Design, Fabrication, and Evaluation of 3D Biopotential Electrodes and Intelligent Garment System for Sports Monitoring
Abstract
:1. Introduction
2. Materials and Structures
2.1. Three-Dimensional Biopotential Electrodes Fabrication
2.1.1. Materials
2.1.2. 3D Biopotential Electrodes Fabrication Structure
2.2. Garment Design
2.3. Hardware Design
3. Impedance Measurement
3.1. Method
3.2. Impedance Results
4. Comparative Analysis of 3D Knitted Silver Electrodes and Ag/AgCl Electrodes in ECG Monitoring
5. Biomeasurement Results
6. Discussion
7. Limitations and Future Research Directions
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Meena, J.S.; Choi, S.B.; Jung, S.-B.; Kim, J.-W. Electronic textiles: New age of wearable technology for healthcare and fitness solutions. Mater. Today Bio 2023, 19, 100565. [Google Scholar] [CrossRef] [PubMed]
- Dunn, J.; Runge, R.; Snyder, M. Wearables and the medical revolution. Pers. Med. 2018, 15, 429–448. [Google Scholar] [CrossRef] [PubMed]
- Hosseini, E.; Fang, R.; Zhang, R.; Rafatirad, S.; Homayoun, H. Emotion and Stress Recognition Utilizing Galvanic Skin Response and Wearable Technology: A Real-time Approach for Mental Health Care. In Proceedings of the 2023 IEEE International Conference on Bioinformatics and Biomedicine (BIBM), Istanbul, Turkiye, 5–8 December 2023; pp. 1125–1131. [Google Scholar]
- Shen, D.; Tao, X.; Koncar, V.; Wang, J. A Review of Intelligent Garment System for Bioelectric Monitoring During Long-Lasting Intensive Sports. IEEE Access 2023, 11, 111358–111377. [Google Scholar] [CrossRef]
- Lyons, N.R.; Worsey, M.T.; Devaprakash, D.; Salchak, Y.A.; Thiel, D.V.; Canning, S.; Lloyd, D.G.; Pizzolato, C. Washable garment-embedded textile electrodes can measure high quality surface EMG data across a range of motor tasks. IEEE Sens. J. 2023, 23, 20150–20158. [Google Scholar] [CrossRef]
- Sriraam, N.; Srinivasulu, A.; Prakash, V. A Low-Cost, low-power flexible single lead ECG textile sensor for continuous monitoring of Cardiac Signals. IEEE Sens. J. 2023, 23, 20189–20198. [Google Scholar] [CrossRef]
- Tao, X.; Huang, T.H.; Shen, C.L.; Ko, Y.C.; Jou, G.T.; Koncar, V. Bluetooth Low Energy-Based Washable Wearable Activity Motion and Electrocardiogram Textronic Monitoring and Communicating System. Adv. Mater. Technol. 2018, 3, 1700309. [Google Scholar] [CrossRef]
- Ankhili, A.; Tao, X.; Cochrane, C.; Koncar, V.; Coulon, D.; Tarlet, J.-M. Comparative study on conductive knitted fabric electrodes for long-term electrocardiography monitoring: Silver-plated and PEDOT: PSS coated fabrics. Sensors 2018, 18, 3890. [Google Scholar] [CrossRef] [PubMed]
- Zhang, K.; Kang, N.; Zhang, B.; Xie, R.; Zhu, J.; Zou, B.; Liu, Y.; Chen, Y.; Shi, W.; Zhang, W. Skin Conformal and Antibacterial PPy-Leather Electrode for ECG Monitoring. Adv. Electron. Mater. 2020, 6, 2000259. [Google Scholar] [CrossRef]
- Lo, L.-W.; Zhao, J.; Aono, K.; Li, W.; Wen, Z.; Pizzella, S.; Wang, Y.; Chakrabartty, S.; Wang, C. Stretchable sponge electrodes for long-term and motion-artifact-tolerant recording of high-quality electrophysiologic signals. ACS Nano 2022, 16, 11792–11801. [Google Scholar] [CrossRef]
- Eskandarian, L.; Toossi, A.; Nassif, F.; Golmohammadi Rostami, S.; Ni, S.; Mahnam, A.; Alizadeh Meghrazi, M.; Takarada, W.; Kikutani, T.; Naguib, H.E. 3D-Knit Dry Electrodes using Conductive Elastomeric Fibers for Long-Term Continuous Electrophysiological Monitoring. Adv. Mater. Technol. 2022, 7, 2101572. [Google Scholar] [CrossRef]
- Zalar, P.; Saalmink, M.; Raiteri, D.; van den Brand, J.; Smits, E.C. Screen-Printed Dry Electrodes: Basic Characterization and Benchmarking. Adv. Eng. Mater. 2020, 22, 2000714. [Google Scholar] [CrossRef]
- Huang, Y.; Song, Y.; Gou, L.; Zou, Y. A novel wearable flexible dry electrode based on cowhide for ECG measurement. Biosensors 2021, 11, 101. [Google Scholar] [CrossRef] [PubMed]
- Das, P.S.; Park, J.-Y. A flexible touch sensor based on conductive elastomer for biopotential monitoring applications. Biomed. Signal Process. Control 2017, 33, 72–82. [Google Scholar] [CrossRef]
- Cheng, X.; Bao, C.; Wang, X.; Zhang, F.; Dong, W. Soft surface electrode based on PDMS-CB conductive polymer for electrocardiogram recordings. Appl. Phys. A 2019, 125, 876. [Google Scholar] [CrossRef]
- Sharma, P.; Baloda, S.; Verma, D.; Janyani, V.; Sharma, R.; Gupta, N. Multiwall Carbon Nanotube/Polydimethylsiloxane Composites-Based Dry Electrodes for Bio-Signal Detection. IEEE J. Flex. Electron. 2024, 3, 108–114. [Google Scholar] [CrossRef]
- Tadesse, M.G.; Dumitrescu, D.; Loghin, C.; Chen, Y.; Wang, L.; Nierstrasz, V. 3D printing of NinjaFlex filament onto PEDOT: PSS-coated textile fabrics for electroluminescence applications. J. Electron. Mater. 2018, 47, 2082–2092. [Google Scholar] [CrossRef]
- Song, K.; Hirose, K.; Niitsu, K.; Sui, T.; Kojima, H.; Fujie, T.; Umezu, S. A combination of logical judging circuit and water-resistant ultrathin film PEDOT: PSS electrode for noninvasive ECG measurement. Discov. Nano 2024, 19, 45. [Google Scholar] [CrossRef] [PubMed]
- Maithani, Y.; Mehta, B.; Singh, J. PEDOT: PSS-treated laser-induced graphene-based smart textile dry electrodes for long-term ECG monitoring. New J. Chem. 2023, 47, 1832–1841. [Google Scholar] [CrossRef]
- Li, G.; Liu, Y.; Chen, Y.; Xia, Y.; Qi, X.; Wan, X.; Jin, Y.; Liu, J.; He, Q.; Li, K. Robust, self-adhesive, and low-contact impedance polyvinyl alcohol/polyacrylamide dual-network hydrogel semidry electrode for biopotential signal acquisition. SmartMat 2024, 5, e1173. [Google Scholar] [CrossRef]
- Li, G.; Liu, Y.; Chen, Y.; Li, M.; Song, J.; Li, K.; Zhang, Y.; Hu, L.; Qi, X.; Wan, X. Polyvinyl alcohol/polyacrylamide double-network hydrogel-based semi-dry electrodes for robust electroencephalography recording at hairy scalp for noninvasive brain–computer interfaces. J. Neural Eng. 2023, 20, 026017. [Google Scholar] [CrossRef]
- Li, G.; Wang, S.; Li, M.; Duan, Y.Y. Towards real-life EEG applications: Novel superporous hydrogel-based semi-dry EEG electrodes enabling automatically ‘charge–discharge’electrolyte. J. Neural Eng. 2021, 18, 046016. [Google Scholar] [CrossRef] [PubMed]
- Li, G.-L.; Wu, J.-T.; Xia, Y.-H.; He, Q.-G.; Jin, H.-G. Review of semi-dry electrodes for EEG recording. J. Neural Eng. 2020, 17, 051004. [Google Scholar] [CrossRef] [PubMed]
- Li, G.; Wu, J.; Xia, Y.; Wu, Y.; Tian, Y.; Liu, J.; Chen, D.; He, Q. Towards emerging EEG applications: A novel printable flexible Ag/AgCl dry electrode array for robust recording of EEG signals at forehead sites. J. Neural Eng. 2020, 17, 026001. [Google Scholar] [CrossRef] [PubMed]
- Murciego, L.P.; Komolafe, A.; Peřinka, N.; Nunes-Matos, H.; Junker, K.; Díez, A.G.; Lanceros-Méndez, S.; Torah, R.; Spaich, E.G.; Dosen, S. A Novel Screen-Printed Textile Interface for High-Density Electromyography Recording. Sensors 2023, 23, 1113. [Google Scholar] [CrossRef] [PubMed]
- Li, B.M.; Mills, A.C.; Flewwellin, T.J.; Herzberg, J.L.; Bosari, A.S.; Lim, M.; Jia, Y.; Jur, J.S. Influence of armband form factors on wearable ECG monitoring performance. IEEE Sens. J. 2021, 21, 11046–11060. [Google Scholar] [CrossRef]
- Xu, X.; Luo, M.; He, P.; Yang, J. Washable and flexible screen printed graphene electrode on textiles for wearable healthcare monitoring. J. Phys. D Appl. Phys. 2020, 53, 125402. [Google Scholar] [CrossRef]
- Bu, Y.; Hassan, M.F.U.; Lai, D. The embedding of flexible conductive silver-coated electrodes into ECG monitoring garment for minimizing motion artefacts. IEEE Sens. J. 2020, 21, 14454–14465. [Google Scholar] [CrossRef]
- Lam, E.; Alizadeh-Meghrazi, M.; Schlums, A.; Eskandarian, L.; Mahnam, A.; Moineau, B.; Popovic, M.R. Exploring textile-based electrode materials for electromyography smart garments. J. Rehabil. Assist. Technol. Eng. 2022, 9, 20556683211061995. [Google Scholar] [CrossRef] [PubMed]
- Nigusse, A.B.; Malengier, B.; Van Langenhove, L. Development and Evaluation of a Wearable ECG Monitoring System. Eng. Proc. 2024, 52, 9. [Google Scholar] [CrossRef]
- Fink, P.L.; Sayem, A.S.M.; Teay, S.H.; Ahmad, F.; Shahariar, H.; Albarbar, A. Development and wearer trial of ECG-garment with textile-based dry electrodes. Sens. Actuators A Phys. 2021, 328, 112784. [Google Scholar] [CrossRef]
- Yang, K.; Torah, R.; Wei, Y.; Beeby, S.; Tudor, J. Waterproof and durable screen printed silver conductive tracks on textiles. Text. Res. J. 2013, 83, 2023–2031. [Google Scholar] [CrossRef]
- Ojstršek, A.; Jug, L.; Plohl, O. A review of electro conductive textiles utilizing the dip-coating technique: Their functionality, durability and sustainability. Polymers 2022, 14, 4713. [Google Scholar] [CrossRef] [PubMed]
- Colli Alfaro, J.G.; Trejos, A.L. Design and fabrication of embroidered textile strain sensors: An alternative to stitch-based strain sensors. Sensors 2023, 23, 1503. [Google Scholar] [CrossRef] [PubMed]
- Besomi, M.; Hodges, P.W.; Van Dieën, J.; Carson, R.G.; Clancy, E.A.; Disselhorst-Klug, C.; Holobar, A.; Hug, F.; Kiernan, M.C.; Lowery, M. Consensus for experimental design in electromyography (CEDE) project: Electrode selection matrix. J. Electromyogr. Kinesiol. 2019, 48, 128–144. [Google Scholar] [CrossRef]
- Gunnarsson, E.; Seoane, F. Three-lead in vivo measurement method for determining the skin-electrode impedance of textile electrodes: A fast, accurate and easy-to-use measurement method suitable for characterization of textile electrodes. Text. Res. J. 2023, 93, 5124–5139. [Google Scholar] [CrossRef]
- Franke, T.P.; Backx, F.J.; Huisstede, B.M. Lower extremity compression garments use by athletes: Why, how often, and perceived benefit. BMC Sports Sci. Med. Rehabil. 2021, 13, 31. [Google Scholar] [CrossRef] [PubMed]
- Lozo, M.; Lovričević, I.; Pavlović, Ž.; Vrljičak, Z. Designing compression of preventive compression stockings. J. Eng. Fibers Fabr. 2021, 16, 15589250211060406. [Google Scholar] [CrossRef]
- Reza, M.S.; Jin, L.; Jeong, Y.J.; Oh, T.I.; Kim, H.; Kim, K.J. Electrospun Rubber Nanofiber Web-Based Dry Electrodes for Biopotential Monitoring. Sensors 2023, 23, 7377. [Google Scholar] [CrossRef] [PubMed]
- Jose, M.; Lemmens, M.; Bormans, S.; Thoelen, R.; Deferme, W. Fully printed, stretchable and wearable bioimpedance sensor on textiles for tomography. Flex. Print. Electron. 2021, 6, 015010. [Google Scholar] [CrossRef]
- Kralikova, I.; Babusiak, B.; Smondrk, M. Measurement of the conductive fabric contact impedance for bioelectrical signal acquisition purposes. Measurement 2023, 217, 113005. [Google Scholar] [CrossRef]
- Goyal, K.; Borkholder, D.A.; Day, S.W. A biomimetic skin phantom for characterizing wearable electrodes in the low-frequency regime. Sens. Actuators A Phys. 2022, 340, 113513. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.; Lee, S.; Jeong, W. EMG measurement with textile-based electrodes in different electrode sizes and clothing pressures for smart clothing design optimization. Polymers 2020, 12, 2406. [Google Scholar] [CrossRef]
- Alizadeh-Meghrazi, M.; Ying, B.; Schlums, A.; Lam, E.; Eskandarian, L.; Abbas, F.; Sidhu, G.; Mahnam, A.; Moineau, B.; Popovic, M.R. Evaluation of dry textile electrodes for long-term electrocardiographic monitoring. Biomed. Eng. Online 2021, 20, 68. [Google Scholar] [CrossRef] [PubMed]
- Goyal, K.; Borkholder, D.A.; Day, S.W. Dependence of Skin-Electrode Contact Impedance on Material and Skin Hydration. Sensors 2022, 22, 8510. [Google Scholar] [CrossRef]
- Li, G.; Wang, S.; Duan, Y.Y. Towards conductive-gel-free electrodes: Understanding the wet electrode, semi-dry electrode and dry electrode-skin interface impedance using electrochemical impedance spectroscopy fitting. Sens. Actuators B Chem. 2018, 277, 250–260. [Google Scholar] [CrossRef]
- Goyal, K.; Day, S.W. Factors Affecting Wearable Electrode Performance and Development of Biomimetic Skin Phantom; IntechOpen: London, UK, 2023. [Google Scholar]
- Li, J.; Deng, G.; Wei, W.; Wang, H.; Ming, Z. Design of a real-time ECG filter for portable mobile medical systems. IEEE Access 2016, 5, 696–704. [Google Scholar] [CrossRef]
- Cifrek, M.; Medved, V.; Tonković, S.; Ostojić, S. Surface EMG based muscle fatigue evaluation in biomechanics. Clin. Biomech. 2009, 24, 327–340. [Google Scholar] [CrossRef]
- Rogers, D.R.; MacIsaac, D.T. A comparison of EMG-based muscle fatigue assessments during dynamic contractions. J. Electromyogr. Kinesiol. 2013, 23, 1004–1011. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shen, D.; Wang, J.; Koncar, V.; Goyal, K.; Tao, X. Design, Fabrication, and Evaluation of 3D Biopotential Electrodes and Intelligent Garment System for Sports Monitoring. Sensors 2024, 24, 4114. https://doi.org/10.3390/s24134114
Shen D, Wang J, Koncar V, Goyal K, Tao X. Design, Fabrication, and Evaluation of 3D Biopotential Electrodes and Intelligent Garment System for Sports Monitoring. Sensors. 2024; 24(13):4114. https://doi.org/10.3390/s24134114
Chicago/Turabian StyleShen, Deyao, Jianping Wang, Vladan Koncar, Krittika Goyal, and Xuyuan Tao. 2024. "Design, Fabrication, and Evaluation of 3D Biopotential Electrodes and Intelligent Garment System for Sports Monitoring" Sensors 24, no. 13: 4114. https://doi.org/10.3390/s24134114
APA StyleShen, D., Wang, J., Koncar, V., Goyal, K., & Tao, X. (2024). Design, Fabrication, and Evaluation of 3D Biopotential Electrodes and Intelligent Garment System for Sports Monitoring. Sensors, 24(13), 4114. https://doi.org/10.3390/s24134114