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Abstract: Precise soil water content (SWC) measurement is crucial for effective water resource
management. This study utilizes the Cosmic-Ray Neutron Sensor (CRNS) for area-averaged SWC
measurements, emphasizing the need to consider all hydrogen sources, including time-variable
plant biomass and water content. Near Mead, Nebraska, three field sites (CSP1, CSP2, and CSP3)
growing a maize–soybean rotation were monitored for 5 (CSP1 and CSP2) and 13 (CSP3) years. Data
collection included destructive biomass water equivalent (BWE) biweekly sampling, epithermal
neutron counts, atmospheric meteorological variables, and point-scale SWC from a sparse time
domain reflectometry (TDR) network (four locations and five depths). In 2023, dense gravimetric
SWC surveys were collected eight (CSP1 and CSP2) and nine (CSP3) times over the growing season
(April to October). The N0 parameter exhibited a linear relationship with BWE, suggesting that a
straightforward vegetation correction factor may be suitable (fb). Results from the 2023 gravimetric
surveys and long-term TDR data indicated a neutron count rate reduction of about 1% for every
1 kg m−2 (or mm of water) increase in BWE. This reduction factor aligns with existing shorter-term
row crop studies but nearly doubles the value previously reported for forests. This long-term study
contributes insights into the vegetation correction factor for CRNS, helping resolve a long-standing
issue within the CRNS community.

Keywords: soil water content; cosmic-ray neutron sensor; biomass correction

1. Introduction

The global population is anticipated to reach 9 billion people by the year 2050 [1],
which is nearly 1 billion more than the current population in 2024. The growing popula-
tion will continue to add pressure on land and water resources to meet food production
demands. According to recent studies, food production may need to increase at least 56%
by 2050 [2]. To meet the additional demand, there will need to be nearly a doubling of
current grain production quantities [3]. Agriculture is the leading industrial water con-
sumer [4], withdrawing almost 70% of global freshwater used industrially [3]. Agricultural
water use is less than fifty percent efficient, and future demand will likely need double the
current agriculturally productive land area [5,6]. These factors make agricultural water
conservation a prominent issue impacting current and future generations.

To conserve water in an agricultural context, it is imperative to know how much
water needs to be applied to fields (see [7,8]). Water must be saved, but producers must
ensure crop vitality and maintain or increase grain yields. One effective way to balance or
optimize high yield with maximizing efficient water use is to continuously monitor soil
water content (SWC). A technique for quantifying SWC at the scale needed for large-scale
sprinkler irrigation (i.e., 100 s of m) is the Cosmic-Ray Neutron Sensor (CRNS). The CRNS
is a passive, non-invasive sensor that utilizes epithermal neutron intensity to quantify
SWC [9]. The CRNS horizontal footprint is on the order of 10 s of hectares, and the vertical
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footprint is a depth of decimeters [9–11]. Other key advantages are low power demands
that can be met by modest sized solar panels; easy data transmission; and measurements
that are independent of soil salinity, texture, or bulk density [12].

The CRNS is primarily used in research settings, with nearly 300 sensors globally [13].
Key barriers to its use in agriculture are practical, relating to the high upfront capital cost
and the vertical sensing depth not covering the entire root zone for certain crops [14]. As
the local price of water (i.e., direct or indirect cost) rises with increased demand, CRNS
technology will likely become a more viable option for large-scale irrigation management.
With respect to technical aspects, the processing of neutron counts to useable SWC has made
excellent progress over the last two decades [10,11,15–18]. CRNS-moderated detectors
capture epithermal neutrons [13,18,19], where the neutrons are primarily slowed down by
interactions with hydrogen at this energy level [9,15]. In nearly all ecosystems, hydrogen
within the CRNS footprint is dominated by water in the soil (60–90%) [20]. However, water
vapor in the air [21] and liquid water in plant biomass may also account for significant
amounts of the ecosystem’s hydrogen (10–40%) [22]. These variations can have significant
impacts on SWC estimates.

Figure 1 shows the impact of variations in the neutron count calibration parameter
(N0, see Equation (2) in Section 2.3 for more details) on SWC estimates. Systematic errors
in SWC can manifest due to neglecting the various correction factors on the raw neutron
counts. CRNS processing has developed several epithermal neutron correction factors to
isolate the SWC signal in the soil. This includes first- and second-order scale correction
factors for time-varying air pressure (1st), high-energy neutron intensity (1st), and atmo-
spheric water vapor (2nd), as summarized in Zreda et al. [15] and continually improved
by the community [23]. However, a universally accepted neutron correction factor for
variations in vegetation biomass and types (i.e., crops vs. grasslands vs. forests) remains an
unresolved issue.
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Figure 1. The variations in SWC estimates with varying N0 calibration parameter estimates for a
typical CRNS count rate (Npvi). Panel (a) demonstrates that a neutron count measurement differing
by an N0 of 100 counts will lead to an approximately 0.10 cm3 cm−3 change in resultant SWC on the
water retention curve. Panel (b) shows the impact on SWC for a hypothetical growing season for
a CRNS in Nebraska. Note that both panels share the y-axis, and the colors represent the same N0

values for each panel. Section 2.3 will provide more details on the calibration function.

Numerous studies report on vegetation’s influence on CRNS measurements (Table 1).
The most widely cited vegetation correction factor was proposed by Baatz et al. [24]
regarding biomass (fb) for Norway spruce trees. The study found a 0.9% linear reduc-
tion in epithermal neutron intensity for every 1 kg m−2 of dry above-ground biomass.
The factor was extrapolated to 0.5% neutron count reduction for every 1 kg m−2 of
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biomass water equivalent (BWE). Vather et al. [25] reported a 13.8% reduction in N0 when
13.7 kg m−2 (dry above-ground biomass) of acacia trees were removed for timber produc-
tion, where N0 is a free calibration parameter in Desilets et al.’s [18] calibration equation for
converting neutron counts to SWC. Franz et al. [22,26] also found a linear reduction with N0
of about 1% per unit BWE (kg m−2) for maize and soybeans. The main limitation of these
studies is that they were short-term or used indirect biomass estimates in forest ecosystems,
where direct sampling is not practical. To the authors’ knowledge, no existing long-term
studies have quantified the effects of biomass variations on epithermal neutron intensity.
Heistermann et al. [27] did present a 3-year study, but no equation for fb was reported.

Table 1. Summary of CRNS methods used to estimate biomass influence on CRNS measurements.
The T/E is the thermal/epithermal method, BWE is biomass water equivalent, and AGB is above-
ground biomass. An expanded version of this table with specific study results can be found in the
Supplementary Materials.

Method Method Summary Pro Con fb Source

Thermal/
Epithermal Ratio

Uses bare and
moderated sensors to
determine the ratio

between thermal and
epithermal neutrons

Minimizes need for soil
sampling, easy to
measure, many

applications

Requires two detectors,
limited validation,

several assumptions

Biomass presence reduces
N0 by 13.8% for 13.7 kg/m2

dry biomass [25] linear
relationship between ratio

and biomass present

[19,25,28–31]

BWE

Weigh plants wet,
oven dry, weigh

plants dry, remove
cellulose signal

Accurate, accounts for
all parts of plants, used
for ground truthing of

other methods

Destructive,
time-consuming, poor

temporal resolution, one
sample may not
represent field

Linear relationship can be
used to correct for

vegetation, 1% decrease in
N0 per mm BWE added

[26]

Remote
Sensing

Satellite
measurements taken
to estimate biomass

Generally inexpensive,
easily measured,

large-scale coverage,
non-destructive

Poor spatial and temporal
resolution, atmospheric
interference, complex

analysis, lack of ground
validation

No direct values reported,
many studies discuss

potential for an fb
[32–35]

Above-Ground
Biomass

Measurements of
AGB through several
methods (destructive,

allometric, etc.)

Accurate, reasonable
biomass estimates,

cost effective

Does not account for
belowground biomass,

labor-intensive, does not
capture field variability

One study uses [24]
correction, most studies

report linear N0 and AGB
relationship, no direct fb

values reported, but need
is addressed

[22,27,36–38]

Plant
Allometry

Uses easily measured
plant parts to

estimate biomass of
whole plant

Easy to measure and
allows predictive

power in
growing biomass

Does not capture biomass
variations and field

variability,
complex calculations

Biomass relationship listed
as linear in some studies

and non-linear in others, no
direct fb reported

[39–41]

Scaling

Linear scaling
approach used to

upscale soil moisture
measurements

Low cost, can be used
at different time

intervals (daily vs.
seasonal trend), easy to
upscale or downscale

Requires point water
measurements, needs N0
calibration, relies heavily

on z* and
vertical weighting

No fb reported, reported
that fast-growing biomass

(e.g., maize) adds ~7 mm of
BWE

[42]

Combination of
Methods

Uses at least two
methods listed above

Allows cross validation,
more comprehensive

study, and limits
measurement bias

Adds complexity,
requires more resources,

introduces potential
error sources

0.9% per kg/m2 of dry AGB
or per 2 kg/m2 of BWE [22],
Other studies report an fb is
needed, but do not quantify

[20,24,43]

Vegetation measurements can be performed in several ways (Table 1). Relatively few
studies [22,26,28,43] have utilized direct biomass water equivalent (BWE) measurements,
as it requires destructive sampling, which is time- and labor-intensive. BWE is defined
as the amount of water in biomass tissues [22], which can be expressed as an equivalent
depth of water (mm). Rather than treating biomass as above-ground biomass (AGB) or
below-ground biomass, BWE uses measurements of standing wet biomass and standing dry
biomass to determine the water content of the plants. Measurements of BWE are practical
in row crops but impractical for forests. Alternatively, forestry studies have used allometric
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relationships [44], like stand density and base diameter, to estimate dry biomass in an area.
However, this ignores any internal water content variations within the canopy.

Row crops and forests differ in standing wet biomass, BWE, and fb (see conceptual
Figure 2). The vegetation correction factors proposed have primarily been determined in
forest environments [24]. However, the growing period of a forest stand is much longer
than that of maize or soybeans (Figure 2). This means that while forests eventually have
more wet biomass and BWE than crops, this trait can take several years to develop, with
small inter-annual variations. Conversely, the peaks of crop biomass and BWE are smaller
than forests, and inter-annual variations are large (Figure 2). Forest wet biomass reaches a
large, sustained value, while crops have smaller (nearly 25% the amount in this example),
sharp peaks. With respect to internal water content, both row crops and forests follow a
seasonal pattern, but forests are presumed to have a much lower amplitude [22,25]. Much
of the water stays in the forest year round, as only leaves are lost, and the stem dries slightly.
Crops reach senescence in the fall and lose most of their water content prior to harvest
(typical harvest for maize and soybeans is at 25% or less). After harvest, the only water
content remaining in the crops is in the roots and shoots, which desiccate until the next
growing season.
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the crop water content begins high and drops at senescence after reaching maturity. This figure was 

Figure 2. Conceptual figure capturing the annual changes in vegetation wet biomass (kg m−2),
vegetation internal water content (%), BWE (mm), and the vegetation neutron correction factor (fb).
The two types of biomass presented are a maize–soybean rotation and a forested environment. Note
that the crop water content begins high and drops at senescence after reaching maturity. This figure
was created using realistic values of wet biomass, water content, and BWE for both the maize–soybean
rotation and forest environments. These values are only hypothetical, as this is a conceptual figure
for demonstration purposes.

Long-term validation studies of the fb correction factor in forest and agricultural
ecosystems are limited. The lack of an accepted fb correction factor may cause systematic
error in CRNS SWC observations. A long-term study was performed in eastern Nebraska
with three field sites in a maize–soybean rotation. The study’s goal was to investigate if the
change in epithermal neutron intensity with BWE was linear and if the slope was consistent
among years and between crops. Additionally, we assessed if a sparse network of time
domain reflectometry (TDR) sensors was viable to quantify changes in neutron intensity
with BWE as opposed to using intensive soil sampling campaigns.

2. Materials and Methods
2.1. Study Area

Located approximately 10 km south of Mead, Nebraska, USA, the Eastern Nebraska
Research, Extension, and Education Center (ENREEC) has over 3500 hectares of research
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and operational crop and livestock facilities. This study utilized three field locations,
identified as CSP1, CSP2, and CSP3 (CSP stands for Carbon Sequestration Project and
is the naming format used to identify fields at ENREEC. In the Ameriflux identification
system, these fields are known as US-Ne1, US-Ne2, and US-Ne3.). CSP1 and CSP2 have
had CRS-2000/B sensors active since 2019, while CSP3 has had a CRS-1000/B active since
2011 (Figure 3). The key differences between the CRS-1000/B and CRS-2000/B are the
gas volumes and pressures. The CRS-1000/B has a gas volume of ~18 L and a pressure
of 0.6 atm, and the CRS-2000/B has a gas volume of ~36 L and a pressure of 0.6 atm.
Due to these factors, the CRS-2000/B counts approximately twice as many neutrons as
the CRS-1000/B. Greater count rates lower the uncertainty of measured values. These
sensors were initially installed as part of the COsmic-ray Soil Moisture Observing System
(COSMOS) project [15]. The soil is primarily clay loams, where water is easily retained
with a low hydraulic conductivity [45]. The study fields are also part of the Ameriflux and
Long-term Agricultural Research networks [46–48].
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Figure 3. Locations of CRNS and profiles of in-situ soil water content (SWC) time domain reflectome-
try (TDR) sensors in this study for sites CSP1, CSP2, and CSP3. TDR sensor depths were 10, 25, 50,
and 100 cm for all sites and 175 cm for CSP3 only. Field sites CSP1 and CSP2 had three profiles, and
CSP3 had four. TDR sensors are denoted with location markers and their associated IMZ number
(The IMZ numbers used are abbreviations of the Ameriflux network sensor names. In CSP1, IMZ4 is
labeled SWC_F_1, IMZ5 is SWC_F_2, and IMZ6 is SWC_F_3. In CSP2, IMZ2 is SWC_F_1, IMZ5 is
SWC_F_2, and IMZ6 is SWC_F_3. In CSP3, IMZ1 is SWC_F_1, IMZ2 is SWC_F_2, IMZ3 is SWC_F_3,
and IMZ5 is SWC_F_4.), while CRNS sensors are denoted with thumbtacks. Gray markers show the
IMZs where only vegetation samples were collected and no TDR sensors were present.

At site CSP1, maize was grown in 2019, 2020, 2021, and 2023, whereas soybean was
grown in 2022. At sites CSP2 and CSP3, maize and soybean were rotated annually, with
maize sown in odd years. All three sites were no-till, and all plant residues were left in
place for soil cover. CSP1 and CSP2 were irrigated by overhead sprinkler center pivots, and
CSP3 was rainfed. The driest year in the study was 2020, with 306 mm of precipitation from
1 April to 15 November, while the wettest year was 2015, with 781 mm of precipitation in
the same time frame. Generally, most irrigation to CSP1 and CSP2 occurred in July and
August. The largest quantity of irrigation water applied to both CSP1 and CSP2 occurred in
2022, with CSP1 having 299 mm and CSP2 having 251 mm applied. The smallest irrigation
quantity for CSP1 was in 2019, with 130 mm applied, and for CSP2 was in 2021, with
88 mm applied.

The yearly study period was generally from 1 April to 15 November, depending on
the CRNS installation date and data availability. The period included plant pre-emergence
and post-harvest conditions to allow for bare soil neutron count estimates. The CRNSs at
CSP1 and CSP2 were installed on 31 May 2019 and at CSP3 was installed on 20 April 2011.
In 2023, TDR data were available through 8 November. This analysis includes only the
April to November period to minimize the effects of snow on CRNS data and potentially
frozen soil conditions, which affect TDR measurements. Data were collected during the
winter period but are not included in this analysis.
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2.2. Description of SWC Datasets

CRNS calibration (see Equation (2)) requires independent measurements of SWC
averaged across the footprint [9,15,18]. Each ENREEC field had at least three TDR sensor
profiles at multiple depths, which collected hourly SWC. CSP1 and CSP2 each had three
TDR sensor profiles, while CSP3 had four. The TDR sensors were installed as part of the
Long-Term Agricultural Research network and Ameriflux projects, but they were not for
direct use in this study. For this reason, the TDR sensors were installed at depths to meet
the goal of those projects, which did not necessarily align with the goals of this study. We
consider this a sparse TDR network for use with CRNS data analysis due to the spatial
heterogeneity within the ~20 ha CRNS footprint (see [15,49,50] for more discussion). The
TDR sensors were installed at depths of 10, 25, 50, and 100 cm for all fields and an additional
depth of 175 cm for CSP3 only. For comparison with CRNS, the depths of most influence
are 10 and 25 cm. Given the sparse data, we assumed a simple weighting of 75% for the
10 cm depth and 25% for the 25 cm depth in the analysis. The vertical weighted average
for each location was then averaged across all locations. The 75% and 25% weights were
deemed a reasonable and simplistic estimate to capture the increased influence the upper
depth contributes to the neutron signal following Zreda et al. [9], Franz et al. [49], and
Schrön et al. [11]. Neutron contribution to the CRNS varied with depth and water content.
All fields generally had an SWC of 20% or greater, and with this water content, the CRNS
had minimal influence at depths below 25 cm, so these deeper sensors were not included
in the depth weighting [9,11,49]. A more rigorous weighting analysis following Schrön
et al. [11] will be used for the more comprehensive SWC data from the 2023 gravimetric field
campaigns. CSP1 and CSP2 had eight gravimetric sampling campaigns, while CSP3 had
nine. The sampling pattern followed that proposed by Schrön et al. [11], with data collected
at 19 locations (one at CRNS and 18 at radii of 10, 50, and 125 m every 60 degrees) and
every 5 cm down to 30 cm. The gravimetric results were weighted vertically in three ways:
simple arithmetic, the TDR weighting using 75% and 25% for the 10 and 25 cm depths,
and the weighting method proposed by Schrön et al. [11]. Recently, Schrön et al.’s [11]
weighting method has been proposed as the most accurate weighting method, accounting
for both radial distance and depth of neutron influence. This study used the 10 and 25 cm
weightings to directly compare TDR measurements and arithmetic average weighting to a
prior study in this same field [22].

2.3. Description of CRNS Data

Hourly raw moderated neutron counts (N′) were collected for each CRNS. The raw
counts were first filtered to eliminate extraneous values based on expected count rate
minimums and maximums for each site. Next, standard correction factors for varia-
tions in pressure (fp), air humidity (fv), and neutron intensity (fi) were applied following
Zreda et al. [15]:

Npvi = N′ ∗ fp ∗ fv ∗ fi (1)

Next, a Savitsky–Golay filter was applied to the corrected neutron count data (Npvi)
following Franz et al. [51]. To convert corrected neutron counts to SWC, the modified
Desilets et al. [18] equation was used:(

θp + θLW + θSOCeq

)
=

0.0808
Npvi

N0[ f (BWE)]
− 0.372

− 0.115 (2)

where θp is the pore water content (g g−1), θLW is the lattice water content (g g−1), θSOCeq

is the soil organic carbon water content equivalent (g g−1), Npvi is the corrected neutron
counts (counts per hour, cph), and N0 is the instrument-specific count rate for dry silica
soil (cph). We note that N0 is a function of the vegetation biomass water equivalent (BWE)
present in the detector’s support volume [22,24,26]. Lastly, the volumetric SWC can be
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found by multiplying the pore water content by ρs/ρw, where ρs is the dry soil bulk density
(g cm−3), and ρw is the density of water (assumed to be 1 g cm−3).

Laboratory studies determined θLW and θSOCeq , while ρb was determined by gravi-
metric sampling in 2011 and 2023 (Table 2). Both years of gravimetric sampling yielded
similar values. θLW and θSOCeq were determined by gathering an ~100 gm aggregate soil
sample from each location (~5 gm each) for each field at depths of 0–10 cm, 10–20 cm, and
20–30 cm. The samples from each field were air-dried and sent to Activation Laboratories
Ltd. in Canada, where infrared spectroscopy (IR absorption) was utilized to determine
θSOCeq , and θLW was determined by thermal decomposition in a resistance furnace followed
by IR absorption. Given the proximity of the fields and similar results, the average value of
the three fields was used in the data processing. The detection limits in determining θLW
and θSOCeq were 0.5% and 0.1% by mass, respectively. One item of note was the increase
in θSOCeq between 2014 and 2023. A possible explanation for this was crop litter, which
will be further discussed. Another factor that may have influenced this was a change
in sampling methodology between 2014 and 2023. In 2014, total carbon and CO2 were
measured, and the organic carbon was calculated using stoichiometry. In 2023, organic
carbon was measured as well.

Table 2. Laboratory and sampling results for θLW (g g−1), θSOCeq (g g−1), and bulk density (ρb)
(g cm−3) utilized in Equations (2) and (4). Note that CSP3 was sampled in 2011 and 2023. Shown
with the ρb values are 95% confidence intervals, which were calculated using the standard deviations.

2023 CSP1 2023 CSP2 2023 CSP3 2011 CSP3 Value Used

θLW 0.055 0.059 0.06 0.0375 0.058
θSOC 0.0113 0.0067 0.0097 0.006 0.0092

ρb 1.40 ± 0.25 1.42 ± 0.17 1.43 ± 0.38 1.42 ± 0.17 1.42

2.4. Biomass Water Equivalent Measurements

At each field site, destructive vegetation measurements were taken approximately
every 10–12 days during the growing season (13 years for CSP3, five years for CSP1 and
CSP2). These measurements capture changes in biomass throughout the year and over
the various growth stages of maize and soybeans. For each sample date and field, three
complete plants (above ground only) were removed from 6 intensive management zone
(IMZ) locations. These IMZs were 10 m × 10 m areas surrounding the markers in Figure 3.
Only 3 or 4 of the 6 IMZs had associated TDR sensors with them, which are shown in
Figure 3. The plants were immediately weighed and then dried for five days at 70 ◦C. This
methodology provided standing wet biomass (SWB, kg m−2) and standing dry biomass
(SDB, kg m−2). BWE (kg m−2) was then be calculated as:

BWE = SWB − SDB + SDB ∗ fWE (3)

where fwe = 0.494, accounting for the water equivalence in the cellulose [26,40]. Note that
BWE can be expressed in depth of water (kg m−2~mm). This was done to avoid confusion
with the biomass measure of above-ground biomass (AGB), which was used to determine
a biomass correction factor for CRNS in prior studies. The Supplemental Materials contain
figures for biomass growth from all sites and all years. Linear interpolation was used
between measurement dates to obtain a daily BWE value. The maize and soybean crops
follow the same general trend, with low amounts of BWE at the beginning of the year as
the plants emerge, followed by a rapid increase in biomass until a peak is reached. After
this peak, the plants rapidly dry out until harvest at around 25% water content. The BWE
maximum for soybeans is generally 3–4 mm and 7–8 mm for maize.

At the end of each season, the crop grown that year is harvested. The soil surface
is not cleaned, so a small litter layer of plant matter remains on the surface. In the years
that maize was grown, there was approximately 50 cm tall stover left over on the ground
surface. This stover was very dry, and it was estimated that this stover contained 0.5 mm
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or less BWE. In the years when soybeans were grown, the plants were harvested very close
to the ground, so most of the previous years’ stover was removed as well. Any litter that
remained was likely blown away or desiccated over the winter season. Some litter may
have remained and become incorporated into the soil as soil organic carbon (θSOCeq ), which
may account for the slight increase in θSOCeq in CSP3 between 2014 and 2023 (Table 2).

2.5. Statistical Analysis of BWE on Neutron Intensity

Daily N0 values were calculated using Equation (2) and the weighted TDR and gravi-
metric datasets. Linear regression was used to find a best-fit slope and intercept for the
relationship between N0 and BWE using Python’s NumPy and SciPy packages [52,53]. The
coefficient of determination (r2) and 95% confidence intervals were calculated for each
coefficient. The fitted slope and intercepts were compared between each year and field. As
discussed above, three different weighting schemes of the 2023 gravimetric data were used.
Due to different CRNS types, the comparison between fields could only be made using the
slope-to-intercept ratio. The slope-to-intercept ratio (η), also known as the neutron intensity
reduction coefficient, was first reported by Baatz et al. [24] and is a useful metric that
represents the relative percent decrease in neutron intensity per unit increase in biomass.

Baatz et al. [24] found η = 0.5% for BWE in a forest site, while Franz et al. [22,26] found
η = 1% for BWE in crops (see Table 1 above). Baatz et al. [24] suggested applying a biomass
correction factor (fb) to Equation (1):

Npvib = N′ ∗ fp ∗ fv ∗ fi ∗ fb (4)

where
fb =

1
1 − η ∗ BWE

(5)

Here, fb is the residual information comparing Npvi vs. Nestimate, where Nestimate can
be found using the gravimetric or TDR SWC data, BWE, and Equation (2). To calculate
Nestimate, an N0 value is also necessary, which is the average intercept of the N0 vs. BWE
relationship. We note this N0 is where BWE = 0 and will be denoted as N0,BWE=0. Figure 4
shows an overall workflow of these calculations.

Sensors 2024, 24, x FOR PEER REVIEW 9 of 28 
 

 

 
Figure 4. Flow diagram of calculations used in this study. Note that η is only a result of plotting N0 
vs. BWE and is not used in Desilets et al.’s equation in the next step. 

3. Results 
3.1. Overview of SWC, BWE, and CRNS at Study Sites 

Figure 5a presents measured Npvi, N0, and BWE values for CSP1 in 2023. The plot il-
lustrates that Npvi and N0 followed similar general patterns, as peaks have nearly the same 
timing and shape, and only the amplitude varies, with more subdued peaks for Npvi val-
ues. The amplitude variations exist because the N0 values account for the pore water con-
tent, lattice water content, soil organic carbon, and fixed parameters, while Npvi does not. 
This similarity in shape is anticipated, as N0 is calculated using the modified Desilets et al. 
equation (Equation (2)) using Npvi as an input value. Most notably, N0 was not constant but 
had a pronounced dip in the summer months, corresponding to the peak BWE at the site. 
This BWE impact does not noticeably manifest in Npvi plots. N0 is a calibration parameter 
that includes the effects of BWE; other unaccounted hydrogen pools; or potentially 
over/under neutron intensity correction factor effects due to fp, fi, and fv. Figure 5b illus-
trates the precipitation, irrigation, and TDR SWC content. As expected, when there was 
limited precipitation, SWC decreased, as shown by low TDR time series peaks. If 

Figure 4. Flow diagram of calculations used in this study. Note that η is only a result of plotting N0

vs. BWE and is not used in Desilets et al.’s equation in the next step.



Sensors 2024, 24, 4094 9 of 25

3. Results
3.1. Overview of SWC, BWE, and CRNS at Study Sites

Figure 5a presents measured Npvi, N0, and BWE values for CSP1 in 2023. The plot
illustrates that Npvi and N0 followed similar general patterns, as peaks have nearly the
same timing and shape, and only the amplitude varies, with more subdued peaks for
Npvi values. The amplitude variations exist because the N0 values account for the pore
water content, lattice water content, soil organic carbon, and fixed parameters, while Npvi
does not. This similarity in shape is anticipated, as N0 is calculated using the modified
Desilets et al. equation (Equation (2)) using Npvi as an input value. Most notably, N0
was not constant but had a pronounced dip in the summer months, corresponding to the
peak BWE at the site. This BWE impact does not noticeably manifest in Npvi plots. N0 is a
calibration parameter that includes the effects of BWE; other unaccounted hydrogen pools;
or potentially over/under neutron intensity correction factor effects due to fp, fi, and fv.
Figure 5b illustrates the precipitation, irrigation, and TDR SWC content. As expected, when
there was limited precipitation, SWC decreased, as shown by low TDR time series peaks.
If precipitation increased or irrigation was applied, SWC increased. When TDR values
reached a low point, especially for a sustained period, irrigation was applied to increase
SWC values and maintain crop production at this site.
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Figure 5. (a) Plot of Npvi, N0, BWE time series. (b) A bar chart of the irrigation and precipitation (mm)
at site CSP1 in 2023 and the corresponding SWC time series. The same plots for all other years and
fields can be found in the Supplementary Materials. The TDR values were weighted with the 10 cm
sensor having 75% contribution and the 25 cm sensor having 25% contribution. The averaged values
of all TDR sensors in the field were used to plot the line.

3.2. Influence of BWE on Neutron Intensity

Ideally, with all correction factors applied in Equation (1), N0 should be constant over
time. A clear relationship existed between the N0 and BWE time series for CSP1 in 2023
using TDR data and Equation (4) (Figure 6). The relationship between N0 and BWE was
generally consistent across all sites and years (Supplementary Materials).
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Figure 6. (a) Time series of N0 using TDR in Equation (4). Error bars represent the 95% confidence
interval. For N0, the uncertainty from the TDR was propagated through Equation (4). (b) The corre-
sponding BWE for CSP1 in 2023. The uncertainty for BWE was calculated from the six replicate plots
across the field on each sample date. The BWE uncertainties were calculated using standard errors.

N0 was not constant in time and contained considerable noise given the limited
number of TDR sensors used to estimate N0 (Figure 6a). There was a shift in June, which
was likely due to a sensor error, which was then repaired. In the middle of the growing
season (May through August), there was a significant decrease in N0. After this low point,
N0 increased again from August through November. This time frame for alterations in
neutron counts is significant, as from May to August, crops are actively growing and
increasing in wet biomass and BWE. Biomass starts low as plants are beginning to emerge
(Figure 6b). This is followed by a rapid increase in BWE as the plant grows, primarily in wet
biomass, until senescence begins in August. During senescence, the plants maintain their
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dry biomass but lose most wet biomass, shown by a decrease in BWE. After harvest, BWE
remains higher than zero to account for the plant debris, like corn stover, on the surface.
Most of this debris degrades over the winter and is completely removed with soybean
harvests the following year. The low point in the N0 plot coincides with the highest point
in BWE. This leads to the inference that increased BWE decreased neutron counts and N0
(Figure 7).
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Figure 7. Scatterplot of N0 vs. BWE for CSP1 for 2023. This plot presents the slope and intercept values
with their corresponding 95% confidence intervals, p-values, and the coefficient of determination for
the relationship. Residual values are likely caused by noise in TDR measurements and their spatial
averaging with a small number of sensors.

Figure 7 shows a scatter plot and statistical summary of the correlation between N0
and BWE. Additional plots for all fields and years can be found in the Supplementary
Materials. This plot shows a clear linear relationship between N0 and BWE using both the
gravimetric and TDR data for all fields and all years (Figure 8).

In addition to using the TDR data, Figure 8 shows the results using the gravimetric
data from 2023 and the three different weighting schemes. The key differences between
using TDR data and gravimetric data are the accuracy and uncertainty. Gravimetric data
are considered the most accurate SWC measurement method, but they are difficult to
collect, which is why this study only has eight or nine gravimetric SWC measurements
per field. TDR data were collected hourly and then averaged to daily values, meaning one
data observation per day. Over the course of the growing season, this was 228 observations.
The gravimetric data are considered a more accurate SWC estimate, but the values have
more uncertainty due to the small number of observations compared to TDR data. The
weighting schemes had some influence on the intercept value (shifting it up and down) but
had minimal influence on the slope of gravimetric values. For the slope, all gravimetric
slopes fell within each other’s confidence intervals, which is shown below in Table 3. The
TDR slope and intercept values varied from the gravimetric values, which is shown below.
For CSP1, the highest r2 was found for the 2023 Schrön et al. weighted gravimetric data at
0.81, and the lowest was the average of all TDR data at 0.41. For CSP2, the largest r2 value
was 0.88 for the 2023 arithmetic gravimetric data, and the lowest was 0.38 for the TDR data.
Finally, for CSP3, the highest r2 value was 0.38 for the arithmetic-weighted gravimetric
data, and the lowest was 0.05 for the average of all TDR data. Except for the CSP3 TDR
data, all r2 values were high (>0.3). The exception was CSP3 using TDR, likely due to a
positive slope in one year (2020) and relatively low negative slopes in other years. We also



Sensors 2024, 24, 4094 12 of 25

found that year-to-year variation between each field’s N0 and BWE slope and intercept
existed (Figure 9).

Sensors 2024, 24, x FOR PEER REVIEW 13 of 28 
 

 

 
Figure 8. Relationship between N0 and BWE for all sites and all years using the TDR and gravimetric 
samples using the three weighting schemes. (a) CSP1, (b) CSP2, and (c) CSP3. 

In addition to using the TDR data, Figure 8 shows the results using the gravimetric 
data from 2023 and the three different weighting schemes. The key differences between 
using TDR data and gravimetric data are the accuracy and uncertainty. Gravimetric data 
are considered the most accurate SWC measurement method, but they are difficult to col-
lect, which is why this study only has eight or nine gravimetric SWC measurements per 
field. TDR data were collected hourly and then averaged to daily values, meaning one 
data observation per day. Over the course of the growing season, this was 228 

Figure 8. Relationship between N0 and BWE for all sites and all years using the TDR and gravimetric
samples using the three weighting schemes. (a) CSP1, (b) CSP2, and (c) CSP3.
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Table 3. Summary of slope, intercept, η for TDR, and 2023 gravimetric data by year and site. The
error presented represents the 95% confidence intervals. Please note that 2020 in CSP3 is not included
in the TDR averages.

Year CSP1
Intercept

CSP1
Slope

CSP2
Intercept

CSP2
Slope

CSP3
Intercept

CSP3
Slope

CSP1
η

CSP2
η

CSP3
η

2023 Grav.
Arithmetic 2863.69 ± 79.0 −27.84 ± 16.1 2951.22 ± 88.5 −48.89 ± 18.4 1601.43 ± 27.6 −8.18 ± 9.3 −0.97 −1.66 −0.51

2023 Grav.
Schrön et al. 2767.93 ± 86.5 −36.22 ± 17.7 2864.75 ± 102.7 −49.36 ± 21.4 1542.57 ± 44.1 −11.7 ± 44.1 −1.31 −1.72 −0.76

2023 Grav.
10, 25 cm Wt. 2858.27 ± 80.4 −29.32 ± 16.4 2946.61 ± 94.6 −50.99 ± 19.7 1602.54 ± 34.8 −8.88 ± 11.7 −1.03 −1.73 −0.55

2023 2793.91 ± 9.9 −22.98 ± 2.6 2864.39 ± 11.8 −35.37 ± 3.1 1611.11 ± 7.0 −18.85 ± 2.8 −0.82 −1.23 −1.17
2022 2918.41 ± 9.7 −40.84 ± 5.7 2957.0 ± 9.6 −67.36 ± 7.2 1644.22 ± 7.0 −11.95 ± 8.1 −1.40 −2.28 −0.73
2021 2920.98 ± 11.9 −13.28 ± 3.4 3044.36 ± 13.5 −24.99 ± 3.9 1663.1 ± 7.5 −7.91 ± 2.4 −0.45 −0.82 −0.48
2020 2931.95 ± 9.8 −30.81 ± 2.7 2935.68 ± 10.5 −30.98 ± 6.4 1688.51 ± 14.3 28.64 ± 15.3 −1.05 −1.06 1.70
2019 2888.29 ± 14.1 −27.27 ± 3.4 2935.06 ± 14.7 −34.32 ± 3.5 1661.97 ± 6.7 −9.12 ± 2.6 −0.94 −1.17 −0.55
2018 1627.93 ± 7.2 −17.5 ± 4.0 −1.07
2017 1667.4 ± 8.0 −11.79 ± 2.6 −0.71
2016 1651.59 ± 5.7 −21.61 ± 3.8 −1.31
2015 1584.47 ± 8.1 −2.11 ± 3.0 −0.13
2014 1583.61 ± 7.4 −21.05 ± 7.6 −1.33
2013 1556.41 ± 5.1 −4.67 ± 1.9 −0.30
2012 1574.7 ± 6.7 −12.04 ± 8.6 −0.76
2011 1542.13 ± 7.6 −12.16 ± 3.0 −0.79

TDR Avg. 2890.7 ± 11.1 −27.0 ± 3.5 2947.3 ± 12.0 −38.6 ± 4.8 1614.1 ± 7.0 −12.6 ± 4.2 −0.9 ± 0.3 −1.3 ± 0.4 −0.59 ± 0.4

In general, the slopes and intercepts were consistent, but there was a notable exception
for CSP3 in 2020 (Figure 9f). This was likely due to a malfunction in the CRNS sensor.
We note the battery was intermittent over the spring/summer period due to COVID-19
restrictions preventing routine maintenance and inspection. The battery was finally able to
be replaced in July 2020. We note that CSP1 and CSP2 did not have the same problems for
this period. For the remaining analyses, we excluded CSP3 2020 data as an outlier.

The reported slopes represent the change in N0 with BWE. The slopes of CSP1 ranged
from −36.22 to −13.28, with an average TDR value of −27.0 and an average of all three
2023 gravimetric weighting methods of −31.1. For CSP2, the slopes ranged from −67.36
to −24.99, with an average TDR value of −38.6 and an average 2023 gravimetric value of
−49.7. For CSP3, the slopes ranged from −2.11 to −21.61, with a TDR average of −12.6
and a 2023 gravimetric value of −9.6. Within all three fields, the confidence intervals
overlapped between several years, indicating they fall within one another’s error ranges
(please see Figure 9 to view confidence intervals). Most TDR slope values within each
field were within the 10% error of the average slope value for CSP1 and CSP2. This same
consistency likely was not seen in CSP3 due to more variability in measurements. We note
that while slope values may not be directly comparable between each field, the similarities
can be easily seen in the multiyear plots (Figure 8). Additional information on the slope
and intercept values and their statistical relationship between years can be found in the
Supplementary Materials.

The intercepts were mostly consistent. The intercept values for CSP1 ranged from
2793.91 cph to 2931.95 cph, with a TDR average of 2890.7 cph and a gravimetric average
of 2830 cph. For CSP2, the lowest value was 2864.39 cph, the highest was 3044.36 cph, the
TDR average was 2947.3 cph, and the gravimetric average was 2920.86 cph. For CSP3, the
lowest value was 1542.13 cph, the highest value was 1688.51 cph, the TDR average was
1614.1 cph, and the gravimetric average was 1582.18 cph. All values were similar between
fields CSP1 and CSP2. CSP3 had larger variability due to the lower count rates of the
CRS-1000/B sensor. Looking within each field, year-to-year intercept values aligned well.
The confidence intervals overlapped for many years presented (Figure 9). All within-field
intercept values were within 200 counts, which is within the 5% error range of the average
TDR value. For CSP1 and CSP2, there was a significant decrease in intercept values in
2023. For CSP3, there seemed to be a systematic shift to higher intercept values from 2016
to 2023. To the authors’ knowledge, there is no clear physical explanation for this shift.
One potential source of this change was an increase in soil organic carbon; however, as
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previously mentioned, most of this was removed every two years. While this was within
the range of the overall average, this area deserves additional investigation. The relative
magnitude of the error bars for gravimetrically determined SWC was large due to fewer
gravimetric observations collected over the season as compared to the number of TDR
SWC measurements (~8/9 for gravimetric and 228 for TDR) (Figure 9).
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Table 3 summarizes the ratio of slope to intercept, η, which defines the percent change
in N0 with BWE. The key finding in Table 3 is that while there were small variations between
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the slopes and intercepts of gravimetric weighting methods, and there was interannual
variability in TDR slopes and intercepts, the value of η remained similar within each field.
Between CSP3 and the other two fields, there were differences, but within each field, the
values were consistent. The minimum value for CSP1 was −1.4, the maximum was −0.45,
the average TDR value was −0.9, and the average gravimetric for the three weighting
schemes was −1.10. The minimum value for CSP2 was −2.28, the maximum value was
−0.82, the average TDR value was −1.3, and the average of the three gravimetric schemes
was −1.70. For CSP3, the minimum value was −1.31, the maximum value was −0.13
(excluding 2020), the average TDR value was −0.59, and the average gravimetric value
of the three weighting schemes was −0.61. The η values for CSP3 were approximately
half the η values of the other two fields. Again, note that CSP3 had a different detector
with half the counting rate of CSP1 and 2, meaning larger uncertainties in the count rates.
Also, only five years are available for CSP1 and CSP2 compared to 13 years for CSP3. With
small sample sizes, the 95% confidence interval will be larger and subject to extreme values.
Most notably, CSP2 in 2022 was lower, thus influencing the overall average. Despite the
uncertainty in η, it was generally consistent year to year. There were no obvious variations
between maize and soybean years.

3.3. TDR vs. Gravimetric Sampling

The results presented above illustrate the similarity between gravimetric data and TDR
data for detecting the influence of BWE on neutron intensity at the seasonal timescale. With
an intense year of gravimetric data collection and TDR data, this study provides a unique
opportunity to compare two common SWC estimation techniques. A direct comparison of
2023 gravimetric data by various weighting methods with 2023 TDR data was performed
(Figure 10).
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Figure 10 illustrates the variation in the slope and intercept using the TDR and three
different weighting methods for the gravimetric data. The arithmetic average method
assumes that all points in the sampling radius have equal contribution to the CRNS signal.
Based on knowledge of CRNS footprints, points further away and deeper samples will
have a lower contribution to the detector. The Schrön et al. weighting method is the most
comprehensive, but we did not find substantial improvement in the fitting of N0 vs. BWE.
This figure reflects the same variations in slope and intercept as seen in Figure 9. The
intercept shifted upward or downward depending on the gravimetric weighting strategy
employed, with the gravimetric and 10 and 25 cm weighting having very similar intercepts.
The slope was consistently negative, with all gravimetric confidence intervals overlapping
(see Table 3). One possible explanation for differences between TDR and gravimetric values
is that the gravimetric data captured the upper soil depths (above 10 cm), while the TDR
sensors did not capture this range, where SWC is the most variable.

3.4. Proposed Biomass Correction Factor, fb
Per the data shown above, there was a linear relationship between N0 and BWE,

allowing for a simple correction factor, fb, to be proposed. Using Equation (2), we can solve
for Npvi, which we refer to as Nestimate. This required using an SWC dataset (either from
TDR or gravimetric sampling) and an estimate of N0. For N0, we used the best-fit intercept
values (i.e., N0,BWE=0) provided in Table 3. The lattice water and soil organic carbon values
remained the same for all sites at 0.058 m3 m−3 and 0.0092 m3 m−3, respectively. The
Nestimate values were then compared to the detector-measured Npvi values. Differences
in the Npvi vs. Nestimate were most influenced by additional hydrogen pools in the CRNS
support volume, here being the crop BWE. The residual values between Npvi and Nestimate
(fb) values were plotted against BWE (Figure 11) along with Baatz et al.’s [24] correction
factor. Baatz et al. [24] proposed a BWE vegetation correction factor (fb) of 0.5% neutron
reduction per kg of BWE.

The data presented here illustrate that the slope of the line is positive, corresponding
to Baatz et al., but with a larger magnitude than previously found (Figure 11). Table 4
contains a summary of all weighting schemes for each field. CSP1 and CSP2 showed larger
slopes for the gravimetric data as compared to the TDR values. CSP3 showed similar
results between the two, but with much greater uncertainty, as indicated by the reported
r2 values. We also note that the slope values for CSP3 were more in line with Baatz et al.
(0.005), whereas CSP1 and 2 were two to three times greater. One potential reason for the
agreement in CSP3 and the discrepancy between CSP1 and CSP2 could be sensor type.
Baatz et al.’s [24] study utilized a CRS-1000/B CRNS, similar to CSP3.
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Table 4. Values of fb (neutron intensity reduction) and the slope ratio for all gravimetric methods and
TDR measurements for all three sites. Sensor-specific, gravimetric, TDR, and overall averages are
also presented.

Field and Weighting Method Neutron Intensity Reduction
(% per mm BWE)

CSP1 Schrön et al. 1.309
CSP2 Schrön et al. 1.723
CSP3 Schrön et al. 0.758
CSP1 Arithmetic 0.972
CSP2 Arithmetic 1.639
CSP3 Arithmetic 0.511
CSP1 10, 25 cm 1.026
CSP2 10, 25 cm 1.730
CSP3 10, 25 cm 0.554

CSP1 TDR 0.903
CSP2 TDR 1.101
CSP3 TDR 0.583

CRS-2000/B Average 1.300 ± 0.24
CRS-1000/B Average 0.602 ± 0.11
Gravimetric Average 1.136 ± 0.32

TDR Average 0.862 ± 0.30

Overall Average 1.067 ± 0.25

Table 4 indicates that regardless of the gravimetric weighing method used, the fb
determined here is larger than the original Baatz et al. correction factor. We note that the
Schrön et al. weighting method performed the worst. One explanation is that Baatz et al.’s
factor was released in 2015, two years before the Schrön et al. weighting method was
published. The TDR, arithmetic, and 10 cm and 25 cm weighting of gravimetric samples
behaved similarly for fb. This is interesting, as the arithmetic average included samples
from the upper 10 cm of soil, while the 10 cm weighting, 25 cm weighting, and TDR did
not. This upper layer of soil (0–10 cm) contributed the most signal to the neutron count and
experienced the most variation in SWC. However, the lack of samples in the top 10 cm did
not greatly impact the overall fits reported in Table 4.

4. Discussion
4.1. Relationship between N0 and BWE

By plotting N0 vs. BWE (Figures 7 and 8), it is clear that a linear relationship exists
between these variables, affirming the findings by Franz et al. [26], Tian et al. [28], Jakobi
et al. [29], Heistermann et al. [27], and Jakobi et al. [43]. The data presented in Figure 8
indicate that N0 can be accurately represented by variations in BWE using a linear model,
and a simple fb correction factor can be used for row crops. Figure 9 also shows that there
was considerable noise and year-to-year variability, but there was consistency in estimated
slope and intercept values. The slope values for CSP1 and CSP2 were very similar, while
CSP3 differed slightly. One reason for this difference may be the different detector used
in CSP3. The CRS-1000/B counted half as many neutrons as the CRS-2000/B, resulting in
larger neutron count uncertainty. The lower count rates blurred the relationship between
N0 and BWE, as reflected in the lower r2 values. Ideally, the intercept of the fit should not
change year to year if all neutron correction factors and hydrogen pools are accounted for
properly. In prior studies, only a maximum of two years of data were reported, which
did not allow for a comprehensive understanding of how the intercept and slope values
may change from year to year. Given the consistency in results year to year, this indicates
the same correction factor can be used for soybeans and maize and likely other crops
with similar root-to-shoot ratios. However, we note that for crops that grow primarily
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below ground (i.e., potatoes, yams, cassava), additional studies or an updated sampling
methodology may be needed to determine the fb correction factor.

4.2. Sparse TDR Network vs. Gravimetric Sampling

The best r2 fit among the weighting methods and two types of SWC data changed
between each field (Figure 10). Ideally, one weighting method or sampling methodology
would present the highest coefficient of determination. This was not the case, as in CSP1,
the Schrön et al. weighted method best defined the relationship; in CSP2, the arithmetic
average best defined the relationship; and for CSP3, TDR best defined the relationship.
This result may have been impacted by when the samples were collected. For example, if
sampling occurred the day after irrigation or precipitation in one field versus another, or if
more days with high biomass samples were taken in the gravimetric sampling in one field
versus another, this may have altered relationships.

Due to the spatial locations and depths selected, the sparse TDR network likely
contains significant bias for representing the entire field and CRNS footprint. The TDR
sensors were selected based on the Ameriflux experiment and research objectives, not to
validate the CRNS methodology. As shown in Figure 3, many of the TDR sensors were near
one another within the field, which limited the spatial variability captured by the sensors.
The lack of spatial coverage within the field may have skewed the results to the measured
SWC conditions near the sensors and ignored the remainder of the field. However, the
most notable bias stemmed from the TDR sensors placed at 10 cm and 25 cm depths. Using
these depths meant that any wetting events, like irrigation or precipitation, occurring in
the top 10 cm may not have made it deep enough to be detected by the TDR sensor. It is
possible that much of the water in the upper layer would be intercepted by plant roots or
be involved in the evapotranspiration process. Variability in the top 10 cm would also be
much greater than the variability at deeper sensors.

With respect to CSP1 and CSP2, we found the TDR slope value was less steep than
the gravimetric slope values, while in CSP3, the TDR relationship was steeper. The timing
of the gravimetric sampling likely caused some of these differences. In CSP1 and CSP2,
two SWC data clouds were present, with a large gap in the middle BWE range. There
were sample points when there was a small BWE present, and there were points taken
when there was >5 mm BWE. For CSP3, the data were more continuous, with points
in the middle of the BWE spectrum. The data clouds resulted from the maize growth
pattern and sampling week pattern. The sampling dates operated in the following fashion:
week 1—CSP3, week 2—CSP1 and CSP2, week 3—CSP3, week 4—CSP1 and CSP2, and
so on. However, we note that sampling was affected in late June due to the application
of fertilizers and pesticides through the irrigation system, which did not allow entry into
the fields for 1–2 days. Maize grows rapidly during certain growth stages (from mid-June
to mid-July). Initially, the biomass increase is slow (May to June), followed by a rapid
increase in growth. From the destructive biomass samples collected, the growth stages
progressed exceptionally fast, starting in mid-June (from stage V8 to stage R6 over 97 days).
The maize grows at such a rate that this whole range of biomass is missed by missing one
week of sampling. This same effect was not as severe in the CSP3, as it was rainfed with
slower growth rates. CSP1 and CSP2 also applied chemigation and fertigation, encouraging
growth and minimizing hindrances to maize progression. This growth rate and missing
every other week of sampling means many growth stages were missed in the fast-growing
fields, while these stages can be seen in CSP3. Due to these reasons, two clusters of points
in CSP1 and CSP2 existed, resulting in the statistical fitting being influenced by the low and
high biomass values more than CSP3, which had better consistency between BWE values.
Overall, the linear relationship was still strong for CSP1 and 2. The use of the TDR sensors
and remote sensing could help fill in these sampling gaps.

Another factor altering the gravimetric values compared to the TDR values was the
number of data points. There were only eight gravimetric points for CSP1 and CSP2 and
nine for CSP3, with many more samples for the TDR network (>200). This means that every
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point in the gravimetric data had substantially more influence on the slope of the line and
the r2 of the relationship. For example, in CSP1, there was a very high point, making the
line steep. For CSP2, there were very high and very low points on the plot, making the
slope of the line much steeper. In CSP3, there were no severe high or severe low points, and
there were middle points, making the slope of the line flatter. The TDR data slope relies on
many points, and one extreme high or low point will not influence the line greatly.

Another goal of this study was to determine if a sparse TDR network can be used
as a reliable measurement of pore water content in the N0 equation (Equation (2)) in
determining the influence of BWE. At each site, there was only a maximum of four TDR
locations with five depths, whereas the gravimetric data better captured field variability.
From our results, we found that TDR did provide reliable data for seasonal averages.
Despite some differences in the slope and intercept, overall, the results were consistent, as
shown in Table 4. Taken together, the gravimetric and TDR values provide strong evidence
of the general influence of BWE changes on N0. Estimates of specific N0 values will be
somewhat influenced by which method or weighting scheme is used.

4.3. Vegetation Correction Factor

Developing the correction factor for biomass in row crops can overcome a critical
issue for implementing CRNS in agricultural contexts. As discussed earlier, there were
first- and second-order correction factors, fp, fi, and fv, for neutron intensity. We considered
the correction factor fb a second- or third-order correction factor, further improving CRNS
measurement accuracy. The values for η in the fb equation in this study ranged from 0.6 to
1.7%, with the middle at approximately 1%. The proposed correction factor for this study
is that for every mm of BWE, there was an ~1% reduction in neutron intensity. This was
determined by averaging all neutron intensity reduction values presented in this study. In
the form of the equation presented by Baatz et al. [24] and Heistermann et al. [54], the fb
equation can be written as seen in Equation (5). The average value of η from this study was
0.01067. With this value determined, the only input required in the equation is a value for
BWE. With further confirmation of η, the fb correction can be integrated into the overall
neutron correction equation as presented in Equation (4) above. Additional validation
studies will likely be required before this correction factor is fully integrated into the above
correction equation for other crops and forest systems.

Many prior studies have acknowledged the need for an fb correction value (Table 1).
However, the value of η in fb has only been directly quantified three times [24–26]. The
studies performed by Baatz et al. [24] and Vather et al. [25] agreed well with one another,
considering the type of biomass sampling that occurred in each study. Both studies were
performed in tree stands, primarily forested environments. However, Vather et al.’s [25] fb
agrees more closely with the value presented here than Baatz et al.’s value. Baatz et al.’s
study does not agree with the value presented here for row crops. The value presented
here agrees well with Franz et al.’s [26] study, which concluded that there is a 1% decrease
in N0 for every mm of BWE added. Franz et al.’s [26] study also occurred in a row crop
environment in Nebraska. This study and that of Franz et al. [26] both conclude that a row
crop η of 1% is suitable.

4.4. Variations in Sensor Type

Table 4 presents data regarding the two different sensor types used in this study. Recall
that CSP1 and CSP2 used the CRS-2000/B, while CSP3 used the CRS-1000/B. The difference
between these two sensors was primarily the volume of gas used and the difference in
neutron counts. The CRS-2000/B had approximately double the size and double the
neutron counts. Table 4 shows that the CRS-2000/B had a larger fb value than the CRS-
1000/B sensor. This value was nearly doubled for the CRS-1000/B sensor compared to
the CRS-2000/B sensor. Despite the difference in count rate and associated uncertainty
levels, it is not immediately clear to the authors why the slope ratios may vary by a factor
of 2. We do not believe this is due to the geometry of the CRNS detector design. Likewise,
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we do not think the result is due to the nature of vegetation in rainfed vs. irrigated areas,
although rainfed crops will develop more extensive below-ground biomass due to water
stress. We suggest further studies with the same detector with sufficient counting rates to
eliminate this confounding effect.

4.5. Limitations of Study and Future Directions

The neutron intensity reduction factor, η (% reduction per mm BWE), is the critical
metric for accounting for changes in vegetation. In the case of Baatz et al., η was 0.5%,
but for this study, all values were higher than that, with an average of ~1%. The first
potential reason for this difference is the place and time in which the studies occurred.
The data presented here are from a long-term study in a crop environment, whereas Baatz
et al. [24] conducted a 3-year study (with only 1 year of biomass measured) in a primarily
forest environment. Trees and row crops have different growth cycles and internal water
dynamics (Figure 2). BWE differs in quantity and degree of fluctuation for forests and row
crops. Forests have large quantities of water in their biomass, and thus a larger BWE, and
subtle seasonal fluctuations in water content. Conversely, row crops have smaller BWE
values but rapid, sharp seasonal peaks and vast changes in water content. These variations
create questions as to whether or not η and/or the fb equation may be different for forests
and row crops. Another important difference to consider between this study and Baatz
et al.’s [24] study is that while there were more CRNSs in the German forest, they only
measured one year of biomass where there was a deforestation experiment. This allowed
them to study the pre-cut environment, the environment immediately after cutting, and the
early regrowth of the tree stand. While this did capture an extreme difference in biomass, it
did not capture the same BWE variation in maize or soybeans.

Another key difference between row crop and forest environments is how their hydro-
gen pools are distributed in space. In crop environments, the hydrogen in BWE is assumed
to be dispersed as a layer of water on the surface, whereas forests have clusters of hydrogen
pools in their trunks. This difference in the location of hydrogen pools likely creates a
geometric effect. Franz et al. [40], Andreasen et al. [19,30,55], and Kohli et al. [56] explored
the influence of vegetation geometry on neutron transport simulations, which suggests that
clumpy vegetation has a reduced effect on neutron count intensity as compared to a layer
of vegetation with the same mass of hydrogen.

Another factor creating discrepancies between fb in this study and previous studies
is data uncertainty. With a sparse number of TDR measurements of SWC, there is a large
amount of variability when using it for CRNS studies. This variability propagates through
Equation (2) to create noise in the resultant Npvi value. This noise is most evident in the
analysis using the CRS-1000/B data.

An additional reason for the differences between Baatz et al.’s correction factor and this
study is that we combined all remaining hydrogen pools here. This included the presence
of other hydrogen pools in maize that cannot be easily accounted for. One key unaccounted
hydrogen pool is the amount of water present on the plant itself as interception storage.
Crops intercept water from fog, humidity, and rain, and this water settles on their surface.
This interception can be considerable in maize (~0.5–2 mm BWE), as evidenced by walking
through a field in the morning and becoming drenched. Given that there may be a strong
diurnal cycle of this interception and evaporation process, future studies using larger
neutron detectors may be able to quantify it directly. When the BWE in maize is at its peak
of 7 mm, a 0.5–2 mm addition of intercepted water may be significant and detectable within
the overall noise. By not considering this additional hydrogen pool and sampling occurring
primarily in the morning hours, the fb values reported in this study may have been larger
than those in past studies like that of Baatz et al. [24].

A final potential source of variation between Baatz et al.’s [24] study and this study is
that there are microclimate effects within the plants in row crops. Within the maize canopy,
there are extensive variations in the humidity and air temperature. The neutron sensors
may not capture the impacts of the microclimate, as the environmental sensors on the
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CRNSs are often placed above or outside the maize and soybean canopies. The proximity
of sensors to biomass may influence the neutron counts. The sensors closer to the biomass
may experience some of the microclimate effects, while the sensors further away do not
have this same influence. Microclimate effects can vary throughout the CRNS footprint,
and they cannot be easily measured or differentiated by the CRNS. Microclimate influences
may have caused the counts to be somewhat reduced but were not accounted for in the
correction factors.

It is possible that the fb proposed in this study overcorrects for BWE in row crops,
particularly due to the microclimate and unaccounted layers of water discussed above.
Overcorrecting for biomass would create new sources of error and should be avoided. With
the preliminary findings of Franz et al. [26], Vather et al. [25], and this long-term study, we
now have three studies that support a 1% reduction in neutron intensity per unit BWE. Both
the extensive gravimetric and TDR SWC datasets support a correction factor of around 1%
for the larger detector types and in irrigated crops. The data from the smaller detector type
(with significantly more noise) located in a rainfed crop supports a correction factor closer
to 0.5% per unit BWE, which aligns with other studies collected in forests. To accurately
determine if there is a difference between fb for crops and forests, a long-term study of fb in
forested environments may be necessary. We also suggest a study investigating the diurnal
cycle of intercepted water and microclimate variations in row crops. This would require a
large detector, which presents additional logistical factors for use in row crops.

5. Conclusions

This work contributes a greater understanding of vegetation’s influence on neutron
intensity measurements by providing a long-term study in three field sites in Eastern
Nebraska with two types of CRNS. The primary goal of this study was to confirm the need
for an fb factor and determine the neutron intensity reduction coefficient (η) for various
row crops. Neutron counts, biomass, and SWC measurements were used for up to 13 years
in a maize–soybean rotation to determine if a single η value can be used across all row
crops. The first key finding was that a linear relationship existed between N0 and BWE. It
was found that there was a 1% reduction in neutron intensity for every mm of BWE on the
surface (η = 0.01). Possible η values ranged from 0.6% to 1.7%. These values agreed with
two prior studies but doubled the commonly accepted η found for forest ecosystems. The
framework proposed here can be applied to forests, but destructive sampling of BWE is
challenging. The value of η for forests has been proposed to be ~0.5% by Baatz et al. [24],
but a long-term validation study is needed.

This work also found that η varied between the two detector types (CRS-1000/B
and 2000/B), potentially due to increased noise and below-ground biomass differences
between irrigated and rainfed crops. The η value was based on both continuous sparse TDR
networks and spatially exhaustive gravimetric surveys. The η determination in this study
was specific to this site in row crop fields in Nebraska. Future long-term studies should
be performed elsewhere to confirm these results, particularly in forest ecosystems or in
cropping systems with significantly more below-ground biomass (i.e., sugar beets, potatoes,
cassava, etc.). For forest systems, this would require methods to measure biomass through
other metrics, as BWE and other destructive sampling techniques are not practical. The
CRNS community continues to propose, test, and refine an acceptable vegetation correction
factor. This study advances our understanding of row crops and will help push the CRNS
community toward an acceptable framework to further improve the accuracy of CRNS
SWC monitoring.

Supplementary Materials: Supporting information can be downloaded at https://github.com/
tanessamorris/Effect-of-biomass-water-dynamics-in-cosmic-ray-neutron-sensor-observations/tree/
main (accessed on 27 March 2024), including the Python code used to generate all figures and perform
all data analyses. In this GitHub repository, there are supplementary figures and tables to be used
in conjunction with this document. These are the ‘Supplementary Materials’ referenced throughout
this document.

https://github.com/tanessamorris/Effect-of-biomass-water-dynamics-in-cosmic-ray-neutron-sensor-observations/tree/main
https://github.com/tanessamorris/Effect-of-biomass-water-dynamics-in-cosmic-ray-neutron-sensor-observations/tree/main
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