performance in learning data features and reducing
data dimensionality. Structurally akin to autoencoders, deep autoencoders comprise an
encoder and decoder, yet each component boasts multiple neural network layers. This
architecture allows for more effective learning of data feature representations and dimen-
sionality reduction, making these autoencoders promising candidates for data compression
across various domains. For instance, Yildirim et al. [40] employed deep convolutional
autoencoders to compress electrocardiogram (ECG) signals, achieving a compression ra-
tio of 32.25 with a percentage RMS difference (PRD) of 2.73%. This outperforms classic
methods such as DWT + RLE (Discrete Wavelet Transform + Run Length Encoding) and
DCT + RLE + Huffman. Similarly, Kuester et al. [41] utilized a deep autoencoder to com-
press a representative set of spectral data in 2020, achieving a compression ratio of four
with an almost lossless compression process.

The dynamic ranges of inclination and azimuth data in wellbore trajectory parameters
are relatively large, typically requiring 11 bits for encoding. Consequently, traditional
compression methods like Huffman coding and DPCM are not suitable for this task. Deep

Sensors 2024, 24, 4006 4 of 25

autoencoders, renowned for their adeptness at learning data features, offer a promising al-
ternative. By leveraging their capability to extract key features from high-dimensional data
and obtain low-dimensional representations, deep autoencoders can effectively compress
inclination and azimuth data. In light of these considerations, we propose a data compres-
sion method based on deep autoencoders specifically tailored for compressing inclination
and azimuth data. This approach aims to enhance the compression ratio, addressing the
issue of low compression ratios encountered with existing methods.

Our proposed method involves subtracting the reconstruction data of the autoencoder
from the original data to obtain residual data, which is then compressed. As the residual
data typically exhibits low correlation characteristics, quantization coding is applied for
compression, complementing the compressed data from the autoencoder. This integrated
approach effectively reduces the error between the reconstruction data and the source
data. Furthermore, mean filtering based on a standard deviation threshold is employed to
further mitigate errors between the reconstructed data at the decoding end and the source
data. However, it is essential to note that not all data in the reconstructed data are suitable
for mean filtering. Data with significant changes, indicated by large standard deviations,
may actually incur increased errors when subjected to mean filtering. To address this, we
propose utilizing a standard deviation threshold to control the mean filter, filtering only
the data below this threshold. To optimize the selection of the standard deviation threshold
and minimize reconstruction data errors, we employ the Root Mean Square Propagation
(RMSProp) [42] optimization algorithm. This approach ensures efficient parameter tuning,
thereby enhancing the overall performance of the compression method. The contributions
of this paper are summarized as follows:

• We propose an efficient and real-time compression method for wellbore safety monitoring-
related data, which effectively improves the compression efficiency of wellbore incli-
nation and azimuth data while greatly reducing the error between the reconstructed
data and the original data. This solves the problems of low real-time performance, low
compression efficiency, and large reconstruction data error in existing methods, and
can effectively improve the performance of wellbore stability monitoring;

• We propose for the first time the use of deep autoencoders to compress inclination
and azimuth data, achieving significant compression of inclination and azimuth data,
effectively solving the problem of low compression ratio in existing methods;

• We propose a mean filtering method based on the optimal standard deviation threshold
to filter the reconstructed data after compensation of the residual, further effectively
reducing the error between it and the original data.

The rest of the paper is organized as follows: Section 2 introduces the basic principles
and provides a detailed process of the proposed method. Section 3 introduces the exper-
imental data and experimental setup. Section 4 showcases the results of the simulation
experiments. Finally, Section 5 offers concluding remarks to summarize the key findings
and implications of the study.

2. Proposed Method
2.1. The Overall Framework of the Proposed Method
2.1.1. Block Diagram of Compressed Data Transmission System for LWD

In order to improve the transmission efficiency of the data about wellbore stability
monitoring and enhance real-time monitoring, it is necessary to embed the compression
method into the MPT system, forming a compressed data transmission system for LWD.
The structural diagram of the compressed data transmission system for LWD is shown
in Figure 1, which is mainly divided into downhole measurement systems, mud pulse
transmission systems, and surface signal processing systems.

Sensors 2024, 24, 4006 5 of 25

Sensors 2024, 24, x FOR PEER REVIEW 5 of 27

Figure 1, which is mainly divided into downhole measurement systems, mud pulse trans-
mission systems, and surface signal processing systems.

Main control unit
(Compression module) Pulser

Pressure
sensor

Interface
box

Monitoring computer
(Decompression module)

Mud pulse transmition systemSurface signal process system

Mud channel

Mud riser

Well inclination measurement module

Azimuth measurement module

Other measurement modules

Downhole measurement system

Figure 1. Block diagram of compressed data transmission system for LWD.

The downhole measurement system comprises various modules for measuring pa-
rameters like inclination, azimuth, and other logging parameters. In particular, the incli-
nation and azimuth measurement modules acquire data regarding the downhole equip-
ment’s inclination and azimuth angles, which need to be compressed and transmitted to
improve the performance of monitoring wellbore stability.

The mud pulse transmission system is composed of the main control unit, pulser,
mud channel and mud riser. Embedded within the main control unit, the data compres-
sion module—whether in software or hardware form—compresses and encodes inclina-
tion and azimuth data. This compression reduces their code length, thereby enhancing
transmission efficiency and ultimately improving wellbore stability monitoring perfor-
mance. During operation, the main control unit acquires data from the downhole meas-
urement system via the bus. Subsequently, it compresses and encodes the inclination and
azimuth data, integrating them with other measurement data. After encoding and pack-
aging, the pulser emits pulses to alter the circulating mud pressure within the drill string
in the mud channel, transmitting the signal to the surface as mud pressure waves. Finally,
the signal reaches the surface signal processing system through a mud riser.

The surface signal processing system comprises pressure sensors, interface boxes,
and a monitoring computer. Within the monitoring computer, the decompression module
is integrated into the signal processing software. This module decompresses the com-
pressed inclination and azimuth data, generating their reconstruction data, which reflects
the inclination and azimuth information of the downhole equipment. During operation,
the pressure sensors detect changes in mud fluid pressure, generating signals that are
transmitted to the monitoring computer via the interface box. Within the monitoring com-
puter, the signal processing software processes these pressure signals, removing noise and
decoding them to obtain compressed inclination and azimuth data. Subsequently,
through the decompression module, the wellbore inclination and azimuth information are
reconstructed and displayed, facilitating real-time monitoring of wellbore stability.

To enhance the monitoring performance of wellbore stability, it is necessary to effec-
tively compress and decompress inclination and azimuth data through compression and
decompression modules. However, existing compression methods suffer from low real-
time capability, low compression ratios, and significant errors between the reconstructed
and raw data. To address these issues and enhance the effectiveness of wellbore stability
monitoring, a novel approach to data compression must be proposed.

2.1.2. Structural Diagram of the Proposed Method
To boost the compression ratio of inclination and azimuth data, and considering the

efficient data dimensionality reduction ability of deep autoencoders, we leverage the

Figure 1. Block diagram of compressed data transmission system for LWD.

The downhole measurement system comprises various modules for measuring param-
eters like inclination, azimuth, and other logging parameters. In particular, the inclination
and azimuth measurement modules acquire data regarding the downhole equipment’s
inclination and azimuth angles, which need to be compressed and transmitted to improve
the performance of monitoring wellbore stability.

The mud pulse transmission system is composed of the main control unit, pulser, mud
channel and mud riser. Embedded within the main control unit, the data compression
module—whether in software or hardware form—compresses and encodes inclination and
azimuth data. This compression reduces their code length, thereby enhancing transmission
efficiency and ultimately improving wellbore stability monitoring performance. During
operation, the main control unit acquires data from the downhole measurement system
via the bus. Subsequently, it compresses and encodes the inclination and azimuth data,
integrating them with other measurement data. After encoding and packaging, the pulser
emits pulses to alter the circulating mud pressure within the drill string in the mud channel,
transmitting the signal to the surface as mud pressure waves. Finally, the signal reaches the
surface signal processing system through a mud riser.

The surface signal processing system comprises pressure sensors, interface boxes,
and a monitoring computer. Within the monitoring computer, the decompression module
is integrated into the signal processing software. This module decompresses the com-
pressed inclination and azimuth data, generating their reconstruction data, which reflects
the inclination and azimuth information of the downhole equipment. During operation,
the pressure sensors detect changes in mud fluid pressure, generating signals that are
transmitted to the monitoring computer via the interface box. Within the monitoring
computer, the signal processing software processes these pressure signals, removing noise
and decoding them to obtain compressed inclination and azimuth data. Subsequently,
through the decompression module, the wellbore inclination and azimuth information are
reconstructed and displayed, facilitating real-time monitoring of wellbore stability.

To enhance the monitoring performance of wellbore stability, it is necessary to effec-
tively compress and decompress inclination and azimuth data through compression and
decompression modules. However, existing compression methods suffer from low real-
time capability, low compression ratios, and significant errors between the reconstructed
and raw data. To address these issues and enhance the effectiveness of wellbore stability
monitoring, a novel approach to data compression must be proposed.

2.1.2. Structural Diagram of the Proposed Method

To boost the compression ratio of inclination and azimuth data, and considering
the efficient data dimensionality reduction ability of deep autoencoders, we leverage the
dimensionality reduction capability of deep autoencoders, enabling significant compression
of the raw data. However, there is an error between the reconstructed data of the deep
autoencoder and the original data. The error is primarily due to the complete discarding
of the residual between the reconstructed data and the original data; therefore, to reduce

Sensors 2024, 24, 4006 6 of 25

the error, it is necessary to compress and transmit the residual data. To this end, we
use quantization coding and Huffman coding to compress the residual data, and then
compensate for the reconstructed data of the deep autoencoder. Quantization coding can
effectively reduce the error between the reconstructed data of the deep autoencoder and
the original data, but it will also lead to a reduction in the compression ratio. To minimize
the reduction in the compression ratio, we use Huffman coding to further compress the
data encoded by quantization coding. In addition, since quantization coding reduces the
dynamic range of the residual data, the amount of codeword information required for the
Huffman coding is also reduced, making Huffman coding easier to implement in downhole
equipment. The introduction of quantization coding and Huffman coding can effectively
reduce the error while still maintaining a high compression ratio.

Additionally, we apply mean filtering based on a standard deviation threshold to the
compensated reconstructed data. This step is crucial because even after compensation, the
reconstructed data still contains errors compared to the raw data, akin to noise interference.
These errors primarily stem from the deep autoencoder’s inability to fully extract all
features of the raw data. Hence, mean filtering is necessary to mitigate this interference.
However, not all compensated reconstructed data is suitable for filtering. For segments
of data that exhibit stability (with a small standard deviation), the error interference is
more pronounced, and mean filtering effectively reduces this interference. Conversely,
for segments of data undergoing significant changes (with a large standard deviation),
applying mean filtering would exacerbate errors rather than mitigate them.

We employ a standard deviation threshold as a criterion to determine whether a partic-
ular segment of the data requires mean filtering. To establish an optimal standard deviation
threshold that minimizes the error between the final reconstructed data and the raw data,
we leverage the RMSProp optimization algorithm. RMSProp is chosen for its stability
and rapid convergence, making it an ideal candidate for this task. Figure 2 illustrates
the compression method based on a deep autoencoder, incorporating the aforementioned
concepts.

Sensors 2024, 24, x FOR PEER REVIEW 6 of 27

dimensionality reduction capability of deep autoencoders, enabling significant compres-
sion of the raw data. However, there is an error between the reconstructed data of the
deep autoencoder and the original data. The error is primarily due to the complete dis-
carding of the residual between the reconstructed data and the original data; therefore, to
reduce the error, it is necessary to compress and transmit the residual data. To this end,
we use quantization coding and Huffman coding to compress the residual data, and then
compensate for the reconstructed data of the deep autoencoder. Quantization coding can
effectively reduce the error between the reconstructed data of the deep autoencoder and
the original data, but it will also lead to a reduction in the compression ratio. To minimize
the reduction in the compression ratio, we use Huffman coding to further compress the
data encoded by quantization coding. In addition, since quantization coding reduces the
dynamic range of the residual data, the amount of codeword information required for the
Huffman coding is also reduced, making Huffman coding easier to implement in down-
hole equipment. The introduction of quantization coding and Huffman coding can effec-
tively reduce the error while still maintaining a high compression ratio.

Additionally, we apply mean filtering based on a standard deviation threshold to the
compensated reconstructed data. This step is crucial because even after compensation, the
reconstructed data still contains errors compared to the raw data, akin to noise interfer-
ence. These errors primarily stem from the deep autoencoder’s inability to fully extract all
features of the raw data. Hence, mean filtering is necessary to mitigate this interference.
However, not all compensated reconstructed data is suitable for filtering. For segments of
data that exhibit stability (with a small standard deviation), the error interference is more
pronounced, and mean filtering effectively reduces this interference. Conversely, for seg-
ments of data undergoing significant changes (with a large standard deviation), applying
mean filtering would exacerbate errors rather than mitigate them.

We employ a standard deviation threshold as a criterion to determine whether a par-
ticular segment of the data requires mean filtering. To establish an optimal standard de-
viation threshold that minimizes the error between the final reconstructed data and the
raw data, we leverage the RMSProp optimization algorithm. RMSProp is chosen for its
stability and rapid convergence, making it an ideal candidate for this task. Figure 2 illus-
trates the compression method based on a deep autoencoder, incorporating the aforemen-
tioned concepts.

Figure 2. Diagram of data compression method based on deep autoencoder.

The compression method based on deep autoencoder proposed in this paper consists
of two parts: a compressor and a decompressor. During compression, the original data
and residual data are compressed separately. On one hand, the compressor compresses
the source data X with the encoder of the deep autoencoder (AE) to obtain compressed
data Xcom, and Xcom will be directly transmitted to the decompressor. On the other hand,
the compressor decompresses Xcom with the decoder of the deep autoencoder (AD) to
obtain the decompressed data Xdec , then Xdec is subtracted from X to obtain residual
data Xres. Subsequently, the quantization coding method (QC) is used to encode Xres and

Figure 2. Diagram of data compression method based on deep autoencoder.

The compression method based on deep autoencoder proposed in this paper consists
of two parts: a compressor and a decompressor. During compression, the original data
and residual data are compressed separately. On one hand, the compressor compresses the
source data X with the encoder of the deep autoencoder (AE) to obtain compressed data
Xcom, and Xcom will be directly transmitted to the decompressor. On the other hand, the
compressor decompresses Xcom with the decoder of the deep autoencoder (AD) to obtain
the decompressed data Xdec, then Xdec is subtracted from X to obtain residual data Xres.
Subsequently, the quantization coding method (QC) is used to encode Xres and obtain Xqres,
then compress Xqres with Huffman coding (HC) to obtain the compressed data (Xrcom) of
residual Xres and pass it to the decompressor.

The decompressor is also divided into two parts. The first part uses the decoder of
the deep autoencoder (AD) to decompress Xcom to obtain the decoded data of the deep
autoencoder (Xdec). The second part decompresses the compressed residual data Xrcom with

Sensors 2024, 24, 4006 7 of 25

the Huffman decoding method (HD) to obtain the quantization encoding data of residual
data Xqres, then decompresses Xqres with the quantization decoding method to obtain the
reconstructed data of residual data X′

res. Then, Xdec is added to X′
res, and the output of the

adder is filtered with filter F to obtain the reconstructed data X′. Filter F adopts the mean
filtering method based on the optimal standard deviation threshold and should be trained
using the RMSProp optimization algorithm with a training dataset measured in advance to
obtain the optimal standard deviation threshold.

Below are the principles of deep autoencoder, quantization coding, and Huffman
coding, as well as the detailed implementation process of the proposed method.

2.2. Extraction of Source Data Features

The proposed method uses a deep autoencoder to extract features from the source data,
which can significantly improve the compression ratio. Deep autoencoders are developed
based on autoencoders. The following section will introduce the concepts of autoencoder
and deep autoencoder.

2.2.1. Autoencoder

Autoencoder is an unsupervised neural network with a symmetric structure, which
can effectively learn the internal features of data [43] to obtain concise expressions of data; it
is often used for data dimensionality reduction [44]. The standard autoencoder has a three-
layer architecture [45], as shown in Figure 3. Autoencoder is structurally composed of an
input layer, a hidden layer, and an output layer. According to its function, autoencoder can
be further divided into an encoder and decoder. The encoder includes an input layer and a
hidden layer, responsible for compressing high-dimensional input data x ∈ Rn to obtain its
low-dimensional feature representation h ∈ Rn̂ (n̂ < n) to achieve data compression. The
decoder includes the hidden layer and an output layer, responsible for reconstructing data
x using feature representation h to obtain reconstructed data x̂ ∈ Rn and try to ensure that
x̂, as much as possible, approaches the input raw data x.

Sensors 2024, 24, x FOR PEER REVIEW 7 of 27

obtain Xqres, then compress Xqres with Huffman coding (HC) to obtain the compressed
data (Xrcom) of residual Xres and pass it to the decompressor.

The decompressor is also divided into two parts. The first part uses the decoder of
the deep autoencoder (AD) to decompress Xcom to obtain the decoded data of the deep
autoencoder (Xdec). The second part decompresses the compressed residual data Xrcom
with the Huffman decoding method (HD) to obtain the quantization encoding data of
residual data Xqres, then decompresses Xqres with the quantization decoding method to
obtain the reconstructed data of residual data Xres

ᇱ . Then, Xdec is added to Xres
ᇱ , and the

output of the adder is filtered with filter F to obtain the reconstructed data Xᇱ. Filter F
adopts the mean filtering method based on the optimal standard deviation threshold and
should be trained using the RMSProp optimization algorithm with a training dataset
measured in advance to obtain the optimal standard deviation threshold.

Below are the principles of deep autoencoder, quantization coding, and Huffman
coding, as well as the detailed implementation process of the proposed method.

2.2. Extraction of Source Data Features
The proposed method uses a deep autoencoder to extract features from the source

data, which can significantly improve the compression ratio. Deep autoencoders are de-
veloped based on autoencoders. The following section will introduce the concepts of au-
toencoder and deep autoencoder.

2.2.1. Autoencoder
Autoencoder is an unsupervised neural network with a symmetric structure, which

can effectively learn the internal features of data [43] to obtain concise expressions of data;
it is often used for data dimensionality reduction [44]. The standard autoencoder has a
three-layer architecture [45], as shown in Figure 3. Autoencoder is structurally composed
of an input layer, a hidden layer, and an output layer. According to its function, autoen-
coder can be further divided into an encoder and decoder. The encoder includes an input
layer and a hidden layer, responsible for compressing high-dimensional input data x ∈ℝn to obtain its low-dimensional feature representation h ∈ ℝnො (nො < n) to achieve data
compression. The decoder includes the hidden layer and an output layer, responsible for
reconstructing data 𝑥 using feature representation ℎ to obtain reconstructed data xො ∈ℝn and try to ensure that xො, as much as possible, approaches the input raw data x.

Figure 3. Autoencoder structure.

The formulas for the encoder and decoder are as follows:

h = fሺWhx+bhሻ (1)

xො = fሺWxොh+bxොሻ (2)

Figure 3. Autoencoder structure.

The formulas for the encoder and decoder are as follows:

h = f (Whx+bh) (1)

x̂ = f (Wx̂h+bx̂) (2)

where x is the input data, and h is the compressed data for feature representation. x̂ is
the reconstructed data. Wh and bh are the weights and bias between the input layer and
the hidden layer. Wx̂ and bx̂ are the weights and bias from the hidden layer to the output
layer. f (Wx + b) is an activation function, usually a nonlinear function such as a sigmoid
function or a hyperbolic tangent function.

Sensors 2024, 24, 4006 8 of 25

The goal of training autoencoder is to find the optimal matrix Wh, Wx̂, bh, and bx̂ to
minimize the error between the input data x and the reconstructed data x̂, as follows:

arg min
Wh ,Wx̂ ,bh ,bx̂

[d(x,x̂)] (3)

where d(x, x̂) is a loss function used to characterize error between the input data x and
the reconstructed data x̂. During training, parameters are updated using backpropagation
algorithms and optimization algorithms such as adaptive moment estimation (Adam). The
backpropagation algorithm is used to calculate the gradient of a multivariate function,
while the optimization algorithm updates Wh, Wx̂, bh, and bx̂ based on the direction in
which the gradient of the loss function decreases. After the training, the loss function
converges to the local or global minimum value, and the generated autoencoder model is
used for feature extraction and dimensionality reduction of input data.

2.2.2. Deep Autoencoder

Compared to autoencoder, deep autoencoder has more hidden layers, and the output
of each layer constitutes the input of the next layer. As shown in Figure 4, except for the
input and output layers, all other layers in the figure are hidden layers, and the hidden
layer in the middle has the smallest dimension, which will be used as a compressed
representation.

Sensors 2024, 24, x FOR PEER REVIEW 8 of 27

where x is the input data, and ℎ is the compressed data for feature representation. xො is
the reconstructed data. Wh and 𝑏௛ are the weights and bias between the input layer and
the hidden layer. Wxො and bxො are the weights and bias from the hidden layer to the output
layer. f(Wx+b) is an activation function, usually a nonlinear function such as a sigmoid
function or a hyperbolic tangent function.

The goal of training autoencoder is to find the optimal matrix Wh, Wxො , bh, and bxො to
minimize the error between the input data x and the reconstructed data xො, as follows:

arg min
Wh,Wxො ,bh,bxොሾdሺx,xොሻሿ (3)

where d(x,xො) is a loss function used to characterize error between the input data x and the
reconstructed data xො. During training, parameters are updated using backpropagation al-
gorithms and optimization algorithms such as adaptive moment estimation (Adam). The
backpropagation algorithm is used to calculate the gradient of a multivariate function,
while the optimization algorithm updates Wh, Wxො , bh, and bxො based on the direction in
which the gradient of the loss function decreases. After the training, the loss function con-
verges to the local or global minimum value, and the generated autoencoder model is used
for feature extraction and dimensionality reduction of input data.

2.2.2. Deep Autoencoder
Compared to autoencoder, deep autoencoder has more hidden layers, and the output

of each layer constitutes the input of the next layer. As shown in Figure 4, except for the
input and output layers, all other layers in the figure are hidden layers, and the hidden
layer in the middle has the smallest dimension, which will be used as a compressed rep-
resentation.

Figure 4. Deep autoencoder structure.

Deep autoencoders have a better ability to learn data features; therefore, we use a
deep autoencoder to compress inclination and azimuth data. The deep autoencoder struc-
ture information used in the proposed method is listed in Table 1.

All layers are dense layers, among which the encoder includes hidden layer 1, hidden
layer 2, and the bottleneck layer. The bottleneck layer has the least number of data nodes,
and its output value is the compressed data. The decoder includes hidden layer 3, hidden
layer 4, and hidden layer 5. The output data of hidden layer 5 is the decoded data, and its
dimension is exactly the same as the input data dimensions of hidden layer 1.

Figure 4. Deep autoencoder structure.

Deep autoencoders have a better ability to learn data features; therefore, we use a deep
autoencoder to compress inclination and azimuth data. The deep autoencoder structure
information used in the proposed method is listed in Table 1.

All layers are dense layers, among which the encoder includes hidden layer 1, hidden
layer 2, and the bottleneck layer. The bottleneck layer has the least number of data nodes,
and its output value is the compressed data. The decoder includes hidden layer 3, hidden
layer 4, and hidden layer 5. The output data of hidden layer 5 is the decoded data, and its
dimension is exactly the same as the input data dimensions of hidden layer 1.

The computation method for the compression ratio of deep autoencoder is as expressed
by Equation (4).

CR =
nbin
n̂bBN

(4)

where n is the dimension of the input data, and n̂ is the dimension of the bottleneck layer.
bin is the bit length of the input data, and bBN is the bit length of the output data of the

Sensors 2024, 24, 4006 9 of 25

bottleneck layer (compressed data). The activation function of each hidden layer adopts
Leaky_ReLU, and its formula is as follows:

ϕ = f (x) =
{

ax, x < 0
x, x ≥ 0

(5)

where a > 0. The reason we opt for the Leaky_ReLU function is its capability to prevent
gradient vanishing [46] while also introducing nonlinear transformation characteristics to
the network.

Table 1. Structure of the deep autoencoder used in the proposed method.

Composition Layer Name Layer Type Activation Function Dimension

Encoder

input layer - - n

hidden layer 1 Dense ϕ = leaky_relu n/2

hidden layer 2 Dense ϕ = leaky_relu n/4

bottleneck Dense ϕ = leaky_relu n̂ = n/8

Decoder

hidden layer 3 Dense ϕ = leaky_relu n/4

hidden layer 4 Dense ϕ = leaky_relu n/2

hidden layer 5 Dense ϕ = leaky_relu n

output layer - - n

2.3. Compression of Residual Data

After the deep autoencoder compresses the source data, further feature extraction
from the remaining residual data becomes challenging. Simply discarding this residual
data is not conducive to reducing the error between the reconstructed data and the source
data. Hence, we employ quantization coding and Huffman coding to compress the residual
data. In the decompressor, this compressed residual data is reconstructed to compensate
for the reconstruction data of the deep autoencoder, thereby reducing the error between
the reconstructed data and the source data. Quantization coding serves to preliminarily
compress the residual data, thereby reducing its dynamic range, while Huffman coding
effectively compresses the data.

2.3.1. Quantization Coding

Quantization coding uniformly uses smaller bit lengths Bq to represent data that are
originally needed to be represented by Bin bit lengths (1 <Bq < Bin

)
. The quantization

encoding formula is as follows:

d′n = Q(dn) =
bi−1 + bi

2
(bi−1 ≤ dn < bi) (6)

bj = −2Bin−1 + j′2
Bin

2Bq

(
j = 0, 1, 2 . . .2Bq

)
(7)

where bi is the boundary value of the quantization interval, i is the quantization level,
and i = 1, 2 . . . 2Bq , whose value needs to be determined through traversal. By taking
i = 1, 2 . . . 2Bq when bi−1 ≤ dn < bi is established, the value of i is the quantization level
corresponding to the current data.

The quantization coding encodes the residual quantization value d′n based on the bit
length of quantization coding Bq. Since the total value of Bq is less than Bd, the dynamic
range of the required encoded data is reduced, which is beneficial for further compression
using Huffman coding in the subsequent step.

Sensors 2024, 24, 4006 10 of 25

2.3.2. Huffman Coding

The principle of Huffman coding is to assign Huffman codes to data based on the
frequency or probability distribution of the source data. Among them, data with high
frequency or probability are assigned codes with fewer encoding bits, while data with low
frequency or probability are assigned codes with more encoding bits. In this way, most
of the source data will be encoded into Huffman code with fewer bits, thereby reducing
the overall amount of encoded data and achieving compression. Huffman coding is a
commonly used and easily implementable lossless data compression method, often serving
as part of a more complex data compression method. Huffman coding is a relatively
common, efficient, and easily implementable lossless data compression method, often
used as part of a more complex data compression method. The detailed principles and
implementation methods can be found in ref. [13]. This paper utilizes Huffman coding to
compress the data encoded by quantization coding, in order to reduce the impact of the
reduced compression ratio caused by quantization coding.

2.4. Mean Filtering of Compensated Reconstructed Data

After obtaining the compensated reconstruction data, there still exists a certain degree
of error compared to the source data. Filtering can further mitigate this error between
the compensated reconstruction data and the source data. Therefore, we employ mean
filtering to process the compensated reconstruction data. However, the reconstructed data
encompasses various data characteristics, and not all data are suitable for filtering. For
data exhibiting significant changes, mean filtering may exacerbate errors, while for data
with subtle changes, it can effectively reduce the error between the reconstructed data and
the source data. To discern these data characteristics, we utilize standard deviation. Thus,
it is essential to determine an appropriate standard deviation threshold. If the standard
deviation surrounding the current data is less than this threshold, mean filtering is applied;
otherwise, no processing is conducted. The value of the standard deviation threshold is
correlated with the error between the reconstructed data and the source data. To select the
optimal standard deviation threshold and minimize the error, we leverage the RMSProp
optimization algorithm for training.

2.4.1. RMSProp Optimization Algorithm

Obtaining the standard deviation threshold to minimize the reconstruction data error
is a type of optimization problem. The RMSProp algorithm is a suitable optimization
algorithm, which has good convergence stability since it only solves for the average value
of gradients within a certain duration [47]. At the same time, this method has a faster
convergence rate by discarding the early gradients. Therefore, we adopt the RMSProp
algorithm to obtain the optimal standard deviation threshold as

vt = β·vt−1 + (1 − β)(gt)
2 (8)

wt+1 = wt −
lr·gt√
vt+ε

(9)

where β is a hyper-parameter; the larger its value, the greater the weight of the memorized
historical gradient, usually around 0.9. ε is a very small constant, mainly designed to avoid
being divided by zero, usually taking a value of 10−6. lr is the learning rate, which can
generally be taken as 0.01. wt is the weight of the t-th iteration, which is the value to be
solved, while gt is the gradient of the loss function relative to wt. Their relationship is

gt = ∇wt f (wt) (10)

where f (wt) is the loss function. To find the optimal standard deviation threshold and
minimize the error between the compensated reconstructed data and the source data, the
standard deviation threshold can be used as wt, and the mean square error MSE can be

Sensors 2024, 24, 4006 11 of 25

used as the loss function. When iterating using the RMSProp formula mentioned above,
the value of wt corresponding to the convergence of the loss function value is the optimal
value of standard deviation threshold.

2.4.2. Mean Filtering Method Based on Optimal Standard Deviation Threshold

After obtaining the optimal standard deviation threshold, selective filtering is per-
formed on the compensated reconstructed data based on this threshold to further reduce
the error between the reconstructed data and the source data. The filtering method used in
this paper is the mean filtering, which is a linear filter that takes the average value of the
data as the output value of the center point. If the optimal standard deviation threshold
obtained through the optimization algorithm is TW , the implementation process of the
mean filtering method based on the standard deviation threshold TW is as follows:

Step 1: Calculate the index of the center point and the end point data within the
filtering window. The calculation method is as follows:

ie = i + NW − 1 (11)

ic =
2i + NW − 1

2
(12)

where NW is the size of the filtering window; its value should not be too large because
the larger the value, the more points that are required for filtering, which will delay the
time for filtering. This is not favorable for the surface system to quickly obtain the filtered
reconstructed data, and it may cause more significant errors at the beginning of the drilling
operation. Meanwhile, its value should not be too small, as the filter will not be able to
accurately distinguish between noise and collected signals, leading to poor filtering results.
Generally, choosing a value close to the input data dimension of the deep autoencoder can
help achieve better results.

Additionally, i is the index of the data sequence to be filtered corresponding to the
starting point of the filtering window, ic is the index of the center point of the window, and
ie is the index of the end point of the window.

Step 2: Calculate the average value of the data within the filtering window xW using
the following formula:

xW =
1

NW

ie

∑
k=i

xk (13)

Step 3: Calculate the standard deviation of data within the window s(ic) using the
following formula:

s(ic) =

√
∑ie

k=i(xi − xW)2

NW
(14)

Step 4: Obtain the value of the center point within the filtering window with the
following formula:

xic =

{
xW , s(ic) < TW
xic , s(ic) ≥ TW

(15)

Step 5: Output the value of xic to replace the data value with index ic in the sequence
to be filtered, while keeping the data values at other positions unchanged.

Step 6: Move the window index backward by the following formula:

i′ = i + isteplen (16)

where i′ is the start point index in new window, and isteplen is the sliding window step length.
Replace i with i′ and continue to perform the mean filtering according to Equations (11)–(15)
until all the required data are filtered.

Sensors 2024, 24, 4006 12 of 25

2.5. Performance Evaluation

To objectively evaluate the compression performance of the method proposed in this
paper, the signal-to-noise ratio (SNR), mean squared error (MSE), compression ratio (CR),
and their incremental ratios (∆SNR, ∆MSE, and ∆CR) are used to evaluate the performance
of compression/reconstruction methods. The SNR is calculated as

SNR(dB) = 10·log10

(
∑n

i=1 yi
2

∑n
i=1(yi − ŷi)

2

)
(17)

MSE is calculated as

MSE =
1
n

n

∑
i=1

(ŷ i − yi)
2 (18)

where yi and ŷi represent the raw and reconstructed data values, respectively.
The smaller the MSE or the larger the SNR, the smaller the decoding data error,

indicating better decoding data quality. When the MSE or SNR is constant, the larger the
compression ratio, the better the data compression effect, and the greater the effect on
improving the equivalent transmission rate of the MPT system. The compression ratio
formula is defined as

CR =
SO
SC

(19)

where SO is the amount of raw data, and SC is the amount of compressed data.
∆SNR is the incremental ratio of SNR and is used to measure the degree of improvement

in SNR between two different compression methods. The formula for ∆SNR is as follows:

∆SNRA2,A1 =
SNRA2 − SNRA1

SNRA1
× 100% (20)

where ∆SNRA2,A1 represents the percentage of improvement in SNR of method A2 relative
to method A1.

The corresponding ∆MSE and ∆CR are the incremental ratios of MSE and CR, re-
spectively, used to measure the degree of performance improvement between different
compression methods.

The formulas for ∆MSE and ∆CR are as follows:

∆MSEA2,A1 =
MSEA2 − MSEA1

MSEA1
× 100% (21)

∆CRA2,A1 =
CRA2 − CRA1

CRA1
× 100% (22)

where ∆MSEA2,A1 represents the percentage increase or decrease in MSE of method A2
relative to method A1, and ∆CRA2,A1 represents the percentage increase or decrease in CR
of method A2 relative to method A1.

2.6. Implementation of the Proposed Method

The implementation process of the proposed method is divided into three stages:
training, compression, and decompression.

In the training phase, the deep autoencoder is first trained to achieve efficient com-
pression of the input data. Then, we use the RMSProp optimization algorithm to find the
optimal standard deviation threshold required for the mean filtering method. The com-
pression stage utilizes the trained deep autoencoder along with residual data compression
methods to compress the measured data. In the decompression stage, the compressed data
are decompressed using the deep autoencoder and residual data decompression methods.
Subsequently, the reconstructed data are filtered using the optimal standard deviation
threshold and mean filtering method to obtain the final decompressed data.

Below are the implementation processes of these three stages.

Sensors 2024, 24, 4006 13 of 25

2.6.1. Training Process

The training process of the proposed method consists of two parts: one is the process
of training the deep autoencoder, and the other is the process to find the optimal standard
deviation threshold for the mean filter with the RMSProp algorithm.

The process of training the deep autoencoder is as follows (Algorithm 1).

Algorithm 1: Training steps for the deep autoencoder

Step 1 : Collect previously measured inclination and azimuth data separately as the training
datasetXtrain.
Step 2 : Set the input data dimension Din and change the shape of the dataset Xtrain to include Din
sampling data in each sample. Then, set shuffle to “True” to shuffle the sample order.
Step 3: Use MSE as the loss function and the optimization method of Adam to train the deep
autoencoder with the structure shown in Table 1.
Step 4 : When the training converges, save the corresponding deep autoencoder model
parameter Pmodel.

The process to find the optimal standard deviation threshold for the mean filter is as
follows (Algorithm 2).

Algorithm 2: Steps to find the optimal standard deviation threshold

Step 1: Load the deep autoencoder shown in
Table 1 and model parameter Pmodel, use the deep autoencoder to compress and decompress the
dataset Xtrain, and obtain compressed data Xtrain_com and decompressed data Xtrain_dec.
Step 2 : Subtract the autoencoder decompressed data Xtrain_dec from the original dataset Xtrain
to obtain the residual data Xtrain_res.
Step 3: Set the quantization bits for quantization coding to Bq, perform quantization coding on the
residual data Xtrain_res according to Formulas (6) and (7), and then perform Huffman coding on
the quantized encoded data according to the method in ref. [13] to obtain the compressed data of
the residual data Xtrain_rescom.
Step 4: Decode the compressed data of the residual data Xtrain_rescom with Huffman decoding and
quantization decoding according to the inverse process of the method in step 3 to obtain the
reconstructed data of the residual data X′

train_res.
Step 5: Add the reconstructed residual data X′

train_res and decompressed data Xtrain_dec to obtain
the reconstructed test dataset X′

train.
Step 6: Use the RMSProp algorithm (in Section 2.4.1 of this paper) to find the optimal standard
deviation threshold TW . The detailed steps are as follows:

(1) Set values for hyperparameters β, lr, and ε. Set the standard deviation threshold T to its
initial value T0. Set the mean filtering window size to NW and the step length to StepLen.

(2) Starting from the first data, take NW data points in order from the reconstructed data X′
train

and fill them in the filtering window.
(3) Use the standard deviation threshold T, filter the center point data of the filtering window

according to formulas (11) to (15), and output the center point data of the window.
(4) According to Equation (16), move the filtering window backward according to the step

length StepLen, and then take NW data points in order to fill the filtering window.
(5) Repeat steps (3) to (4) until the remaining number of data is less than NW , and obtain

the filtered data X′
filter.

(6) Calculate the MSE of the original data Xtrain and the filtered data X′
filter as the loss function,

and use Equation (10) to calculate the gradient value of this on the standard deviation
threshold T.

(7) Use the gradient value from step (6) to update the standard deviation threshold according to
Equations (8) and (9).

(8) Repeat steps (2) to (7), and perform multiple iterations to update until the loss function
converges to a certain value and the optimal standard deviation threshold TW is obtained.

Step 7: Output the optimal standard deviation threshold TW .

Sensors 2024, 24, 4006 14 of 25

2.6.2. Data Compression Process

The data compression process is as follows (Algorithm 3).

Algorithm 3: Steps for compression encoding

Step 1: Load the deep autoencoder model with the trained model parameters Pmodel.
Step 2: Collect Din data points as a set of data X, and input X into the encoder of the deep
autoencoder to obtain the compressed data, denoted as Xcom.
Step 3: Input Xcom into the decoder of the deep autoencoder to obtain the decompressed data Xdec,
and subtract Xdec from X to obtain the residual data Xres.
Step 4: Encode the residual data Xres with quantization coding and Huffman coding to obtain the
compressed data of the residual data Xrcom.
Step 5: Output the compressed data of X (Xcom) and compressed data of residual data (Xrcom).
Step 6: Repeat steps 2 to 5 until all the collected data are completed.

2.6.3. Data Decompression Process

The data decompression process is as follows (Algorithm 4).

Algorithm 4: Steps for decompression

Step 1 : Load the deep autoencoder model with the trained model parameter Pmodel, set the mean
filtering window size to NW and the step length to StepLen, and use the optimal threshold TW
obtained from Algorithm 2 as the standard deviation threshold required for the mean
filtering method.
Step 2 : Obtain the compressed data (Xcom) and the compressed data of residual data (Xrcom).
Step 3 : Input the compressed data (Xcom) into the decoder of the deep autoencoder to obtain the
decompressed data (Xdec).
Step 4 : Decode the compressed data (Xrcom) with Huffman decoding and quantization decoding
to obtain the reconstructed residual data (X′

res).
Step 5 : Add the decompressed data (Xdec) and the reconstructed residual data (X′

res) to obtain the
reconstructed collected data (X′).
Step 6 : Take NW data points of X′ in order and fill them in the filtering window.
Step 7 : Use the optimal standard deviation threshold TW and step length StepLen, filter the data
in X′ according to Equations (11)–(16), and output the filtered data.
Step 8: Repeat steps 2 to 7 until all the compressed data have been decoded.

3. Experiments
3.1. Experimental Data

To evaluate the proposed method, a dataset comprising inclination and azimuth data
obtained from an LWD system was collected for experimentation. The schematic diagram
of the LWD system is depicted in Figure 5. The measurement short section in the downhole
component includes an inclination and azimuth measurement module, which captures
information on the well’s inclination and azimuth near the drill bit. This information is
transmitted to the receiving short section via an antenna, encoded by the main control unit,
and then sent to the ground. Finally, it is decoded by the interface box and monitoring
computer in the ground section to provide inclination and azimuth data for monitoring the
stable state of the wellbore by ground workers.

The monitoring computer records the decoded inclination and azimuth data while
monitoring. We obtained the inclination and azimuth data of multiple wells measured at
different time periods recorded by this LWD system, denoted as Xtrain_test. The Xtrain_test
contains 72,328 points each for the inclination and azimuth data, with 80% (57,864 sampling
data) of the data taken as the training dataset, denoted as the inclination training dataset
Xinc_train and azimuth training dataset Xazi_train. The remaining 20% (14,464 sampling
data) will be used as the testing dataset, denoted as the inclination testing dataset Xinc_test
and azimuth testing dataset Xazi_test. Among them, Xinc_train and Xazi_train are used for
Algorithm 1 to train the deep autoencoder, and for Algorithm 2 to obtain the optimal
standard deviation threshold of the mean filter. In addition, Xinc_test and Xazi_test are used
to test and compare the compression performance of various compression methods.

Sensors 2024, 24, 4006 15 of 25

Sensors 2024, 24, x FOR PEER REVIEW 15 of 27

Step 3: Input the compressed data (Xcom) into the decoder of the deep autoencoder to ob-
tain the decompressed data (Xdec).
Step 4: Decode the compressed data (Xrcom) with Huffman decoding and quantization
decoding to obtain the reconstructed residual data (Xres

ᇱ).
Step 5: Add the decompressed data (Xdec) and the reconstructed residual data (Xres

ᇱ) to
obtain the reconstructed collected data (Xᇱ).
Step 6: Take NW data points of Xᇱ in order and fill them in the filtering window.
Step 7: Use the optimal standard deviation threshold TW and step length StepLen, filter
the data in Xᇱ according to Equations (11)–(16), and output the filtered data.
Step 8: Repeat steps 2 to 7 until all the compressed data have been decoded.

3. Experiments
3.1. Experimental Data

To evaluate the proposed method, a dataset comprising inclination and azimuth data
obtained from an LWD system was collected for experimentation. The schematic diagram
of the LWD system is depicted in Figure 5. The measurement short section in the down-
hole component includes an inclination and azimuth measurement module, which cap-
tures information on the well’s inclination and azimuth near the drill bit. This information
is transmitted to the receiving short section via an antenna, encoded by the main control
unit, and then sent to the ground. Finally, it is decoded by the interface box and monitor-
ing computer in the ground section to provide inclination and azimuth data for monitor-
ing the stable state of the wellbore by ground workers.

Figure 5. Schematic diagram of LWD system device operation.

The monitoring computer records the decoded inclination and azimuth data while
monitoring. We obtained the inclination and azimuth data of multiple wells measured at
different time periods recorded by this LWD system, denoted as Xtrain_test. The Xtrain_test
contains 72,328 points each for the inclination and azimuth data, with 80% (57864 sam-
pling data) of the data taken as the training dataset, denoted as the inclination training
dataset Xinc_train and azimuth training dataset Xazi_train. The remaining 20% (14,464 sam-
pling data) will be used as the testing dataset, denoted as the inclination testing dataset
Xinc_test and azimuth testing dataset Xazi_test. Among them, Xinc_train and Xazi_train are used
for Algorithm 1 to train the deep autoencoder, and for Algorithm 2 to obtain the optimal
standard deviation threshold of the mean filter. In addition, Xinc_test and Xazi_test are used
to test and compare the compression performance of various compression methods.

Figure 5. Schematic diagram of LWD system device operation.

3.2. Experimental Setup

To verify the effectiveness of the proposed method in this paper, we first use the
datasets of Xinc_train and Xazi_train to train the deep autoencoder shown in Table 1 with
Algorithm 1. The dimension of the input data (Din) of the deep autoencoder is set to 8.
After the training, the deep autoencoder models are obtained for inclination data and
azimuth data. Algorithm 2 and training datasets Xinc_train and Xazi_train are used to find the
optimal standard deviation thresholds for inclination data and azimuth data, respectively.
The window size NW of the mean filter in Algorithm 2 is set to 5, and the initial value of
the standard deviation threshold is flexibly selected based on the convergence situation.
The quantization bits are set to 4, 5, 6, 7, and 8, respectively, to obtain the optimal filtering
threshold TW for different compression multiples and errors.

4. Analysis and Discussion of the Experimental Results

To verify the effectiveness of the method proposed in this paper, the following com-
pression methods were used for comparative experiments:

DeepAE+QC+HC+F (the proposed method): The wellbore stability monitoring data
compression method based on deep autoencoder, consisting of the deep autoencoder
(deepAE), quantization coding (QC), Huffman coding (HC), and the mean filtering method
based on optimal standard deviation threshold (F).

DPCM: The DPCM method in ref. [23]. This method uses the simplest first-order
predictor to compress LWD data.

DPCM-I: The DPCM method in ref. [24]. This method requires the use of previously
measured LWD data, using the minimum mean square error as a criterion to determine the
optimal predictor parameters, and then using these parameters to compress the current data
that need to be compressed. Its performance is stronger than that of the DPCM method.

deepAE: The deep autoencoder method. Its structure adopts the structure shown
in Table 1, and it is trained using Algorithm 1 in Section 2.6.1 and datasets Xinc_train
and Xazi_train.

deepAE+QC+HC: The deep autoencoder (deepAE), combining the quantization en-
coding (QC) and Huffman coding (HC) methods. Firstly, use the deep autoencoder to
compress the data, then perform quantization encoding and Huffman coding on the ob-
tained residual data. Finally, compensate for the reconstructed data in the decoder section
of the deep autoencoder.

All deepAE methods mentioned above are the same, have the same structure, and
use the same training dataset for training, making it easier to verify the functionality of
different components of the proposed method.

Sensors 2024, 24, 4006 16 of 25

4.1. Data Feature Extraction Results

The compression results of Xinc_test and Xazi_test data using a trained deep autoencoder
are shown in Figures 6 and 7.

Sensors 2024, 24, x FOR PEER REVIEW 16 of 27

3.2. Experimental Setup
To verify the effectiveness of the proposed method in this paper, we first use the da-

tasets of Xinc_train and Xazi_train to train the deep autoencoder shown in Table 1 with Algo-
rithm 1. The dimension of the input data (Din) of the deep autoencoder is set to 8. After
the training, the deep autoencoder models are obtained for inclination data and azimuth
data. Algorithm 2 and training datasets Xinc_train and Xazi_train are used to find the optimal
standard deviation thresholds for inclination data and azimuth data, respectively. The
window size NW of the mean filter in Algorithm 2 is set to 5, and the initial value of the
standard deviation threshold is flexibly selected based on the convergence situation. The
quantization bits are set to 4, 5, 6, 7, and 8, respectively, to obtain the optimal filtering
threshold TW for different compression multiples and errors.

4. Analysis and Discussion of the Experimental Results
To verify the effectiveness of the method proposed in this paper, the following com-

pression methods were used for comparative experiments:
DeepAE+QC+HC+F (the proposed method): The wellbore stability monitoring data

compression method based on deep autoencoder, consisting of the deep autoencoder
(deepAE), quantization coding (QC), Huffman coding (HC), and the mean filtering
method based on optimal standard deviation threshold (F).

DPCM: The DPCM method in ref. [23]. This method uses the simplest first-order pre-
dictor to compress LWD data.

DPCM-I: The DPCM method in ref. [24]. This method requires the use of previously
measured LWD data, using the minimum mean square error as a criterion to determine
the optimal predictor parameters, and then using these parameters to compress the cur-
rent data that need to be compressed. Its performance is stronger than that of the DPCM
method.

deepAE: The deep autoencoder method. Its structure adopts the structure shown in
Table 1, and it is trained using Algorithm 1 in Section 2.6.1 and datasets Xinc_train and
Xazi_train.

deepAE+QC+HC: The deep autoencoder (deepAE), combining the quantization en-
coding (QC) and Huffman coding (HC) methods. Firstly, use the deep autoencoder to
compress the data, then perform quantization encoding and Huffman coding on the ob-
tained residual data. Finally, compensate for the reconstructed data in the decoder section
of the deep autoencoder.

All deepAE methods mentioned above are the same, have the same structure, and
use the same training dataset for training, making it easier to verify the functionality of
different components of the proposed method.

4.1. Data Feature Extraction Results
The compression results of Xinc_test and Xazi_test data using a trained deep autoen-

coder are shown in Figures 6 and 7.

(a) Raw data curve (b) Compressed data curve

Points Points
Sensors 2024, 24, x FOR PEER REVIEW 17 of 27

(c) Reconstructed data curve (d) Residual data curve

Figure 6. Compression results of deep autoencoder on dataset Xinc_test: (a) represents the original
data of Xinc_test and Xazi_test, (b) represents the features extracted by the deep autoencoder, (c) rep-
resents the reconstructed data of the deep autoencoder, and (d) represents the residual between the
raw data and the reconstructed data.

(a) Raw data curve (b) Feature representation of raw data

(c) Reconstructed data curve (d) Residual data curve

Figure 7. Compression results of deep autoencoder on dataset Xazi_test: (a) represents the original
data of Xinc_test and Xazi_test, (b) represents the features extracted by the deep autoencoder, (c) rep-
resents the reconstructed data of the deep autoencoder, and (d) represents the residual between the
raw data and the reconstructed data.

In Figures 6 and 7, due to the input data dimension Din of the deep autoencoder
being 8, according to the structure of the deep autoencoder in Table 1, the bottleneck layer
has a dimension of 1. Hence the extracted features have a dimension of 1 after compres-
sion. Therefore, (b) in Figures 6 and 7 show all the features extracted by the deep autoen-
coder. Comparing (a) and (b) in Figures 6 and 7 reveals that although the number of points
in the proposed feature data is smaller than that of the raw data, its shape is very similar
or symmetrical to the raw data, indicating that the deep autoencoder effectively extracts
the main features of the raw data. The (d) figures in Figures 6 and 7 illustrate that after
feature extraction by a deep autoencoder, there are still small differences between the re-
constructed data and the original data. Therefore, using quantization coding and Huffman

Points Points

Points Points

Points Points

Figure 6. Compression results of deep autoencoder on dataset Xinc_test: (a) represents the original data
of Xinc_test and Xazi_test, (b) represents the features extracted by the deep autoencoder, (c) represents
the reconstructed data of the deep autoencoder, and (d) represents the residual between the raw data
and the reconstructed data.

Sensors 2024, 24, x FOR PEER REVIEW 17 of 27

(c) Reconstructed data curve (d) Residual data curve

Figure 6. Compression results of deep autoencoder on dataset Xinc_test: (a) represents the original
data of Xinc_test and Xazi_test, (b) represents the features extracted by the deep autoencoder, (c) rep-
resents the reconstructed data of the deep autoencoder, and (d) represents the residual between the
raw data and the reconstructed data.

(a) Raw data curve (b) Feature representation of raw data

(c) Reconstructed data curve (d) Residual data curve

Figure 7. Compression results of deep autoencoder on dataset Xazi_test: (a) represents the original
data of Xinc_test and Xazi_test, (b) represents the features extracted by the deep autoencoder, (c) rep-
resents the reconstructed data of the deep autoencoder, and (d) represents the residual between the
raw data and the reconstructed data.

In Figures 6 and 7, due to the input data dimension Din of the deep autoencoder
being 8, according to the structure of the deep autoencoder in Table 1, the bottleneck layer
has a dimension of 1. Hence the extracted features have a dimension of 1 after compres-
sion. Therefore, (b) in Figures 6 and 7 show all the features extracted by the deep autoen-
coder. Comparing (a) and (b) in Figures 6 and 7 reveals that although the number of points
in the proposed feature data is smaller than that of the raw data, its shape is very similar
or symmetrical to the raw data, indicating that the deep autoencoder effectively extracts
the main features of the raw data. The (d) figures in Figures 6 and 7 illustrate that after
feature extraction by a deep autoencoder, there are still small differences between the re-
constructed data and the original data. Therefore, using quantization coding and Huffman

Points Points

Points Points

Points Points

Figure 7. Compression results of deep autoencoder on dataset Xazi_test: (a) represents the original data
of Xinc_test and Xazi_test, (b) represents the features extracted by the deep autoencoder, (c) represents
the reconstructed data of the deep autoencoder, and (d) represents the residual between the raw data
and the reconstructed data.

Sensors 2024, 24, 4006 17 of 25

In Figures 6 and 7, due to the input data dimension Din of the deep autoencoder being
8, according to the structure of the deep autoencoder in Table 1, the bottleneck layer has
a dimension of 1. Hence the extracted features have a dimension of 1 after compression.
Therefore, (b) in Figures 6 and 7 show all the features extracted by the deep autoencoder.
Comparing (a) and (b) in Figures 6 and 7 reveals that although the number of points in
the proposed feature data is smaller than that of the raw data, its shape is very similar or
symmetrical to the raw data, indicating that the deep autoencoder effectively extracts the
main features of the raw data. The (d) figures in Figures 6 and 7 illustrate that after feature
extraction by a deep autoencoder, there are still small differences between the reconstructed
data and the original data. Therefore, using quantization coding and Huffman coding to
compress the residuals will help reduce the error between the reconstructed data and the
source data.

4.2. Comparison of Compression Results

We used the proposed method, deepAE, DPCM, and DPCM-I to compress Xinc_test
and Xazi_test.

Due to the input dimension of the proposed method and deepAE method, the shape of
the Xinc_test and Xazi_test data was reset to (18,088). In addition to the deepAE method, the
quantization data bits of the proposed method, DPCM method, and DPCM-I method were
set to 4, 5, 6, 7, and 8 to verify the error reduction performance under different quantization
data bits. The compression results are shown in Table 2.

Xinc_testXazi_testXinc_testXazi_testXinc_testXazi_testXinc_testXazi_test According to Table 2, to
verify the performance improvement of the proposed method, we used Formulas (20)~(22)
to calculate the compression ratio increment ratio (∆CR), signal-to-noise ratio increment
ratio (∆SNR), and mean square error increment ratio (∆MSE) of the proposed method
relative to deepAE, DPCM, and DPCM-I. The results are shown in Table 3.

According to Tables 2 and 3, it can be seen that compared to the DPCM and DPCM-I
methods, the deep autoencoder (deepAE) shows a significant improvement in compression
ratio (CR), reaching 7.33, but its error is also significant, with a signal-to-noise ratio (SNR)
of only 25.25 dB and a mean square error (MSE) of 4122.73. On the basis of deepAE, our
proposed method was enhanced. Although the compression ratio was reduced by 44.69%,
the error was significantly reduced, the signal-to-noise ratio was improved by 79.73%, and the
mean square error was reduced by 97.65%. The proposed method maintains high compression
performance while significantly reducing errors, thus achieving a better balance.

In addition, it can be seen that under the same number of quantization bits, the com-
pression ratio and signal-to-noise ratio of the proposed method are overwhelmingly higher
than those of DPCM method and DPCM-I method, while MSE is overall lower than those of
DPCM and DPCM-I. Among them, under the quantization bits of 4~8 bits, the compression
ratio of the proposed method for the inclination angle data Xinc_test and azimuth data
Xazi_test is 3.22~4.38, with an average compression ratio of 4.05. Compared to DPCM and
DPCM-I, the proposed method improves the compression ratio by 53.80~203.78%, with
an average improvement of 118.54%. Meanwhile, the signal-to-noise ratio of the proposed
method reached 35.34~53.22 dB, with an average of 45.09 dB; compared to DPCM-I, it is
improved by 6.46~81.39%, with an average improvement of 32.40%. Compared to DPCM,
the signal-to-noise ratio is improved by 7.78~84.09%, with an average improvement of
35.84%. The mean square error of the proposed method reached 1.98~428.61, with an
average of 76.88; compared to DPCM-I, it decreased by 51.76~98.00%, with an average
decrease of 82.46%. Compared with DPCM, it decreased by 57.98~98.21%, with an average
decrease of 86.31%. These results indicate that the compression ratio of the proposed
method is significantly improved compared to the DPCM and DPCM-I, and the error of
the reconstructed data is significantly reduced.

Sensors 2024, 24, 4006 18 of 25

Table 2. Comparison results of the proposed method, deepAE, DPCM, and DPCM-I.

Method Data Set Quantization
Data Bits Tw CR SNR/dB MSE

DPCM

Xinc_test

4 - 2.75 20.42 3767.45
5 - 2.20 25.90 1067.62
6 - 1.83 31.60 286.80
7 - 1.57 36.99 83.06
8 - 1.38 42.90 21.29

Xazi_test

4 - 2.75 27.34 2704.75
5 - 2.20 31.15 1124.74
6 - 1.83 36.98 293.73
7 - 1.57 42.13 89.66
8 - 1.38 48.34 21.47

Average 1.94 34.37 946.06

DPCM-I

Xinc_test

4 - 2.75 20.72 3512.95
5 - 2.20 26.39 952.75
6 - 1.83 31.77 276.33
7 - 1.57 38.03 65.28
8 - 1.38 44.16 15.92

Xazi_test

4 - 2.75 28.68 1986.52
5 - 2.20 32.50 824.54
6 - 1.83 38.42 210.84
7 - 1.57 43.46 66.09
8 - 1.38 48.94 18.70

Average 1.94 35.31 792.99

deepAE
Xinc_test - - 7.33 27.60 721.63
Xazi_test - - 7.33 22.89 7523.82

Average 7.33 25.25 4122.73

The proposed
method

Xinc_test

4 53.25 4.38 37.59 72.26
5 45.51 4.35 43.38 19.06
6 33.61 4.33 46.66 8.96
7 21.81 4.28 50.50 3.70
8 11.01 4.18 53.22 1.98

Xazi_test

4 55.23 4.23 35.34 428.61
5 50.05 4.08 40.10 143.27
6 24.50 3.88 43.96 58.82
7 11.79 3.62 48.03 23.05
8 6.18 3.22 52.10 9.02

Average 4.05 45.09 76.87

Figure 8 compares the compression performance between the proposed method,
DPCM-I, and DPCM. It is evident that the proposed method generally achieves a higher
compression ratio than DPCM-I and DPCM, while also exhibiting a lower overall mean
square error (MSE). Even in cases where the MSE is similar, the proposed method consis-
tently achieves a higher compression ratio, indicating superior compression performance.

To intuitively demonstrate the compression performance of the proposed method,
deepAE, DPCM-I, and DPCM, the reconstructed data curves of the inclination data (Xinc_test)
and azimuth data (Xazi_test) using these methods under 8-bit quantization are plotted and
compared with the original data curves. The results are shown in Figure 9.

Sensors 2024, 24, 4006 19 of 25

Table 3. Performance improvement of the proposed method relative to DPCM, DPCM-I, and deepAE.

Method Used
for Comparison Data Set Quantization

Data Bits ∆CR ∆SNR ∆MSE

DPCM

Xinc_test

4 59.48% 84.09% −98.08%
5 98.00% 67.52% −98.21%
6 136.08% 47.64% −96.88%
7 172.25% 36.54% −95.55%
8 203.78% 24.06% −90.70%

Xazi_test

4 53.80% 29.28% −84.15%
5 85.54% 28.74% −87.26%
6 112.01% 18.88% −79.98%
7 130.11% 14.00% −74.29%
8 134.33% 7.78% −57.98%

Average 118.54% 35.85% −86.31%

DPCM-I

Xinc_test

4 59.48% 81.39% −97.94%
5 98.00% 64.38% −98.00%
6 136.08% 46.89% −96.76%
7 172.25% 32.78% −94.33%
8 203.78% 20.52% −87.56%

Xazi_test

4 53.80% 23.23% −78.42%
5 85.54% 23.40% −82.62%
6 112.01% 14.43% −72.10%
7 130.11% 10.53% −65.12%
8 134.33% 6.46% −51.76%

Average 118.54% 32.40% −82.46%

deepAE

Xinc_test

4 −40.23% 36.20% −89.99%
5 −40.60% 57.17% −97.36%
6 −41.00% 69.06% −98.76%
7 −41.65% 82.97% −99.49%
8 −43.02% 92.83% −99.73%

Xazi_test

4 −42.36% 54.39% −94.30%
5 −44.34% 75.19% −98.10%
6 −47.01% 92.05% −99.22%
7 −50.68% 109.83% −99.69%
8 −56.04% 127.61% −99.88%

Average −44.69% 79.73% −97.65%

Sensors 2024, 24, x FOR PEER REVIEW 20 of 27

(SNR) of only 25.25 dB and a mean square error (MSE) of 4122.73. On the basis of deepAE,
our proposed method was enhanced. Although the compression ratio was reduced by
44.69%, the error was significantly reduced, the signal-to-noise ratio was improved by
79.73%, and the mean square error was reduced by 97.65%. The proposed method main-
tains high compression performance while significantly reducing errors, thus achieving a
better balance.

In addition, it can be seen that under the same number of quantization bits, the com-
pression ratio and signal-to-noise ratio of the proposed method are overwhelmingly
higher than those of DPCM method and DPCM-I method, while MSE is overall lower than
those of DPCM and DPCM-I. Among them, under the quantization bits of 4~8 bits, the
compression ratio of the proposed method for the inclination angle data Xinc_test and azi-
muth data Xazi_test is 3.22~4.38, with an average compression ratio of 4.05. Compared to
DPCM and DPCM-I, the proposed method improves the compression ratio by
53.80~203.78%, with an average improvement of 118.54%. Meanwhile, the signal-to-noise
ratio of the proposed method reached 35.34~53.22 dB, with an average of 45.09 dB; com-
pared to DPCM-I, it is improved by 6.46~81.39%, with an average improvement of 32.40%.
Compared to DPCM, the signal-to-noise ratio is improved by 7.78~84.09%, with an aver-
age improvement of 35.84%. The mean square error of the proposed method reached
1.98~428.61, with an average of 76.88; compared to DPCM-I, it decreased by 51.76~98.00%,
with an average decrease of 82.46%. Compared with DPCM, it decreased by 57.98~98.21%,
with an average decrease of 86.31%. These results indicate that the compression ratio of
the proposed method is significantly improved compared to the DPCM and DPCM-I, and
the error of the reconstructed data is significantly reduced.

Figure 8 compares the compression performance between the proposed method,
DPCM-I, and DPCM. It is evident that the proposed method generally achieves a higher
compression ratio than DPCM-I and DPCM, while also exhibiting a lower overall mean
square error (MSE). Even in cases where the MSE is similar, the proposed method consist-
ently achieves a higher compression ratio, indicating superior compression performance.

(a) Compression results for Xinc_test data (b) Compression results for Xazi_test data

Figure 8. Comparison of compression performance between the proposed method, DPCM-I, and
DPCM: (a) represents the compression results for Xinc_test data, (b) represents the compression re-
sults for Xazi_test data.

To intuitively demonstrate the compression performance of the proposed method,
deepAE, DPCM-I, and DPCM, the reconstructed data curves of the inclination data
(Xinc_test) and azimuth data (Xazi_test) using these methods under 8-bit quantization are plot-
ted and compared with the original data curves. The results are shown in Figure 9.

Figure 8. Comparison of compression performance between the proposed method, DPCM-I, and
DPCM: (a) represents the compression results for Xinc_test data, (b) represents the compression results
for Xazi_test data.

Sensors 2024, 24, 4006 20 of 25Sensors 2024, 24, x FOR PEER REVIEW 21 of 27

(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i) (j)

Figure 9. Comparison of the reconstructed data of the proposed method, deepAE, DPCM-I, and
DPCM and the raw data: (a,b) represent a portion of the original data curves in Xinc_test and Xazi_test,
respectively. (c,e,g,i) represent the reconstructed data corresponding to (a) after compressing and
decompressing Xinc_test data using the proposed method, DPCM-I, DPCM and deepAE, respec-
tively; (d,f,h,j) represent the reconstructed data corresponding to (b) after compressing and decom-
pressing Xazi_test data using the proposed method, DPCM-I, DPCM, and deepAE, respectively.

Points

Points

CR = 3.22
SNR = 52.10 dB

Points

CR = 1.38
SNR = 48.94 dB

Points

CR = 1.38
SNR = 48.34 dB

Points

CR = 7.33
SNR = 22.89 dB

Sensors 2024, 24, x FOR PEER REVIEW 21 of 27

(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i) (j)

Figure 9. Comparison of the reconstructed data of the proposed method, deepAE, DPCM-I, and
DPCM and the raw data: (a,b) represent a portion of the original data curves in Xinc_test and Xazi_test,
respectively. (c,e,g,i) represent the reconstructed data corresponding to (a) after compressing and
decompressing Xinc_test data using the proposed method, DPCM-I, DPCM and deepAE, respec-
tively; (d,f,h,j) represent the reconstructed data corresponding to (b) after compressing and decom-
pressing Xazi_test data using the proposed method, DPCM-I, DPCM, and deepAE, respectively.

Points

Points

CR = 3.22
SNR = 52.10 dB

Points

CR = 1.38
SNR = 48.94 dB

Points

CR = 1.38
SNR = 48.34 dB

Points

CR = 7.33
SNR = 22.89 dB

Figure 9. Comparison of the reconstructed data of the proposed method, deepAE, DPCM-I, and
DPCM and the raw data: (a,b) represent a portion of the original data curves in Xinc_test and Xazi_test,
respectively. (c,e,g,i) represent the reconstructed data corresponding to (a) after compressing and
decompressing Xinc_test data using the proposed method, DPCM-I, DPCM and deepAE, respectively;
(d,f,h,j) represent the reconstructed data corresponding to (b) after compressing and decompressing
Xazi_test data using the proposed method, DPCM-I, DPCM, and deepAE, respectively.

In Figure 9, by observing and comparing Figure 9a,c,e,g,i, it can be seen that the
reconstructed data curve of the proposed method is closest to the original data curve,
followed by DPCM-I and then DPCM, while the reconstructed data curve of deepAE
has the largest difference between the reconstructed data curve and the original data

Sensors 2024, 24, 4006 21 of 25

curve, which is consistent with the compression ratio and signal-to-noise ratio reflected in
Figure 9c,e,g,i. Similarly, by observing and comparing Figure 9b,d,f,h,j, the same conclusion
can be drawn. The above results indicate that compared with the DPCM methods, the
proposed method in this paper has a higher compression ratio for inclination and azimuth
data, and at the same time, it has a smaller error in reconstructing the data curve, which is
more in line with the original data curve.

4.3. Ablation Study

To quantitatively ascertain the contributory impact of individual components within
the proposed method, a meticulously structured series of ablation study analyses were
undertaken. The purpose of these analyses is to demonstrate the effective role of newly
integrated components in terms of compression performance or reducing errors. Among
them, for methods containing quantization coding, the quantization data bits are set to
4, 5, 6, 7, and 8 to fully verify the compression performance of these methods under different
quantization data bits. Table 4 presents the results of the ablation experiment.

Table 4. Ablation experimental results.
√

represents that the module is used. × represents that the
module is not used.

deepAE QC+HC F Data
Set

Quantization
Data Bits Tw CR SNR/dB MSE

√
× ×

Xinc_test - - 7.33 27.60 721.63
Xazi_test - - 7.33 22.89 7523.82

Mean 7.33 25.25 4122.73

√ √
×

Xinc_test

4 - 4.38 36.98 83.25
5 - 4.35 42.17 25.15
6 - 4.33 44.90 13.42
7 - 4.28 48.08 6.45
8 - 4.18 49.93 4.22

Xazi_test

4 - 4.23 34.86 478.87
5 - 4.08 39.22 175.22
6 - 3.88 42.75 77.85
7 - 3.62 46.49 32.86
8 - 3.22 50.19 14.01

Mean 4.06 43.56 91.13

√ √ √

Xinc_test

4 53.25 4.38 37.59 72.26
5 45.51 4.35 43.38 19.06
6 33.61 4.33 46.66 8.96
7 21.81 4.28 50.50 3.70
8 11.01 4.18 53.22 1.98

Xazi_test

4 55.23 4.23 35.34 428.61
5 50.05 4.08 40.10 143.27
6 24.50 3.88 43.96 58.82
7 11.79 3.62 48.03 23.05
8 6.18 3.22 52.10 9.02

Mean 4.06 45.09 76.87

In the ablation study, the benchmark model selected was the deepAE method; as
shown in Table 4, the addition of QC+HC and F continuously reduced the error of the
reconstructed data of the benchmark model, while the compression ratio was still at a
relatively high level.

By introducing QC+HC, the mean square error was reduced from 4122.73 to 91.13, a
decrease of 97.79%. Although the compression ratio decreased from 7.33 to 4.06 (a decrease
of 44.61%), as shown in Table 3, the current compression ratio was 118.54% higher than the
DPCM-I method and still at a relatively high level.

Sensors 2024, 24, 4006 22 of 25

By introducing F, the mean square error was further reduced to 76.87, which is 98.14%
lower than the benchmark model. The proposed mean filter based on optimal standard
deviation threshold effectively further reduced errors.

The ablation experiment conducted shows that the proposed combination effectively
reduces errors while maintaining a high level of compression ratio. Therefore, the proposed
method achieves a better balance between compression performance and error compared
to the benchmark model.

To more intuitively demonstrate the progressive effect of each component of the
proposed method on reducing the error between reconstructed data and original data,
the reconstructed data curves of the deepAE method, the deepAE+QC+HC method, and
the proposed method (deepAE+QC+HC+F) on Xinc_test and Xazi_test data were plotted and
compared with the original data curves. The results are shown in Figure 10.

Sensors 2024, 24, x FOR PEER REVIEW 23 of 27

In the ablation study, the benchmark model selected was the deepAE method; as
shown in Table 4, the addition of QC+HC and F continuously reduced the error of the
reconstructed data of the benchmark model, while the compression ratio was still at a
relatively high level.

By introducing QC+HC, the mean square error was reduced from 4122.73 to 91.13, a
decrease of 97.79%. Although the compression ratio decreased from 7.33 to 4.06 (a de-
crease of 44.61%), as shown in Table 3, the current compression ratio was 118.54% higher
than the DPCM-I method and still at a relatively high level.

By introducing F, the mean square error was further reduced to 76.87, which is
98.14% lower than the benchmark model. The proposed mean filter based on optimal
standard deviation threshold effectively further reduced errors.

The ablation experiment conducted shows that the proposed combination effectively
reduces errors while maintaining a high level of compression ratio. Therefore, the pro-
posed method achieves a better balance between compression performance and error
compared to the benchmark model.

To more intuitively demonstrate the progressive effect of each component of the pro-
posed method on reducing the error between reconstructed data and original data, the
reconstructed data curves of the deepAE method, the deepAE+QC+HC method, and the
proposed method (deepAE+QC+HC+F) on Xinc_test and Xazi_test data were plotted and
compared with the original data curves. The results are shown in Figure 10.

(a) (b)

(c) (d)

(e) (f)

A
m

pl
itu

de
A

m
pl

itu
de

Sensors 2024, 24, x FOR PEER REVIEW 24 of 27

(g) (h)

Figure 10. Comparison of differences between the reconstructed data curves of deepAE,
deepAE+QC+HC, and the proposed method and the original data curves: (a,b) represent a portion
of the original data curves in Xinc_test and Xazi_test, respectively; (c,e,g) represent the reconstructed
data corresponding to (a) after compressing and decompressing Xinc_test data using deepAE,
deepAE+QC+HC, and the proposed method, respectively; (d,f,h) represent the reconstructed data
corresponding to (b) after compressing and decompressing Xazi_test data using deepAE,
deepAE+QC+HC, and the proposed method, respectively.

In Figure 10, by comparing Figure 10a,c,e,g, it can be seen that the reconstructed data
curve of the deepAE method shows the greatest difference from the original data curve,
followed by the deepAE+QC+HC method. The reconstructed data curve of our proposed
method is closest to the original data curve, which is consistent with the signal-to-noise
ratio reflected in Figure 10c,e,g. By comparing Figure 10b,d,f,h, the same conclusion can
be drawn. The above results indicate that as the QC+HC component and F component are
sequentially added to the benchmark model deepAE, the error of reconstructed data be-
comes smaller and closer to the original data curve. This result further demonstrates that
our proposed method effectively reduces the error of the reconstructed data and the orig-
inal data and maintains a high level of compression ratio, achieving a better balance.

The above results indicate that our proposed method effectively improves the com-
pression ratio and reduces reconstruction data errors, which is more conducive to improv-
ing the performance of wellbore stability monitoring and achieving the goal of improving
production safety.

5. Conclusions
This paper introduced a novel compression method utilizing a deep autoencoder to

significantly enhance the compression ratio of inclination and azimuth data during drill-
ing operations. Additionally, residual data were encoded using quantization coding and
Huffman coding, effectively minimizing the error between reconstructed data and source
data. Moreover, a mean filtering technique based on the optimal standard deviation
threshold was employed to further mitigate the error between the reconstructed data and
the source data. Simulation testing on inclination and azimuth data demonstrates that the
average compression ratio of the proposed method is 4.05; compared to the DPCM meth-
ods, it is improved by 118.54%. Meanwhile, the average mean square error of the proposed
method is 76.88, which is decreased by 82.46% when compared to the DPCM method. The
results of the ablation experiment also indicate that our method achieves a better balance
between compression performance and error compared to deep autoencoders.

This work pioneers the use of a deep autoencoder-based methods for compressing
wellbore trajectory data and integrates classical compression and filtering methods to ef-
fectively process residual and reconstructed data, thereby enhancing compression perfor-
mance and reducing errors between reconstructed data and source data. The compression
method proposed in this paper for wellbore stability monitoring data has real-time per-
formance, a higher compression ratio, and a smaller reconstruction data error, solving the
problems of low real-time performance, low compression ratio, and large error in the ex-
isting methods. This not only provides valuable insights for the advancement of data com-
pression technology related to LWD data but also holds significant implications for

A
m

pl
itu

de

Figure 10. Comparison of differences between the reconstructed data curves of deepAE,
deepAE+QC+HC, and the proposed method and the original data curves: (a,b) represent a
portion of the original data curves in Xinc_test and Xazi_test, respectively; (c,e,g) represent the re-
constructed data corresponding to (a) after compressing and decompressing Xinc_test data using
deepAE, deepAE+QC+HC, and the proposed method, respectively; (d,f,h) represent the recon-
structed data corresponding to (b) after compressing and decompressing Xazi_test data using deepAE,
deepAE+QC+HC, and the proposed method, respectively.

Sensors 2024, 24, 4006 23 of 25

In Figure 10, by comparing Figure 10a,c,e,g, it can be seen that the reconstructed data
curve of the deepAE method shows the greatest difference from the original data curve,
followed by the deepAE+QC+HC method. The reconstructed data curve of our proposed
method is closest to the original data curve, which is consistent with the signal-to-noise
ratio reflected in Figure 10c,e,g. By comparing Figure 10b,d,f,h, the same conclusion can
be drawn. The above results indicate that as the QC+HC component and F component
are sequentially added to the benchmark model deepAE, the error of reconstructed data
becomes smaller and closer to the original data curve. This result further demonstrates
that our proposed method effectively reduces the error of the reconstructed data and the
original data and maintains a high level of compression ratio, achieving a better balance.

The above results indicate that our proposed method effectively improves the compres-
sion ratio and reduces reconstruction data errors, which is more conducive to improving
the performance of wellbore stability monitoring and achieving the goal of improving
production safety.

5. Conclusions

This paper introduced a novel compression method utilizing a deep autoencoder
to significantly enhance the compression ratio of inclination and azimuth data during
drilling operations. Additionally, residual data were encoded using quantization coding
and Huffman coding, effectively minimizing the error between reconstructed data and
source data. Moreover, a mean filtering technique based on the optimal standard deviation
threshold was employed to further mitigate the error between the reconstructed data and
the source data. Simulation testing on inclination and azimuth data demonstrates that the
average compression ratio of the proposed method is 4.05; compared to the DPCM methods,
it is improved by 118.54%. Meanwhile, the average mean square error of the proposed
method is 76.88, which is decreased by 82.46% when compared to the DPCM method. The
results of the ablation experiment also indicate that our method achieves a better balance
between compression performance and error compared to deep autoencoders.

This work pioneers the use of a deep autoencoder-based methods for compressing well-
bore trajectory data and integrates classical compression and filtering methods to effectively
process residual and reconstructed data, thereby enhancing compression performance and
reducing errors between reconstructed data and source data. The compression method
proposed in this paper for wellbore stability monitoring data has real-time performance, a
higher compression ratio, and a smaller reconstruction data error, solving the problems of
low real-time performance, low compression ratio, and large error in the existing methods.
This not only provides valuable insights for the advancement of data compression technol-
ogy related to LWD data but also holds significant implications for enhancing the safety
monitoring performance of wellbores in logging for drilling engineering.

Considering the deep autoencoder’s excellent capability in feature extraction and the
fact that the proposed method in this paper integrates neural networks with classical data
compression techniques, the proposed method holds reference value for the study of other
types of LWD data compression methods. Additionally, it also provides a certain degree of
reference significance for the research of data compression methods in other fields.

Although the proposed method effectively improves the performance of wellbore
stability monitoring, the method only discusses a simple deep autoencoder structure. In
other fields, such as image data compression, many excellent neural network structures
have been used for data compression. Therefore, future research can focus on the explo-
ration and innovation of neural network structures to further improve the compression
performance and reduce the error of the reconstructed data and the original data.

Author Contributions: Conceptualization, S.S. and Z.Z.; methodology, S.S., Z.Z. and X.Z.; software,
S.S.; validation, S.S. and X.Z.; investigation, X.Z. and Z.Z.; writing—original draft preparation, S.S.;
writing—review and editing, X.Z., S.S., Z.Z. and M.L.; visualization, X.Z. and S.S.; supervision, X.Z.
and M.L.; data curation, X.Z. and Z.Z.; funding acquisition, X.Z. and M.L. All authors have read and
agreed to the published version of the manuscript.

Sensors 2024, 24, 4006 24 of 25

Funding: This research was supported by the National Natural Science Foundation of China (Grad.
No. 51978079, Grad. No. 61901059) and the Hubei Provincial Outstanding Young and Middle-Aged
Science and Technology Innovation Team Project (Grad. No. T2020007).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data presented in this study are available on request from the
corresponding author. The data are not publicly available due to project confidentiality.

Conflicts of Interest: Author Xiaoyong Zhao was employed by the Directional Drilling Branch of
China National Petroleum Corporation Bohai Drilling Engineering Co., Ltd. The remaining authors
declare that the research was conducted in the absence of any commercial or financial relationships
that could be construed as a potential conflict of interest.

References
1. Fouda, M.; Taher, A.; Hussein, M.; Al-Hassan, M. Advanced Techniques for Wellbore Stability Evaluation Using Logging-While-

Drilling Technologies. In Proceedings of the ARMA/DGS/SEG International Geomechanics Symposium, Al Khobar, Saudi Arabia,
30 October–2 November 2023; p. ARMA–IGS-2023-0087.

2. Ciuperca, C.-L.; Di Tommaso, D.; Dawber, M.; Tidswell, J. Determining Wellbore Stability Parameters Using a New LWD High
Resolution Ultrasonic Imaging Tool. In Proceedings of the SPE/IADC Drilling Conference and Exhibition, The Hague, The Netherlands,
5–7 March 2019; p. D021S009R002.

3. Stricker, K.; Schimschal, S.; Müller, B.; Wessling, S.; Bender, F.; Kohl, T. Importance of drilling-related processes on the origin of
borehole breakouts—Insights from LWD observations. Geomech. Energy Environ. 2023, 34, 100463. [CrossRef]

4. Greten, A.; Brahim, I.B.; Emmerich, W.; Akimov, O. Reliable Mud-Pulse Telemetry System for High-Resolution Real-Time Logs.
In Proceedings of the SPE/IADC Drilling Conference and Exhibition, The Hague, The Netherlands, 14–16 March 2017.

5. Mwachaka, S.M.; Wu, A.P.; Fu, Q.Q. A review of mud pulse telemetry signal impairments modeling and suppression methods.
J. Pet. Explor. Prod. Technol. 2019, 9, 779–792. [CrossRef]

6. Li, C.; Xu, Z. A Review of Communication Technologies in Mud Pulse Telemetry Systems. Electronics 2023, 12, 3930. [CrossRef]
7. Siu, S.; Ji, Q.; Wu, W.; Song, G.; Ding, Z. Stress wave communication in concrete: I. Characterization of a smart aggregate based

concrete channel. Smart Mater. Struct. 2014, 23, 125030. [CrossRef]
8. Wu, A.; He, S.; Ren, Y.; Wang, N.; Ho, S.C.M.; Song, G. Design of a new stress wave-based pulse position modulation (PPM)

communication system with piezoceramic transducers. Sensors 2019, 19, 558. [CrossRef] [PubMed]
9. He, S.; Wang, N.; Ho, M.; Zhu, J.; Song, G. Design of a new stress wave communication method for underwater communication.

IEEE Trans. Ind. Electron. 2020, 68, 7370–7379. [CrossRef]
10. Zhang, G.; Yang, P.; He, S.; Zheng, Y.; Song, G. A power waveform design based on OVSF-PPM for stress wave based wireless

power transfer. Mech. Syst. Signal Process. 2021, 147, 107111. [CrossRef]
11. Alkamil, E.H.; Abbood, H.R.; Flori, R.E.; Eckert, A. Case study of wellbore stability evaluation for the Mishrif Formation, Iraq.

J. Pet. Sci. Eng. 2018, 164, 663–674. [CrossRef]
12. Khan, K.; Altwaijri, M.; Taher, A.; Fouda, M.; Hussein, M. Real-Time Wellbore Stability and Hole Quality Evaluation Using LWD

Azimuthal Photoelectric Measurements. In Proceedings of the SPE Middle East Oil and Gas Show and Conference, Sanabis,
Bahrain, 28 November–1 December 2021; p. D021S008R009.

13. Huffman, D.A. A method for the construction of minimum-redundancy codes. Proc. IRE 1952, 40, 1098–1101. [CrossRef]
14. Donoho, D.L. Compressed sensing. IEEE Trans. Inf. Theory 2006, 52, 1289–1306. [CrossRef]
15. Shensa, M.J. The discrete wavelet transform: Wedding the a trous and Mallat algorithms. IEEE Trans. Signal Process. 1992, 40,

2464–2482. [CrossRef]
16. Hochreiter, S.; Schmidhuber, J. Long short-term memory. Neural Comput. 1997, 9, 1735–1780. [CrossRef]
17. O’Neal, J., Jr. Predictive quantizing systems (differential pulse code modulation) for the transmission of television signals. Bell

Syst. Tech. J. 1966, 45, 689–721. [CrossRef]
18. Song, S.; Lian, T.; Liu, W.; Zhang, Z.; Luo, M.; Wu, A. A lossless compression method for logging data while drilling. Syst. Sci.

Control Eng. 2021, 9, 689–703. [CrossRef]
19. Li, J.; Dai, B.; Jones, C.M.; Samson, E.M.; Gascooke, D. Downhole Signal Compression and Surface Reconstruction Based on

Dictionary Machine Learning. In Proceedings of the SPWLA Annual Logging Symposium, Virtual Online Webinar, 24 June–29
July 2020; p. D363S025R006.

20. Jarrot, A.; Gelman, A.; Kusuma, J. Wireless Digital Communication Technologies for Drilling: Communication in the Bits\/s
Regime. IEEE Signal Process. Mag. 2018, 35, 112–120. [CrossRef]

21. Yan, Z.D.; Wang, J.F.; Sheng, L.; Yang, Z.Y. An effective compression algorithm for real-time transmission data using predictive
coding with mixed models of LSTM and XGBoost. Neurocomputing 2021, 462, 247–259. [CrossRef]

22. Chen, T.; Guestrin, C. Xgboost: A scalable tree boosting system. In Proceedings of the 22nd ACM Sigkdd International Conference
on Knowledge Discovery and Data Mining, San Francisco, CA, USA, 13–17 August 2016; pp. 785–794.

https://doi.org/10.1016/j.gete.2023.100463
https://doi.org/10.1007/s13202-018-0483-y
https://doi.org/10.3390/electronics12183930
https://doi.org/10.1088/0964-1726/23/12/125030
https://doi.org/10.3390/s19030558
https://www.ncbi.nlm.nih.gov/pubmed/30700001
https://doi.org/10.1109/TIE.2020.3003634
https://doi.org/10.1016/j.ymssp.2020.107111
https://doi.org/10.1016/j.petrol.2018.01.018
https://doi.org/10.1109/JRPROC.1952.273898
https://doi.org/10.1109/TIT.2006.871582
https://doi.org/10.1109/78.157290
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1002/j.1538-7305.1966.tb01052.x
https://doi.org/10.1080/21642583.2021.1981478
https://doi.org/10.1109/MSP.2017.2781288
https://doi.org/10.1016/j.neucom.2021.07.071

Sensors 2024, 24, 4006 25 of 25

23. Zhang, Y.; Xiong, K.; Qiu, Z.; Wang, S.; Sun, D. A new method for real-time LWD data compression. In Proceedings of the 2009
International Symposium on Information Processing (ISIP 2009), Huangshan, China, 21–23 August 2009; p. 163.

24. Zhang, Y.; Wang, S.; Xiong, K.; Qiu, Z.; Sun, D. DPCM Compression for Real-Time Logging While Drilling Data. J. Softw. 2010, 5,
280–287. [CrossRef]

25. Kim, H.; Nam, S.; Nam, E. Estimation of Shape Error with Monitoring Signals. Sensors 2023, 23, 9416. [CrossRef]
26. Zhong, Z.; Li, H. Recognition and prediction of ground vibration signal based on machine learning algorithm. Neural Comput.

Appl. 2020, 32, 1937–1947. [CrossRef]
27. Yi, H. Efficient machine learning algorithm for electroencephalogram modeling in brain–computer interfaces. Neural Comput.

Appl. 2022, 34, 9233–9243. [CrossRef]
28. Rumelhart, D.E.; Hinton, G.E.; Williams, R.J. Learning representations by back-propagating errors. Nature 1986, 323, 533–536.

[CrossRef]
29. Abbaschian, B.J.; Sierra-Sosa, D.; Elmaghraby, A. Deep Learning Techniques for Speech Emotion Recognition, from Databases to

Models. Sensors 2021, 21, 1249. [CrossRef] [PubMed]
30. Eddahmani, I.; Pham, C.-H.; Napoléon, T.; Badoc, I.; Fouefack, J.-R.; El-Bouz, M. Unsupervised Learning of Disentangled

Representation via Auto-Encoding: A Survey. Sensors 2023, 23, 2362. [CrossRef] [PubMed]
31. Al-Ashwal, N.H.; Al Soufy, K.A.M.; Hamza, M.E.; Swillam, M.A. Deep Learning for Optical Sensor Applications: A Review.

Sensors 2023, 23, 6486. [CrossRef] [PubMed]
32. Nuha, H.H.; Balghonaim, A.; Liu, B.; Mohandes, M.; Deriche, M.; Fekri, F. Deep neural networks with extreme learning machine

for seismic data compression. Arab. J. Sci. Eng. 2020, 45, 1367–1377. [CrossRef]
33. Liu, J.Y.; Di, S.; Zhao, K.; Jin, S.; Tao, D.W.; Liang, X.; Chen, Z.Z.; Cappello, F.; Soc, I.C. Exploring Autoencoder-based Error-

bounded Compression for Scientific Data. In Proceedings of the IEEE International Conference on Cluster Computing (Cluster),
Electr Network, Portland, OR, USA, 7–10 September 2021; pp. 294–306.

34. Di, S.; Cappello, F. Fast error-bounded lossy HPC data compression with SZ. In Proceedings of the 2016 IEEE International
Parallel and Distributed Processing Symposium (IPDPS), Chicago, IL, USA, 23–27 May 2016; pp. 730–739.

35. Lindstrom, P. Fixed-rate compressed floating-point arrays. IEEE Trans. Vis. Comput. Graph. 2014, 20, 2674–2683. [CrossRef]
[PubMed]

36. Jalilian, E.; Hofbauer, H.; Uhl, A. Iris Image Compression Using Deep Convolutional Neural Networks. Sensors 2022, 22, 2698.
[CrossRef] [PubMed]

37. Candido de Oliveira, D.; Nassu, B.T.; Wehrmeister, M.A. Image-Based Detection of Modifications in Assembled PCBs with Deep
Convolutional Autoencoders. Sensors 2023, 23, 1353. [CrossRef] [PubMed]

38. Shinde, A.B.; Bagade, J.; Bhimanpallewar, R.; Dandawate, Y.H. Image Compression of Handwritten Devanagari Text Documents
Using a Convolutional Autoencoder. Int. J. Intell. Syst. Appl. Eng. 2023, 11, 449–457.

39. Hinton, G.E.; Osindero, S.; Teh, Y.-W. A fast learning algorithm for deep belief nets. Neural Comput. 2006, 18, 1527–1554. [CrossRef]
40. Yildirim, O.; San Tan, R.; Acharya, U.R. An efficient compression of ECG signals using deep convolutional autoencoders. Cogn.

Syst. Res. 2018, 52, 198–211. [CrossRef]
41. Kuester, J.; Gross, W.; Middelmann, W. An Approach to Near-lossless Hyperspectral Data Compression using Deep Autoencoder.

In Proceedings of the Conference on Image and Signal Processing for Remote Sensing XXVI, Electr Network, Online, 21–25
September 2020.

42. Tieleman, T.; Hinton, G. Lecture 6.5-rmsprop: Divide the gradient by a running average of its recent magnitude. COURSERA:
Neural Netw. Mach. Learn. 2012, 4, 26–31.

43. Dhar, J. An adaptive intelligent diagnostic system to predict early stage of parkinson’s disease using two-stage dimension
reduction with genetically optimized lightgbm algorithm. Neural Comput. Appl. 2022, 34, 4567–4593. [CrossRef]

44. Zhao, S.; Tu, K.; Ye, S.; Tang, H.; Hu, Y.; Xie, C. Land Use and Land Cover Classification Meets Deep Learning: A Review. Sensors
2023, 23, 8966. [CrossRef] [PubMed]

45. Pei, X.L.; Zheng, X.Y.; Wu, J.L. Intelligent bearing fault diagnosis based on Teager energy operator demodulation and multiscale
compressed sensing deep autoencoder. Measurement 2021, 179, 15. [CrossRef]

46. Yang, Z.; Xu, B.B.; Luo, W.; Chen, F. Autoencoder-based representation learning and its application in intelligent fault diagnosis:
A review. Measurement 2022, 189, 20. [CrossRef]

47. Zou, F.; Shen, L.; Jie, Z.; Zhang, W.; Liu, W. A sufficient condition for convergences of adam and rmsprop. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 15–20 June 2019; pp. 11127–11135.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.4304/jsw.5.3.280-287
https://doi.org/10.3390/s23239416
https://doi.org/10.1007/s00521-019-04496-z
https://doi.org/10.1007/s00521-020-04861-3
https://doi.org/10.1038/323533a0
https://doi.org/10.3390/s21041249
https://www.ncbi.nlm.nih.gov/pubmed/33578714
https://doi.org/10.3390/s23042362
https://www.ncbi.nlm.nih.gov/pubmed/36850960
https://doi.org/10.3390/s23146486
https://www.ncbi.nlm.nih.gov/pubmed/37514779
https://doi.org/10.1007/s13369-019-03942-3
https://doi.org/10.1109/TVCG.2014.2346458
https://www.ncbi.nlm.nih.gov/pubmed/26356981
https://doi.org/10.3390/s22072698
https://www.ncbi.nlm.nih.gov/pubmed/35408311
https://doi.org/10.3390/s23031353
https://www.ncbi.nlm.nih.gov/pubmed/36772392
https://doi.org/10.1162/neco.2006.18.7.1527
https://doi.org/10.1016/j.cogsys.2018.07.004
https://doi.org/10.1007/s00521-021-06612-4
https://doi.org/10.3390/s23218966
https://www.ncbi.nlm.nih.gov/pubmed/37960665
https://doi.org/10.1016/j.measurement.2021.109452
https://doi.org/10.1016/j.measurement.2021.110460

	Introduction
	Proposed Method
	The Overall Framework of the Proposed Method
	Block Diagram of Compressed Data Transmission System for LWD
	Structural Diagram of the Proposed Method

	Extraction of Source Data Features
	Autoencoder
	Deep Autoencoder

	Compression of Residual Data
	Quantization Coding
	Huffman Coding

	Mean Filtering of Compensated Reconstructed Data
	RMSProp Optimization Algorithm
	Mean Filtering Method Based on Optimal Standard Deviation Threshold

	Performance Evaluation
	Implementation of the Proposed Method
	Training Process
	Data Compression Process
	Data Decompression Process

	Experiments
	Experimental Data
	Experimental Setup

	Analysis and Discussion of the Experimental Results
	Data Feature Extraction Results
	Comparison of Compression Results
	Ablation Study

	Conclusions
	References

