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Abstract: This paper experimentally demonstrates a mode localization sensing approach using a
single two-axis orthogonal resonator. The resonator consists of concentric multi-rings connected
by elliptic springs that enable two orthogonal oscillation modes. By electrostatically tuning the
anisotropic stiffness between the two axes, the effective coupling stiffness between the modes can
be precisely controlled down to near-zero values. This allows the sensitivity of mode localization
sensing to be tuned over a wide range. An order of magnitude enhancement in sensitivity is
experimentally achieved by reducing the coupling stiffness towards zero. The resonator’s simple
single-mass structure offers advantages over conventional coupled resonator designs for compact,
tunable mode localization sensors. Both positive and negative values of coupling stiffness are
demonstrated, enabling maximum sensitivity at the point where coupling crosses through zero.
A method for decomposing overlapping resonance peaks is introduced to accurately measure the
amplitude ratios of the localized modes even at high sensitivities. The electrostatic tuning approach
provides a new option for realizing variable sensitivity mode localization devices using a simplified
resonator geometry.

Keywords: MEMS resonator; mode localization; sensitivity tuning

1. Introduction

Mode localization is the phenomenon that detects the small stiffness or mass perturba-
tion applied to weakly coupled resonators [1–5]. Recently, MEMS sensors utilizing mode
localization have gained attention for their potential to significantly enhance sensitivity and
have been applied to various sensors such accelerometers [6–10], gyroscopes [11], electric
current sensors [12], electrometers [13,14] magnetometers [15], and mass sensors [16–18].
One major advantage of mode localization sensing is that the change in amplitude ratio
is much larger than that in resonant frequency [3]. Indeed, it has been demonstrated that
mode localization sensors can achieve sensitivity approximately 1000 times higher than
frequency-based sensors [4], enabling them to detect the same disturbances with higher
sensitivity. Additionally, their high sensitivity allows them to reduce common noise sources
such as temperature [19,20] and pressure [20,21].

Sensitivity is inversely proportional to coupling stiffness. However, attempts to
increase sensitivity by reducing the coupling stiffness face challenges related to machining
precision. Therefore, minimum coupling stiffness is usually limited by fabrication precision.
To breakthrough this limit, a lot of methods to reduce the effective coupling between
resonators have been proposed. Thiruvenkatanathan and Seshia used electrostatic coupling
instead of mechanical coupling [4]. However, electrostatic coupling may bring stiffness
instability. Humbert et al. proposed external electric coupling [22]. However, the coupling
effect was not small, resulting in low sensitivity. Kang et al. reported that a center-anchored
three degrees-of-freedom (DOF) mass resonator reduces the effective coupling stiffness
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and improves the sensitivity by 349% [7]. The same research group reported a four DOF
resonator to further improve the sensitivity [23]. Chen et al. reported a three DOF resonator
in which effective coupling stiffness could be controlled by the stiffness balance between
springs [24,25]. Matthew et al. reported a 15 degree-of-freedom system using connected
cantilevers [26]. Increasing the degrees of freedom of resonators in sensors indeed leads
to a significant improvement in sensitivity. However, this also increases the number of
resonators required, leading to larger structural footprints. Zhou et al. reported that the
two-axis resonator showed mode localization [27] and mentioned the possibility of stiffness
tuning. However, sensitivity tuning was not experimentally demonstrated. In this study,
we experimentally demonstrated mode localization sensing with tunable sensitivity using
a two-axis orthogonal resonator.

2. Working Principle
2.1. Two-Axis Orthogonal Resonator

Figure 1 shows the simplified single-mass, two-axis orthogonal resonator. M is a mass,
and k1 and k2 are the pairs of springs in two orthogonal directions. Please note that the
stiffness indicated in the figure represents the total stiffness, which includes not only the
mechanical stiffness arising from the MEMS spring structure but also the stiffness variation
due to electrostatic forces. In general, the direction of the springs (i.e., the principal axes of
stiffness) are not aligned with the horizontal (X) and vertical (Y) axes. Let θ be the angle
between the principal axis and X-Y axes. The stiffness matrix in the ξ − η coordinate can be
expressed as follows:

K0 =

[
k1 0
0 k2

]
. (1)

Figure 1. Two-axis resonator model.

The stiffness in the X-Y coordinate system can be obtained using the coordinate
transformation matrix, E(θ), as follows:

K = E(θ)K0E−1(θ) =

[
k1 cos2(θ) + k2 sin2(θ) (k1 − k2) sin(θ) cos(θ)
(k1 − k2) sin(θ) cos(θ) k1 sin2(θ) + k2 cos2(θ)

]
≡

[
kx −kc
−kc ky

]
, (2)

where

E(θ) =
[

cos(θ) − sin(θ)
sin(θ) cos(θ)

]
. (3)

This expression resembles the stiffness matrix of a “normal” mode-localized resonator,

K′ =

[
k′x + k′c −k′c
−k′c k′y + k′c

]
. (4)



Sensors 2024, 24, 4038 3 of 17

In many cases, the coupling stiffness of the resonators used in mode localized sensing,
kc, is small compared to the main stiffnesses, kx and ky, and the coupling stiffness of the
two-axis resonator can be expressed as follows:

kc = (k2 − k1) sin(θ) cos(θ). (5)

The stiffness k1, k2 as well as principle axis θ could be modified by electrostatic tuning;
therefore, kc could be controlled down to zero.

Figure 2 illustrates the two oscillation modes used in this paper: in-phase (IP) and
anti-phase (AP) modes. For conventional mode-localized sensors, it is common to define
two coordinates in parallel. In such a definition, in the IP mode, the two masses vibrate in
the same direction, while in the AP mode, they vibrate in opposite directions. However,
in our device, the two axes are arranged perpendicularly. Therefore, in the IP mode, the
X-axis and Y-axis vibrate in the same direction (i.e., 45◦ direction), while in the AP mode,
the X-axis and Y-axis vibrate in opposite directions (i.e., −45◦ direction). The resonant
frequencies are solved as follows:

ω1 =

√√√√√ k0 +
∆k
2

−
√

∆k2

4
+ k2

c

M
(6)

ω2 =

√√√√√ k0 +
∆k
2

+

√
∆k2

4
+ k2

c

M
, (7)

where k0 =
kx + ky

2
and ∆k = ky − kx. The frequency difference takes the minimum value of

|ω1 − ω2| ∼
|kc|√
Mk0

(8)

under the balanced condition, such that ∆k = 0. The modal shapes are represented as the
amplitude ratio, Y/X, which could be solved as follows:

A1 =
−∆k +

√
∆k2 + 4k2

c
2kc

(9)

A2 =
−∆k −

√
∆k2 + 4k2

c
2kc

. (10)

(a)
y

Amplitude ratio :𝐴𝐼 =
𝑌𝐼

𝑋𝐼

x
XI

YI

(b)

x

y

XA

YA

Amplitude ratio : 𝐴𝐴 =
𝑌𝐴

𝑋𝐴

Figure 2. Schematic of modal shapes of the two-axis resonator. (a) In-phase (IP) and (b) anti-phase
(AP) modes.
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When the coupling stiffness is positive, kc > 0, modes 1 and 2 correspond to the IP
and AP mode, respectively. On the other hand, when kc < 0, modes 1 and 2 correspond to
the AP and IP mode, respectively. The sensitivity can be thus expressed as follows:

∂A
∂(∆k)

=


− 1

2kc
(∆k ≪ kc)

− 1
kc

(∆k ≫ kc).
(11)

Therefore, the sensitivity could be enlarged by reducing the coupling stiffness, kc.

2.2. Resonator Structure

Figure 3 shows the structure of the resonator and the definition of the axes used in this
paper. The resonator consists of multiple concentric rings connected by elliptic springs [28].
However, in this paper, two n = 1 modes, which correspond to the ring moving as a whole
either horizontally or vertically, as shown in Figure 3b,c, are used. Sixteen electrostatic
transducers are placed at the periphery of the ring, which are used for driving, sensing, and
stiffness tuning. Representative dimensions of the multi-ring resonator are summarized in
Table 1. The radius refers to the distance from the center of the resonator to the outermost
ring. The width represents the thickness per ring, while the small gap denotes the distance
between the outermost ring and the fixed electrode. The height indicates the device’s
thickness. The multi-ring structure is connected to the substrate via a cylindrical anchor
structure at the center.

(a)

(b)

X

Y

(c)

X

Y

Figure 3. (a) Structure of the resonator and definition of the (b) X and (c) Y axes modal shapes.
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The oscillation modes are estimated by the finite element method (FEM) using COM-
SOL Multiphysics Ver. 5.2. The resonant frequencies of the X (Figure 3b) and Y (Figure 3c)
axes are 49.2 kHz and 49.3 kHz, respectively. The structure is symmetric; therefore, the
difference between the two modes is considered a numerical error.

The device is fabricated using the SOI process. Figure 4 shows the fabrication process.
The thickness of the handle, buried oxide, and device layers are 400, 3, and 50 µm, respec-
tively. The crystal orientation and resistivity of the device layer are (100) and 0.1 Ω·cm,
respectively. An Al layer is deposited on the device layer. Then, the photoresist is deposited
and patterned. The thin Al film is patterned by wet chemical etching using a photoresist
as the etching mask. The photoresist is removed and the thin Al film is sintered for good
electrical contact. Then, another layer of photoresist is deposited and patterned. The Si
device layer is patterned by deep reactive ion etching (DRIE). After DIRE, the photoresist is
removed and the wafer is diced into each chip. Finally, the buried oxide layer is removed
by vapor-phase HF. Figure 5 shows the fabricated device.

Figure 4. Fabrication process. (1) SOI wafer. (2) Al deposition (wet chemical etching). (3) Photoresist
patterning. (4) Al etching. (5) Photoresist patterning. (6) Si etching (DRIE). (7) SiO2 etching (vapor
phase HF).

(a) (b)

Figure 5. (a) Microscopic image and (b) scanning electron micrograph of the fabricated device.
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Table 1. Parameters of the ring resonator.

Parameter Character Numerical Value

Radius r [m] 1.2 × 10−3

Width l [m] 1.0 × 10−5

Gap d [m] 5.0 × 10−6

Height h [m] 5 × 10−5

2.3. Electrostatic Tuning

The bias voltage between the resonator and static electrode generates the virtual spring
as follows:

Ke,0 = −ϵ0
S
d3 V2, (12)

where ϵ0, S, d, and V are the permeability of the vacuum, the area of the electrode, the gap
between moving and static electrodes, and the applied voltage, respectively. To generate the
symmetric electrostatic force, a pair of electrodes, as shown in Figure 6, is used for tuning.
The stiffness matrix change caused by the electrostatic tuning written in X–Y coordinate
can be obtained by coordinate transformation as follows:

Ke(α, V) = 2E(α)
[

Ke,0 0
0 0

]
E−1(α) (13)

= −2ϵ0
S
d3 V2

[
cos2(α) sin(α) cos(α)

sin(α) cos(α) sin2(α)

]
, (14)

where α is the direction of the electrode pair. A factor of 2 in the equation originates from
the fact that there are two paired electrodes, which doubles the tuning range. When using
two pairs of electrodes with directions of α and −α, the stiffness modification factor is
as follows:

∆K = Ke(α, V2) + Ke(−α, V1)

= −2ϵ0
S
d3

[
(V2

2 + V2
1 ) cos2(α) (V2

2 − V2
1 ) sin(α) cos(α)

(V2
2 − V2

1 ) sin(α) cos(α) (V2
2 + V2

1 ) sin2(α)

]
, (15)

where V1 and V2 are the applied voltages to the pair of electrodes, as shown in Figure 6b.
The diagonal and non-diagonal terms control the X–Y stiffness mismatch and coupling
stiffness, respectively.

(a)

V

V

α

α

(b)

V2V1

V2 V1

α

α

Figure 6. Electrode usage for electrostatic tuning. (a) Electrode pair direction α modifies the stiffness
of this direction. (b) Tuning direction could be arbitrarily controlled by combining two sets of
electrodes with two independent voltages, V1 and V2.
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2.4. Experimental Setup

Figure 7 shows the experimental setup. Since the resonator is not vacuum packaged,
it is placed in vacuum equipment consisting of a metal chamber, a glass top plate, and a
bottom plate with electrical feed-throughs made by printed circuit board (PCB). Figure 8
shows the schematic and photograph of the developed vacuum chamber. The leak rate
is estimated as small as 1 × 10−8 Pa · m3/s. A pressure level as low as 10−2 Pa could
be observed using the diffusion pump. However, only the rotary pump is used for the
resonance measurement. Thus, the inside pressure during resonance measurement is
approximately 0.6 Pa. Oscillation displacement is detected by the capacitance of sensing
electrodes. A high-frequency sinusoidal signal and DC bias are applied to the resonator. The
modulation frequency, amplitude, and bias voltages are 1 MHz, 1 Vpk, and 4 V, respectively.
The displacement is obtained by the synchronous demodulation technique. The amplitudes
and phases of oscillation are detected using a lock-in amplifier (UHF2LI, Zurich Instruments
Ltd., Zurich, Switzerland). The actuation signal is generated by the lock-in amplifier and
applied to the X-axis driving electrode through a voltage amplifier. Tuning voltages,
V1 and V2, are applied by regulated power sources (P4K-80M, Matsusada Precision, Inc.,
Kusatsu, Japan).

−

+

−

+

Figure 7. Experimental setup.

(a)

(b)

Figure 8. Vacuum chamber with electrical feed-through made of PCB. (a) Schematic cross-sectional
view and (b) photograph.
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3. Experimental Results
3.1. Frequency Response
3.1.1. As-Fabricated Condition

First of all, the resonance of the fabricated device was measured. To avoid the electro-
static tuning effect caused by the applied voltages, the device was actuated by the external
piezoelectric actuator and the displacement was detected by a laser Doppler vibrometer
(LDV). The piezoelectric actuator induces out-of-plane vibrations in the device. However,
due to the fact that the device and the actuator are not perfectly orthogonal and the device
possesses a very high Q-factor, in-plane vibration modes can also be excited. Additionally,
the LDV detects in-plane vibrations by measuring from a direction that is tilted 24◦ from
the vertical. Figure 9 shows the obtained resonant peaks from 25 kHz to 90 kHz. Due
to the symmetric structure, some peaks are degenerated. The modal shapes of oscillation
modes predicted by the FEM are shown in Figure 9. Two oscillation modes at the position
of peak-(4) were used in the following experiments.

(a)

10−4

10−3

10−2

10−1

100

101

30 40 50 60 70 80 90

Frequency, kHz

L
D

V
 s

ig
na

l,
 A

.U
. (1)

(2)
(3)

(4)
(5)

(6)

(7) (8)

(b)

Figure 9. (a) Frequency response of device detected by LDV and (b) corresponding modal shapes
obtained by FEA. In this study, oscillation modes at peak (4) were used for the following experiment.
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Figure 10 shows the frequency response when no tuning voltage was applied to V1
and V2. Two resonant peaks, corresponding to AP and IP modes, were observed. From
the detected phase differences, the first and second peaks correspond to AP and IP modes,
respectively. Negative peaks shown in the figure come from the drive-to-sens feed-through
signal. At the specific frequency, signals generated by MEMS motion and feed-through have
the same amplitude and opposite phase, cancelling each other out. When the feed-through
signal is much larger than that from MEMS motion, the detected phase is mainly dominated
by the feed-through signal. Thus, at frequencies far from the resonance point, the phase
is influenced by the feed-through signal, resulting in a constant phase in these regions.
Conversely, as the frequency approaches the resonance point, the MEMS vibration signal
increases sharply, and the observed phase shifts to that of the resonance signal. Therefore,
a rapid phase change is observed around the resonance point. The as-fabricated frequency
mismatch was approximately 60 Hz.

(a)

10 -5

10 -4

10 -3

50,620 50,640 50,660 50,680 50,700 50,720 50,740 50,760 50,780

A
m
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itu
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,V
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x

y
10

−3

10
−4

10
−5

(b)

-200

-150
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-50
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100

150

200

50,620 50,640 50,660 50,680 50,700 50,720 50,740 50,760 50,780

P
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,d
eg
re
e
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x

y

200

150

100

50

0

−50
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−200

Figure 10. Frequency response of the two-axis resonator without applying voltages to V1 and V2.
(a) Amplitudes and (b) phases of the X and Y axes.
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3.1.2. Effect of Electrostatic Tuning

First, only orthogonal terms, i.e., stiffness mismatch between X and Y axes, were
controlled by applying tuning under the condition that V1 = V2 ≡ VT . From Equation (15),
only orthogonal terms could be modified. Figure 11 shows the measured frequency re-
sponse under the tuning conditions of VT = 20, 45, and 60 V. When VT = 20 V, the frequency
mismatch became smaller compared to the as-fabricated condition (Figure 10). The mis-
match became the minimum around VT = 45 V, and the amplitude ratio of both modes
approached unity. The minimum frequency mismatch was approximately 30 Hz. This
indicates that the stiffness mismatch was minimized in this condition. The mismatch
increased when the tuning voltage became V = 60 V.

(a)

10 -5

10 -4

10 -3

50,620 50,640 50,660 50,680 50,700 50,720 50,740 50,760 50,780

A
m

pl
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de
,V

Frequency,Hz
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y

50 Hz10 −3

10 −4

10 −5

(b)
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50,620 50,640 50,660 50,680 50,700 50,720 50,740 50,760 50,780
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itu

de
,V

Frequency,Hz

x

y

25 Hz
10

−3

10
−4

10
−5

(c)

10 -5

10 -4

10 -3

50,620 50,640 50,660 50,680 50,700 50,720 50,740 50,760 50,780
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itu

de
,V

Frequency,Hz
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y
40 Hz10 −3

10 −4

10 −5

Figure 11. X and Y axes frequency response under different electrostatic tunings. V1 and V2 were
applied under the condition that V1 = V2 = (a) 20 V, (b) 45 V, and (c) 60 V.
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Then, the non-diagonal term, i.e., the coupling stiffness, was controlled by an unbal-
anced tuning condition, V1 ̸= V2. According to Equation (15), the coupling stiffness and
the stiffness unbalance were controlled by V2

2 − V2
1 and V2

1 + V2
2 , respectively. Figure 12

shows some examples of the experimental results. The minimum frequency mismatch was
reduced to approximately 20 Hz under the tuning condition that (V1, V2) = (45 V, 50 V),
at which the effective coupling stiffness became small (Equation (8)). In this condition,
the frequency of the AP mode was smaller than that of the IP mode, indicating that kc
was negative. The minimum frequency mismatch was further reduced to 7 Hz when
(V1, V2) = (40 V, 60 V). In this condition, the frequency order was swapped, which means
kc became positive. Theoretically, kc becomes zero in between these two conditions, which
means the sensitivity becomes infinity.

As kc approaches zero, the sensitivity increases. Therefore, the amplitude ratios
deviate significantly from 1 even under the small stiffness perturbation. This implies that
the direction of the eigenmodes (eigenvectors) approaches the X or Y axes. For example,
the AP mode in Figure 12b had an eigenmode that is nearly aligned with the Y axis. Due to
this, under the X-axis excitation conducted in this experiment, efficient excitation could not
be achieved, resulting in reduced amplitude.
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Figure 12. Cont.
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Figure 12. Amplitude and phase frequency response under unbalanced electrostatic tunings (i.e.,
V1 ̸= V2). {V1, V2} = (a) {45 V, 50 V} and (b) {40 V, 60 V}.

3.2. Method for Amplitude Ratio Detection

When two oscillation modes approach in the frequency domain, two resonances partly
overlap, introducing difficulty in measuring the amplitude ratio. This issue becomes
particularly evident with high-sensitivity sensors. Therefore, it is necessary to develop
a method for detecting the amplitude ratio of each peak even when two peaks overlap.
Because two modes have different phases, two Lorentz functions are overlaid in the complex
space as follows:

X = AX,1
ω2

1/Q1

(ω2
1 − ω2) + iω1ω/Q1

+ AX,2
ω2

2/Q2

(ω2
2 − ω2) + iω2ω/Q2

Y = AY,1
ω2

1/Q1

(ω2
1 − ω2) + iω1ω/Q1

+ AY,2
ω2

2/Q2

(ω2
2 − ω2) + iω2ω/Q2

,
(16)

where AX,1, AX,2, AY,1 and AY,2 are the X- and Y-axis amplitudes of mode 1 and 2, respec-
tively. ω1, ω2, Q1 and Q2 are the resonant frequencies and Q-factors of mode-1 and 2,
respectively. Those parameters were used for fitting. Figure 13 shows a example of the
fitting. Please note that the data shown in Figure 13 are not from the resonator shown in
Figure 3; therefore, the resonant frequency was different. However, the proposed method
does not depend on the structures and oscillation modes of the resonator. Thus, the method
could be applicable. As can be seen, two resonant peaks partly overlap, and it is difficult
to directly measure the amplitude ratio of each peak. However, the proposed function
fits to the experimental results well (Figure 13a). In addition, the amplitudes could be
decomposed into two resonant peaks, as shown in Figure 13b. From the decomposed peak
amplitudes (corresponding to AX,1, AX,2, AY,1, and AY,2 in Equation (16)), the amplitude
ratios of two resonant peaks could be obtained.
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Figure 13. Fitting result using double Lorentz function fitting. (a) Overall and (b) decomposed into
each components.

3.3. Mode Localization Measurement

The mode localization phenomenon was evaluated to apply the stiffness perturbation
but keep the coupling stiffness at the constant value. Both stiffness perturbation and
kc tuning were generated by electrostatic tuning. Considering Equation (15), stiffness
perturbation could be controlled by V2

2 + V2
1 , while kc could be controlled by V2

2 − V2
1 .

Thus, both parameters could be independently controlled. One set of measurements was
carried out under a constant value of V2

2 − V2
1 , i.e., constant kc, while changing V2

2 + V2
1 to

sweep the stiffness perturbation. Then, the value of V2
2 − V2

1 was changed and another set
of measurements were conducted. The stiffness perturbation is calculated as follows:

∆k = 2ϵ0
S
d3 (V

2
1 + V2

2 )(cos2(α)− sin2(α)). (17)
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The amplitude ratios were obtained by fitting the frequency response data to the
double Lorentz functions, as described in Section 3.2. Figure 14 shows the obtained
amplitude ratios. The data were fitted to the equation of the amplitude ratio (Equation (10))
using kc as the fitting parameter. The point near the amplitude ratio is 1 or −1, and the
plots of experimental results with different kc intersect. This indicates that, at this point,
the structural mismatch is perfectly compensated by electrostatic tuning, resulting in a
state where kx = ky. From this result, it can be inferred that for the oscillator used in
this experiment, the mismatch in the X and Y axes due to fabrication imperfection was
approximately 10.2 N/m. Table 2 and Figure 15 summarize the obtained effective coupling
stiffness. As can be seen, the amplitude ratio followed the theory well, and the effective
stiffness could be controlled by the tuning voltages. The coupling stiffness linearly changed
with respect to V2

2 −V2
1 , which means the proposed tuning method worked well. The tuning

efficiency of effective coupling stiffness for AP and IP modes were 13 × 10−4 (N/m)/V2

and 9.8 × 10−4 (N/m)/V2, respectively. Those values are close to the theoretical value:

∂kc

∂(V2
2 − V2

1 )
= 2ϵ0

S
d3 sin(α) cos(α) = 11 × 10−4 [(N/m)/V2]. (18)

Various types of oscillators for mode-localized sensors have been proposed. Among
these, the method of varying coupling stiffness using electrostatic attraction between
two oscillators is particularly effective [29–31], as it achieves variable sensitivity similar
to our study. However, a notable distinction of this method is that the coupling stiffness
is always negative and cannot change in sign. Additionally, another proposed method
involves altering the effective coupling stiffness by adding oscillatory systems, which
could also change the sensitivity in mode-localized sensors [24,25,31,32]. However, those
resonators require additional components which make the whole system complex. These
previous methods and the one proposed in this paper share similar objectives and achieved
effects. Therefore, the major contribution of our research is providing a new option for
variable mode-localized sensing. Furthermore, a significant advantage of our method is the
use of a single mass, which simplifies the device structure and facilitates miniaturization
compared to other approaches. Although similar methods to the one proposed in this
study have been mentioned in the past [27], direct experimental validation has not been
reported. The ability to experimentally measure variable sensitivity directly in this study is
of significant importance.
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Figure 14. Amplitude ratios of IP and AP modes with (a) negative and (b) positive effective
coupling stiffness.
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Table 2. Obtained effective coupling stiffness.

V2
2 − V2

1 [V2] kc [N/m] (Anti-Phase) kc [N/m] (In-Phase)

0 −2.35 −1.58
500 −1.81 −1.54

1000 −1.25 −1.10
1500 −0.52 −0.47
1685 −0.43 −0.39
1816 0.22 0.16
2000 0.17 0.05
2500 0.71 0.58
3000 1.43 1.12
3132 1.57 1.22

4. Conclusions

In this paper, mode localization sensing using a single-mass, dual-axis resonator was
experimentally demonstrated. We demonstrated that the coupling stiffness, and therefore,
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the sensitivity of mode localized sensing, can be electrostatically controlled by electrodes
around the oscillator. Sensitivity tuning could be enhanced at least 10 times using the
proposed method. Negative coupling stiffness was observed, which means coupling
stiffness close to zero, i.e., high sensitivity, could be possible.
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