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Abstract: Array pattern synthesis with low sidelobe levels is widely used in practice. An effective
way to incorporate sensor patterns in the design procedure is to use numerical optimization methods.
However, the dimension of the optimization variables is very high for large-scale arrays, leading to
high computational complexity. Fortunately, sensor arrays used in practice usually have symmetric
structures that can be utilized to accelerate the optimization algorithms. This paper studies a fast
pattern synthesis method by using the symmetry of array geometry. In this method, the problem
of amplitude weighting is formulated as a second-order cone programming (SOCP) problem, in
which the dynamic range of the weighting coefficients can also be taken into account. Then, by
utilizing the symmetric property of array geometry, the dimension of the optimization problem as
well as the number of constraints can be reduced significantly. As a consequence, the computational
efficiency is greatly improved. Numerical experiments show that, for a uniform rectangular array
(URA) with 1024 sensors, the computational efficiency is improved by a factor of 158, while for a
uniform hexagonal array (UHA) with 1261 sensors, the improvement factor is 284.

Keywords: array pattern synthesis; amplitude weighting; symmetry of array geometry; dynamic
range ratio; second-order cone programming (SOCP)

1. Introduction

Sensor arrays play a key role in modern information processing systems due to their
powerful spatial filtering ability. They have been successfully applied to various fields
such as radar [1], wireless communication [2], satellite navigation [3], radio astronomy [4],
speech enhancement [5], and seismic exploration [6]. Array patterns with low sidelobes
are very important in these applications to cope with unwanted interferences [7–9]. One
of the most widely used methods to synthesize patterns with low sidelobes is ampli-
tude weighting (also called amplitude taper). Conventional analytical methods such as
Dolph–Chebychev weighting [10,11] and Taylor weighting [12,13] can be implemented
very efficiently. However, these methods are limited to arrays with specific geometries
and cannot take into account the sensor patterns. Numerical optimization-based tech-
niques, which address the above issues, have attracted extensive attention in amplitude
weighting. Apart from the ability to handle arrays with arbitrary geometries and sensor
patterns, they can deal with additional constraints, such as forming nulls at some specified
directions or controlling the dynamic range of the weighting coefficients. While heuris-
tic algorithms [14,15] exhibit robust modeling and generalization capabilities, they are
relatively time-consuming and cannot guarantee that optimal results will be obtained.
Convex optimization shows supreme performance in finding the optimal solutions at the
expense of modeling difficulty. Due to the quadratic nature of the array pattern expres-
sion, second-order cone programming (SOCP) and semidefinite programming (SDP) have
gained widespread applications in array pattern synthesis [16–25]. Nevertheless, for convex
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optimization methods, the problem models vary with the optimization purposes, and most
problems appear to be non-convex. Relaxation must be adopted to transform the original
problems into their convex approximations. For example, in [17], the minimization of
the l1-norm, instead of the non-convex l0-norm, is adopted to design sparse arrays via
sequential convex optimizations. In [19], cross-polarization is considered in power pattern
synthesis using semidefinite relaxation. In [24], phase-only beamforming with continuous
or discrete shifters is also solved by semidefinite relaxation. However, the computational
cost of these methods is very high, particularly for large-scale arrays used in modern radar
and communication systems [26–28]. Consequently, there is an urgent need to reduce their
computational burden.

Although many modeling methods have been proposed for array pattern synthesis
using convex optimization, little attention has been paid to their efficient implementations.
For example, most optimization problems are solved by available packages such as CVX [29]
or SeDumi [30]. In some cases, however, these packages are not effective enough, since
redundant variables will be introduced when transforming a given problem into a standard
one. In addition, the computational complexities of SOCP and SDP are N3 and N3.5

per iteration, respectively, with N being the dimension of the problem [31,32], while
for most problems, 20∼40 iterations are required [33]. When semidefinite relaxation is
employed [34], the dimension of the problem is increased from N to N2, leading to very
high computational complexity. As a result, for large-scale arrays with thousands of
sensors and tens of thousands of constraints that are commonly encountered in military
applications, the SOCP solvers will take several hours to find the solution on a personal
computer, while the SDP solvers do not work. Therefore, the computational efficiency is
very important for these problems.

Fortunately, sensor arrays as well as their patterns used in practice usually have
symmetric structures [35]. For example, there is mirror symmetry in uniform linear ar-
rays (ULAs) and uniform rectangular arrays (URAs), and rotational symmetry in uniform
hexagonal arrays (UHAs) and concentric circular arrays (CCAs). Moreover, to simplify the
feeding network, large-scale arrays are usually divided into several identical blocks [36].
Thus, the weighting coefficients also have symmetric distributions. Utilizing these symme-
tries, both the dimension of the optimization variables and the number of constraints in the
optimization problems can be reduced. As a consequence, the computational efficiency can
be improved dramatically. The conjugate weighting for ULAs with central symmetry is
analyzed in [36,37]. However, a detailed discussion on the mirror symmetry and rotational
symmetry is not presented. In [38], only the central symmetry is used to optimize a URA.
Therefore, the mirror symmetry of the array and its beampattern is not fully exploited.
In [39], a thinned array is optimized and the results show that the excitation coefficients
exhibit rotational symmetry. Nevertheless, this symmetry is not considered in the design
procedure and thereby the computational efficiency can be improved.

This paper studies a fast amplitude weighting method based on the SOCP by lever-
aging these symmetries. We mainly focus on the planar arrays with mirror symmetry
(e.g., URAs) and rotational symmetry (e.g., UHsA). A URA located on the xy-plane is
symmetric about the x-axis as well as the y-axis. Therefore, only the weighting coefficients
located in the first quadrant need to be optimized. A UHA located on the xy-plane is
symmetric about the x-axis as well as the lines passing through the origin with angles of
ϕ = 60◦ and ϕ = 120◦. Therefore, only the weighting coefficients located in the region
of 0◦ ≤ ϕ < 60◦ need to be optimized. Moreover, due to the symmetry of array pattern
with respect to the azimuth angle, the number of constraints can also be reduced. Based
on these considerations, the dimension of the optimization variables can be reduced by
75% for URAs and by 83% for UHAs. In addition, to control the dynamic range of array
excitations that can simplify the feeding network and improve the robustness of the array
when performing beam scanning [40–42], the lower and upper bounds of the weighting
coefficients are taken into account in the proposed method.
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In order to verify the efficiency of the proposed method, we implemented the algo-
rithm described in [31,43] for SOCP problems without performing any code optimization.
Two URAs with 256 sensors and 1024 sensors and two UHAs with 331 sensors and 1261 sen-
sors are tested in the simulation experiments. The results show that the computational
efficiency is improved by an order of magnitude for URA-256 and UHA-331, and by two
orders of magnitude for URA-1024 and UHA-1261. Moreover, it is found that the direct
implementation of the SOCP solver described in [31,43] is more efficient than the CVX
package when solving the problems of amplitude tapering.

The main contributions of this paper are as follows:

1. We propose a fast low-sidelobe pattern synthesis method using the symmetry of array
geometry, which reduces the dimension of the optimization variables and improves
the computational efficiency significantly.

2. The lower and upper bounds of the weighting coefficients can also be specified in the
proposed method, which can control the dynamic range of the weighting coefficients.

The remainder of this paper is organized as follows. Section 2 formulates the amplitude
weighting with dynamic range constraints as an SOCP problem. Section 3 describes
the method that utilizes the symmetry of URAs and UHAs to reduce the dimension of
the optimization problem obtained in Section 2. Simulation experiments are given in
Section 4 to validate the effectiveness of the proposed method, followed by a conclusion
and discussion in Section 5.

Notations: We use lowercase letters (e.g., a), lowercase boldface letters (e.g., a), and up-
percase boldface letters (e.g., A) to represent scalars, vectors, and matrices, respectively.
The superscripts ()T and ()H denote the transpose and Hermitian transpose, respectively.
The real part and imaginary part of a complex number z are denoted by Re(z) and Im(z),
while æ =

√
−1 is the imaginary unit.

2. Problem Formulation

Consider a planar array located on the xy-plane as shown in Figure 1. The problem of
amplitude weighting that minimizes the peak sidelobe level (PSLL) of the array pattern
can be formulated as

min
w∈RM

max
(θ,ϕ)∈Θsl

∣∣∣wHv(θ, ϕ)
∣∣∣, (1a)

s.t.
∣∣∣wHv(θ0, ϕ0)

∣∣∣ = 1, (1b)

where w is the weighting coefficients, M is the number of sensors, Θsl is the region of
sidelobes, v(θ, ϕ) is the steering vector in direction (θ, ϕ), with (θ0, ϕ0) being the direction
of the main beam. For planar arrays whose sensors lie in the xy-plane, the mth entry of
v(θ, ϕ) is given by [37] (ch. 4)

fm(θ, ϕ)eæ 2π
λ [xm sin(θ) cos(ϕ)+ym sin(θ) sin(ϕ)], (2)

where fm(θ, ϕ) and (xm, ym) are the pattern and location of the mth sensor, respectively,
and λ is the wavelength of the operating frequency.

Because there are infinitely many directions in Θsl, one has to approximate Θsl by
finite samples. For example, by sampling Θsl with N points {(θn, ϕn)}N

n=1, Problem (1) can
be approximated by [44]

min
g∈R+ ,w∈RM

g, (3a)

s.t. Re
(

vH
0 w

)
= 1, (3b)∣∣∣vH

n w
∣∣∣ ≤ g, n = 1, · · · , N, (3c)
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where vn = v(θn, ϕn). Note that the constraint |vH
0 w| = 1 has been replaced by Re(vH

0 w) = 1,
which does not change the optimal solution [42].

y

z

x

(xm, ym)

θ

φ

Figure 1. A planar array located on the xy-plane.

In addition, to prevent large weighting coefficients that make the synthesized pattern
sensitive to array errors [37] (ch. 2), one can impose the range constraints as follows:

min
g∈R+ ,w∈RM

g, (4a)

s.t. Re
(

vH
0 w

)
= 1, (4b)∣∣∣vH

n w
∣∣∣ ≤ g, n = 1, · · · , N, (4c)

αm ≤ wm ≤ βm, m = 1, · · · , M. (4d)

There are two advantages by imposing the range constraints: reducing the complexity of
feeding network and increasing the robustness of beam scanning (e.g., maintaining a low
PSLL). The cost is adding more constraints in the optimization problem and thus increasing
the computational complexity. Because M and N are very large for planar arrays (e.g., M
is on the order of 102∼103 and N is on the order of 104), solving Problem (4) efficiently is
very important.

Since the steering vectors vn are complex, we have to convert them into real ones to
represent Problem (4) in real variables. For example, let

v̂n =

[
Re(vn)
Im(vn)

]
, ṽn =

[
Im(vn)

−Re(vn)

]
, ŵ =

[
Re(w)
Im(w)

]
. (5)

Then we have [45]

Re
(

vH
n w

)
= v̂T

nŵ and
∣∣∣vH

n w
∣∣∣ = ∥∥∥[v̂n, ṽn]

Tŵ
∥∥∥. (6)

Because Im(w) = 0, Problem (4) is equivalent to

min
g∈R+ ,w∈RM

g, (7a)

s.t. [Re(v0)]
Tw = 1, (7b)∥∥∥[Re(vn), Im(vn)]

Tw
∥∥∥ ≤ g, (7c)

αm ≤ wm ≤ βm, (7d)
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where n = 1, · · · , N and m = 1, · · · , M. In what follows, we use Problem (7) to illustrate
how to utilize the symmetry of array geometry. To help understand the problem model,
the meanings of variables and parameters in Problem (7) are summarized in Table 1.

Table 1. Variable definitions for Problem (7).

Variable/Parameter Meaning

g the maximum array gain in sidelobe region
v0 steering vector of the scan angle
w weighting coefficients (optimization variables)
vn steering vectors in sidelobe region
αm lower bounds of the weighting coefficients
βm upper bounds of the weighting coefficients

Problem (7) can be translated into an SOCP problem and solved by the primal–dual
interior-point methods [31]. Because the SOCP problem is convex, its optimal solution is
guaranteed. The dimensions of the primal and dual variables of (7) are Dp = 2M + 3N + 1
and Dd = M + 1, respectively. Because the main computations of the SOCP solver come
from (i) constructing a Dd × Dd matrix from a Dd × Dp matrix and (ii) solving two linear
systems of equations with dimension Dd, the computational complexity of (7) can be
reduced if we can reduce Dp and Dd.

3. The Proposed Method
3.1. Fast Amplitude Weighting for URA Using Mirror Symmetry

Without loss of generality, consider a URA consisting of M = Mx × My sensors with
Mx and My being even. The method developed in this section can be easily extended to
the cases when Mx and My have different parities. The geometry of the URA is shown
in Figure 2, where the same icon means that those sensors have the same pattern and the
same weighting coefficient.

x

y

s

s

s

s

n

n

n

n

l

l

l

l

¨

¨

¨

¨

«

«

«

«

H

H

H

H
1 · · · Mx

2
· · · · · · Mx

1

My

2

...

My

Figure 2. The symmetry of a URA with Mx and My being even.

The sensors of the URA are numbered in a consecutive way, starting with the bottom-
left (m = 1) and proceeding in the x-direction and then in the y-direction. Let Ik

my be the
indices of the sensors in the myth row in the [k + 2sign(2.5 − k)]th quadrant, i.e.,

I1
my = (my − 1)Mx +

{
1, · · · ,

Mx

2

}
, (8a)

I2
my = my Mx −

{
0, · · · ,

Mx

2
− 1

}
, (8b)
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I3
my = (My − my)Mx +

{
1, · · · ,

Mx

2

}
, (8c)

I4
my = (My − my + 1)Mx −

{
0, · · · ,

Mx

2
− 1

}
, (8d)

where my = 1, · · · , My/2. For example, if Mx = 6 and My = 4, then

I1
1 = {1, 2, 3}, I1

2 = {7, 8, 9}, (9a)

I2
1 = {6, 5, 4}, I2

2 = {12, 11, 10}, (9b)

I3
1 = {19, 20, 21}, I3

2 = {13, 14, 15}, (9c)

I4
1 = {24, 23, 22}, I4

2 = {18, 17, 16}. (9d)

Furthermore, let

Ik = Ik
1 ∪ Ik

2 · · · ∪ Ik
My/2, k = 1, 2, 3, 4, (10)

i.e., each Ik contains the indices of sensors in one quadrant. By symmetry, we have

w(I1) = w(I2) = w(I3) = w(I4). (11)

Consequently,

vH
n w =

4

∑
k=1

[
vn(Ik)

]H
w(Ik) = uH

n w(I1), (12)

where
un = vn

(
I1

)
+ vn

(
I2

)
+ vn

(
I3

)
+ vn

(
I4

)
. (13)

Equation (12) indicates that the dimension of the optimization variable (i.e., g and w) in
Problem (7) can be reduced from M + 1 to M/4 + 1.

In addition, due to the symmetry of array geometry, the array pattern also has sym-
metry in the ϕ-direction. For example, when specifying the sidelobe region, we only need
to impose the constraints for ϕ ∈ [0, 90◦] rather than ϕ ∈ [0, 360◦]. Strictly speaking, this
simplification requires that the sensor patterns are also symmetric about the x and y axes,
which is satisfied in practice because the sensor patterns in a large array usually depend
weakly on ϕ. For example, the microstrip patch antenna and pyramidal/conical horn
antenna are widely used in antenna arrays [46] (ch. 13), whose patterns are commonly
modeled as functions that do not depend on ϕ [47] (ch. 6).

Now we can reformulate (7) as an SOCP problem whose primal and dual dimensions
are Dp = M/2 + 3N/4 + 1 and Dd = M/4 + 1, respectively. Let

y =

[
g

w(I1)

]
, b =

[
1
0

]
, (14a)

a0 =

[
0

Re(u0)

]
, an =

[
1
0

]
, (14b)

An =

[
0 0

Re(un) Im(un)

]
, dm =

[
0

em

]
(14c)

for n = 1, · · · , N/4 and m = 1, · · · , M/4, where em is the mth column of the identity matrix
of order M/4. Then Problem (7) can be reformulated as

min
y∈R(M/4)+1

bTy, (15a)

0 ≤ aT
0 y − 1, (15b)

0 ≤ dT
my − αm, (15c)
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0 ≤ −dT
my + βm, (15d)∥∥∥AT

ny
∥∥∥ ≤ aT

ny, (15e)

which is a standard (dual) SOCP problem [43]. Note that the constraint aT
0 y = 1 has been

replaced by 0 ≤ aT
0 y − 1 in order to express (15) in the standard form. This replacement

does not change the solution of (15) because w(I1) should become as small as possible
to minimize the PSLL. Therefore, the inequality in (15b) will become an equality at the
optimal point.

3.2. Fast Amplitude Weighting for UHA Using Rotational Symmetry

The geometry of the UHA is shown in Figure 3, where the same icon means that those
sensors have the same pattern and the same weighting coefficient. It can be seen that the
UHA is rotationally symmetric about the origin.
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Figure 3. The symmetry of a UHA with 37 sensors.

Suppose the UHA consists of C hexagons (dashed lines in Figure 3); then, there are

M = 1 + 6 + 12 + · · ·+ 6C = 3C(C + 1) + 1 (16)

sensors in the array. In the region of 0◦ ≤ ϕ < 60◦, there are (including the origin)

M − 1
6

+ 1 =
C(C + 1)

2
+ 1 = H + 1 (17)

sensors, where

H =
M − 1

6
and M = 6H + 1 . (18)

For example, in Figure 3, C = 3, M = 37, and H = 6.
The numbering system of the UHA is as follows:

• The H + 1 sensors in the region of 0◦ ≤ ϕ < 60◦ are numbered in a consecutive way,
starting with the origin (m = 1) and proceeding in the x-direction and then in the
y-direction (m = 2, · · · , H + 1).

• If the position of a sensor is obtained by rotating the mth sensor (m = 2, · · · , H + 1)
with an angle of k × 60◦ (k = 1, · · · , 5), then this sensor is numbered by m = 2 + kH.

By using symmetry, we only have to optimize the weighting coefficients in the region
of 0◦ ≤ ϕ < 60◦. Let
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Ik = {kH + 2, kH + 3, · · · , kH + (H + 1)} (19)

for k = 0, 1, · · · , 5, then
w(I0) = w(I1) = · · · = w(I5). (20)

Consequently,

vH
n w = v∗n1w1 +

5

∑
k=0

[
vn(Ik)

]H
w(Ik)

= v∗n1w1 + uH
n w(I1), (21)

where
un = vn

(
I0

)
+ vn

(
I1

)
+ · · ·+ vn

(
I5

)
. (22)

Equation (21) indicates that the dimension of w in Problem (7) can be reduced from M + 1
to (M − 1)/6 + 2.

Similar to the case of URA, we only need to impose the constraints for ϕ ∈ [0, 90◦]
rather than ϕ ∈ [0, 360◦]. And (7) can be reformulated as (15) with

y =

 g
w1

w(I1)

, b =

[
1
0

]
, (23a)

a0 =

 0
Re(v01)
Re(u0)

, an =

[
1
0

]
, (23b)

An =

 0 0
Re(vn1) Im(vn1)
Re(un) Im(un)

, dm =

[
0

em

]
(23c)

for n = 1, · · · , N/4 and m = 1, · · · , H/6 + 1, where em is the mth column of the identity
matrix of order H + 1. The primal and dual dimensions of this simplified problem are
Dp = 2H + 3N/4 + 2 and Dd = H + 1, respectively.

4. Numerical Results and Analyses
4.1. Experiment 1: URA with Mirror Symmetry

A URA consisting of 16 × 16 isotropic sensors is used in the first experiment. Be-
cause the array pattern is symmetric about the xy-plane, only the upper half-space is shown
when plotting the array pattern. Problems (7) and (15) can be solved by the CVX package.
However, to provide a user-friendly interface, CVX may introduce auxiliary variables when
transforming a given problem to a standard one. These redundant variables may reduce
the computational efficiency of the solving processes. Therefore, we use the algorithm
described in [31,43] to solve Problems (7) and (15), whose solutions are denoted by w(7)
and w(15), respectively.

The region of sidelobes is [10, 90]◦ × [0, 360]◦, which is sampled by δθ = 2◦ and δϕ = 4◦.
To prevent negative weighting coefficients, αm are usually set to 0. Because wm = 1/M
for uniform weighting, βm are usually set to µ/M, where µ is near 2. In this example,
βm = 2.1/M. The pattern synthesized by (15) is shown in Figure 4, which is the same
as that synthesized by (7)). The weighting errors between w(15) and w(7) are shown in
Figure 5. It can be seen that the difference between w(15) and w(7) is negligible. The relative
error is

∥w(15) − w(7)∥
∥w(7)∥

= 0.07% , (24)

which means that Problem (7) also gives symmetric weighting coefficients.
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Figure 4. Array pattern of the 16 × 16 URA synthesized by (15).

Figure 5. Weighting errors of the 16 × 16 URA synthesized by (15) and (7).

The CPU time Tcpu of solving (7) and (15) on a computer with four 2.4 GHz CPUs as
well as the PSLLs of the synthesized patterns are listed in Table 2. It can be seen that (7)
and (15) produce the same PSLL. However, solving (15) is 12 times faster than solving (7).
The results when (7) and (15) are solved by CVX [29] are also provided, which indicates
that solving (15) is 28 times faster than solving (7). In addition, the CVX package spends
more CPU time than the solver based on [31,43]. The dimensions of the primal and dual
variables involved in (7) and (15) are also listed in Table 2, showing that the dimension of
the optimization problem is reduced by 75% using the mirror symmetry of the URA.

Another URA consisting of 32 × 32 isotropic sensors is used in the second experiment.
The region of sidelobes is [5, 90]◦ × [0, 360]◦, which is sampled by δθ = 1◦ and δϕ = 2◦.
The parameters αm and βm are set to 0 and 1.9/M, respectively. The pattern synthesized by
(15) is shown in Figure 6, while the CPU time and PSLL are listed in Table 2. It can be seen
that (15) produces the same PSLL as that of (7). However, solving (15) is 158 times faster
than solving (7). On the other hand, solving (15) is 83 times faster than solving (7) by using
the CVX [29] toolbox.
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Table 2. The PSLL and CPU time for URA.

Problem Solver Mx × My Dp Dd PSLL (dB) Tcpu (s)

(7) [31] + [43] 16 × 16 11,706 257 −29.6 15.3
(7) CVX [29] 16 × 16 / / −29.6 61.5
(15) [31] + [43] 16 × 16 2958 65 −29.6 1.3
(15) CVX [29] 16 × 16 / / −29.6 2.2
(7) [31] + [43] 32 × 32 48,747 1025 −30.3 2884.6
(7) CVX [29] 32 × 32 / / −30.3 4088.1

(15) [31] + [43] 32 × 32 12,381 257 −30.3 18.3
(15) CVX [29] 32 × 32 / / −30.3 49.1

Figure 6. Array pattern of the 32 × 32 URA synthesized by (15).

The effect of dynamic range constraints αm ≤ wm ≤ βm is shown in Figure 7, where the
synthesized patterns of the 16 × 16 URA with and without the dynamic range constraints
are compared. The lower and upper bounds of the weighting coefficients are αm = 0 and
βm = 1.5/M respectively. It can be seen that the weighting coefficients have a smaller
fluctuation when the dynamic range constraints are imposed, which can enhance the
robustness of array patterns [48]. For example, when the array is steered to (45◦, 45◦),
the pattern with dynamic range constraints has a higher directivity (improved by 0.5
dB) and a lower PSLL (improved by 5.8 dB) than the pattern without dynamic range
constraints.

(a) Weights without range constraints. (b) Weights with range constraints.

Figure 7. Cont.
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(c) Pattern cuts without range constraints.
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(d) Pattern cuts with range constraints.

Figure 7. The effect of dynamic range constraints when the array is steered to (45◦, 45◦).

4.2. Experiment 2: UHA with Rotational Symmetry

A UHA consisting of 10 hexagons (331 sensors) is used in the third experiment. All
sensors have the same pattern, given by

fm(θ, ϕ) =

[
1 + cos(θ)

2

]2

= cos4(θ/2) , (25)

which is shown in Figure 8. Because this pattern is not symmetric about the xy-plane,
the full space is shown when plotting the array patterns.

0

60

120

30

150

0

180

30

150

60

120

90 90

Figure 8. The pattern of cos4(θ/2) with directivity Dmax = 7.0 dB and 3 dB beamwidth θ3dB = 93.9◦.

The region of sidelobes is [9, 180]◦ × [0, 360]◦, which is sampled by δθ = 2◦ and δϕ = 4◦.
The parameters αm and βm are set to 0 and 1.8/M, respectively. The pattern synthesized by
(15) is shown in Figure 9a, which is the same as that synthesized by (7)). The weighting
errors between w(15) and w(7) are shown in Figure 10. It can be seen that the difference
between w(15) and w(7) is negligible. The relative error is

∥w(15) − w(7)∥
∥w(7)∥

= 0.02% , (26)
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which means that Problem (7) also gives symmetric weighting coefficients. The CPU time
Tcpu of solving (7) and (15) as well as the PSLL are listed in Table 3. It can be seen that (7)
and (15) produce the same PSLL. However, solving (15) is 19 times faster than solving (7).
The results when (7) and (15) are solved by CVX [29] are also provided, which indicates
that solving (15) is 49 times faster than solving (7). The dimensions of the primal and dual
variables involved in (7) and (15) are also listed in Table 3. The results indicate that the
number of constraints rather than the number of sensors dominates the dimension of the
optimization problem.

(a) The UHA consisting of 331 sensors. (b) The UHA consisting of 1261 sensors.

Figure 9. Array patterns of the UHA synthesized by (15).

Figure 10. Weighting errors of the UHA with 10 hexagons synthesized by (15) and (7).

Another UHA consisting of 20 hexagons (1261 sensors) is used in the fourth experiment.
The region of sidelobes is [5, 90]◦ × [0, 360]◦, which is sampled by δθ = 1◦ and δϕ = 2◦.
The parameters αm and βm are set to 0 and 1.7/M, respectively. The pattern synthesized
by (15) is shown in Figure 9b, while the CPU time and PSLL are listed in Table 3. It can be
seen that (15) produces the same PSLL as that of (7). However, solving (15) is 284 times
faster than solving (7). On the other hand, solving (15) is 133 times faster than solving (7)
by using the CVX [29] toolbox.
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Table 3. The PSLL and CPU time for UHA.

Problem Solver M Dp Dd PSLL (dB) Tcpu (s)

(7) [31] + [43] 331 11,856 332 −30.9 20.7
(7) CVX [29] 331 / / −30.9 92.3
(15) [31] + [43] 331 2942 57 −30.9 1.1
(15) CVX [29] 331 / / −30.9 1.9
(7) [31] + [43] 1261 49,221 1262 −31.2 3859.0
(7) CVX [29] 1261 / / −31.2 5480.6
(15) [31] + [43] 1261 12,291 212 −31.2 12.8
(15) CVX [29] 1261 / / −31.2 41.1

5. Conclusions and Discussion

A fast low-sidelobe pattern synthesis method was studied in this paper, which utilizes
the symmetry of array geometry to reduce the dimension of the optimization variables as
well as the number of constraints. Different from the analytical approaches, the proposed
method was modeled by an SOCP problem which can take into account the sensor pattern
and the dynamic range of the weighting coefficients. Simulation experiments showed that,
for a URA with 1024 sensors, the computational efficiency was improved by a factor of
158, while for a UHA with 1261 sensors, the improvement factor was 284. In addition,
the proposed method can be easily extended to other symmetric arrays.

The improvement of computational efficiency in the second experiment is larger than
that in the first experiment. This is because the primal and dual dimensions of (7) in the
first experiment are Dp = 11,706 and Dd = 257, while in the second experiment, they are
Dp = 48,747 and Dd = 1025. Therefore, constructing the Dp × Dp matrix in the interior-
point method dominates the computations in the first experiment, while solving the
Dp × Dp linear systems of equations dominates the computations in the second exper-
iment. For the same reason, the improvement of computational efficiency in the fourth
experiment is larger than that in the third experiment.

It is worth remarking that there may be different types of symmetry in one array (e.g.,
the mirror symmetry and rotational symmetry in a square array). In such cases, either
symmetry can be exploited depending on the array pattern to be synthesized. Finally,
Tables 2 and 3 show that the direct implementation of the SOCP solver described in [31,43]
is faster than the CVX toolbox [29]. By checking the interior parameters, it is found that
the dimension of the optimization problem in CVX is larger than that of the standard form.
Therefore, redundant variables are introduced in CVX when solving a convex problem
that is not in its standard form. Another possible reason is that before solving the given
problem, pre-examination is performed by the CVX toolbox to select a proper algorithm,
which takes extra time.

Applications of array symmetries discussed in this paper are not limited to amplitude
weighting; they can also be utilized in other array pattern synthesis problems such as
sparse array optimization. Apart from convex optimization, other numerical optimization-
based methods can also leverage this geometry property. By exploiting array symmetries,
advantages arise not only on the improvement of computational efficiency; from an en-
gineering point of view, symmetry also eases the difficulty in manufacture of the sensor
arrays. With the development of extremely large-scale sensor arrays, we believe that the
applications of array symmetries will attract more and more attention. In addition, future
works could focus on their extension to semi-symmetric arrays, where partial symmetry
exists in the array geometry.
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