
Citation: Shi, T.; McCann, R.A.;

Huang, Y.; Wang, W.; Kong, J.

Malware Detection for Internet of

Things Using One-Class Classification.

Sensors 2024, 24, 4122. https://

doi.org/10.3390/s24134122

Academic Editor: Francesco

Mercaldo

Received: 21 May 2024

Revised: 12 June 2024

Accepted: 19 June 2024

Published: 25 June 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Malware Detection for Internet of Things Using
One-Class Classification
Tongxin Shi 1 , Roy A. McCann 2, Ying Huang 3, Wei Wang 1 and Jun Kong 1,*

1 Department of Computer Science, North Dakota State University, Fargo, ND 58102, USA;
tongxin.shi@ndsu.edu (T.S.); wei.wang.7@ndsu.edu (W.W.)

2 Department of Electrical Engineering, University of Arkansas, Fayetteville, AR 72701, USA;
rmccann@uark.edu

3 Department of Civil, Construction and Environmental Engineering, North Dakota State University,
Fargo, ND 58102, USA

* Correspondence: jun.kong@ndsu.edu

Abstract: The increasing usage of interconnected devices within the Internet of Things (IoT) and
Industrial IoT (IIoT) has significantly enhanced efficiency and utility in both personal and industrial
settings but also heightened cybersecurity vulnerabilities, particularly through IoT malware. This
paper explores the use of one-class classification, a method of unsupervised learning, which is
especially suitable for unlabeled data, dynamic environments, and malware detection, which is a
form of anomaly detection. We introduce the TF-IDF method for transforming nominal features
into numerical formats that avoid information loss and manage dimensionality effectively, which is
crucial for enhancing pattern recognition when combined with n-grams. Furthermore, we compare
the performance of multi-class vs. one-class classification models, including Isolation Forest and
deep autoencoder, that are trained with both benign and malicious NetFlow samples vs. trained
exclusively on benign NetFlow samples. We achieve 100% recall with precision rates above 80% and
90% across various test datasets using one-class classification. These models show the adaptability
of unsupervised learning, especially one-class classification, to the evolving malware threats in the
IoT domain, offering insights into enhancing IoT security frameworks and suggesting directions for
future research in this critical area.

Keywords: malware detection; anomaly detection; autoencoder; one-class classification

1. Introduction

In the burgeoning field of the Internet of Things (IoT), the increase in interconnected
devices has dramatically changed the way people interact with modern technology. It offers
marked improvements in efficiency and utility in daily life. However, IoT is not limited to
private consumption; its deployment in industrial settings is also redefining manufacturing,
planning, and energy distribution realms. The Industrial IoT (IIoT), typified by sensors
and automation, is aimed at enhancing operational effectiveness, predictive maintenance,
and live monitoring across diverse sectors. Despite these advancements, the escalation in
IoT and IIoT deployments is matched by an upsurge in cybersecurity vulnerabilities, such
as IoT malware. These threats bear significant implications, with the potential to disrupt
not only consumer devices but also vital industrial operations. A security breach could
have dire outcomes, ranging from personal data exposure to the crippling of fundamental
infrastructure, even escalating to widespread, coordinated attacks on crucial systems.

IoT malware presents distinct challenges that stem from the heterogeneity and
widespread presence of devices, from household gadgets to advanced industrial con-
trols. The design of many IoT devices, especially those in industrial contexts, emphasizes
utility over security, rendering them susceptible to assorted cyber threats. For example,
the infamous IoT Botnet Malware Mirai heavily relies on the default system password of

Sensors 2024, 24, 4122. https://doi.org/10.3390/s24134122 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s24134122
https://doi.org/10.3390/s24134122
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0003-0503-2207
https://orcid.org/0000-0003-4916-8499
https://doi.org/10.3390/s24134122
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s24134122?type=check_update&version=2

Sensors 2024, 24, 4122 2 of 19

these Linux-based IoT devices for self-propagation. In F. Meneghello et al.’s [1] study, the
authors mentioned that many IoT products do not support strong security mechanisms
and can be easily targeted. Kenneth Kimani et al. [2] also addressed security challenges
and their severity for the smart grid, which is a power system with IoT devices. According
to NBC News [3], in 2009, an electrical facility in Puerto Rico may have lost hundreds of
millions of dollars due to the crafty hacking of smart home electrical meters. In 2022, a
Ukrainian critical infrastructure organization was targeted, and substations were attacked,
causing a massive power outage [4]. Thus, the detection of IoT malware needs to be
addressed immediately. Robust, efficient detection methods are essential to ensure the
integrity, confidentiality, and availability of IoT infrastructures.

In tackling such security concerns, the application of anomaly detection, which is a
type unsupervised learning, stands out as a feasible technique. Contrary to conventional
training on labeled datasets, unsupervised learning utilizes the vast amounts of unlabeled
network data generated by IoT systems in their normal operation. This strategy affords
several benefits in the IoT sphere. Primarily, the immense and diverse data generated by
innumerable devices are not labeled, while labeling these data for supervised learning can
be slow and resource intensive. Additionally, IoT’s dynamic environment and evolving
malware methodologies quickly outdate static, labeled datasets. In contrast, unsupervised
learning can nimbly accommodate shifts and trends within real-time data streams, offering
a more robust and adaptive solution for malware detection.

In this study, we examine the nuances of IoT malware data and the function of detec-
tion frameworks in protecting IoT devices. We evaluate the pros and cons for unsupervised
learning techniques and illustrate their potential in meeting the complex requirements of
IoT security in a world of growing connectivity. We aim to contribute to this field of study
as follows:

• The Term Frequency–Inverse Document Frequency (TF-IDF) method is used to trans-
form categorical features that cannot be directly encoded into numerical features, the
values of which are random patterns with a limited set of letters or characters. This
method is significantly better than directly encoding or selecting the most frequent
patterns after one-hot encoding because it does not need to remove any features,
risking information loss, and it can restrict the dimensions of the data to an acceptable
range. This method also has the potential to be combined with n-grams to extract
more useful patterns.

• We compared the anomaly detection results of one-class classification with multi-class
classification. One-class classification trains the model with only benign NetFlow
samples to achieve 100% recall with a reasonable level of precision. We achieved 100%
recall with above 80% precision across all test data sets using Isolation Forest and 100%
recall with above 90% precision across all test data sets using deep autoencoder.

The remainder of this paper is organized as follows. In Section 2, we review related
works on malware detection using different methods, specifically from supervised learning
to unsupervised learning and one-class classification. Section 3 introduces the details of
the dataset that we used in this study. Section 4 discusses the methodology used in this
study, including the data processing and feature extraction methods and anomaly detection
algorithms of one-class SVM, Isolation Forest, and deep autoencoder. Evaluation metrics
are also introduced in Section 4. The results and comparisons are discussed in Section 5.
Finally, Section 6 concludes the study and explores future works.

2. Related Work
2.1. Supervised Learning

IoT security has gained significant attention in recent years, with numerous studies
focusing on malware detection using various machine learning techniques. However,
traditional approaches have predominantly relied on supervised learning methods for high
accuracy because it is much easier to access a public dataset, which is often labeled. For
studies that generate their own data, the size is generally small, so it will not be expensive

Sensors 2024, 24, 4122 3 of 19

to label. Pajouh et al. [5] proposed a supervised machine learning model, showcasing the
efficiency of supervised learning algorithms in detecting malware with high accuracy but
also pointing towards challenges in handling evolving malware threats. Although they have
achieved decent results, with 96% detection accuracy (precision) and a 4% false positive
rate, they used a relatively small dataset which contains 152 malware and 450 benign
and then they used SMOTE to up-sample the data size to double, triple, and quintuple.
Sudheera et al. [6] used an exceptionally large dataset that contains multiple scenarios;
their goal was to detect and identify the attack stages in IoT networks. They also used
supervised learning algorithms such as SVM, KNN, and RF. They achieved 99% accuracy in
four datasets that are different combinations of scenarios present in the large dataset.

Deep learning has also been used in previous studies, and different frameworks have
been proposed to improve the performance of malware detection. Deep learning has
multiple advantages over traditional machine learning that include deep features, contin-
uous learning, and the possibility of handling more complex and customized structures.
Sahu et al. [7] proposed a hybrid model that uses CNN to extract high-level features and
then classify using LSTM; they reached 96% accuracy (97% recall on malware) for all types
of attacks in the dataset. There are also studies that use deep learning on images representa-
tions of malware like those by Cui et al. [8] and Vinayakumar et al. [9]. The later study also
addressed the issue of biased training by using existing malware samples in the training
data. They proposed a novel image processing technique to mitigate this issu

DeepAM is heterogeneous deep learning framework for intelligent malware detection
created by Yanfang Ye et al. [10], which explores a deep learning architecture for malware
detection using autoencoders and multilayer restricted Boltzmann machines, showing
improvement over traditional methods. Although they used an autoencoder, which can be
used as an anomaly detection deep learning structure, they used it as a feature compression
layer instead of using it as an unsupervised anomaly detection tool.

2.2. Unsupervised Learning

In real world scenarios, labeled data would require extra effort and cost, which are
often not applicable. Fang et al. [11] discussed the vulnerability of models based on
supervised learning to specific attacks, presenting a reinforcement learning framework
to evade anti-malware engines, highlighting the limitations of supervised learning in
adapting to sophisticated malware modifications. Jahromi et al. [12] demonstrate an
enhanced LSTM method for malware threat hunting, leveraging supervised learning for
accurate detection, yet emphasizing the need for robust methods against new malware
variants. A knowledge transfer-based semi-supervised federated learning framework for
IoT malware detection is explored by Pei et al. [13], indicating the potential of combining
supervised and unsupervised learning to mitigate data labeling challenges. However,
semi-supervised learning also requires a portion of labeled data.

In Pu et al.’s [14] study, the authors presented an unsupervised anomaly detection
method that combines sub-space clustering and a one-class SVM to detect attacks without
any prior knowledge, and they stated that they achieved better performance for existing
techniques. Zhang et al. [15] proposed a novel unsupervised model based on adversarial
autoencoder and deep clustering; they utilized deep clustering to preserve the loss of the
dynamic encoder reconstruction and improved the results by 42.2% based on traditional
PCA feature extraction methods. However, these clustering methods are based on a pre-
defined threshold that would still require using malware and benign samples in the training
set and rely on the labels which are not used in training to define the threshold.

2.3. One-Class Classification

Acquiring malware samples, especially real-world malware samples, could also be
challenging. So, a study of the feasibility of one-class classification, which only requires
unlabeled benign samples, could also be useful. Tajoddin et al. [16] presented RAMD, a
registry-based anomaly malware detection method using one-class ensemble classifiers.

Sensors 2024, 24, 4122 4 of 19

Mahmoud Al-Qudah et al. [17] presented an enhanced classification model based on a
one-class SVM (OCSVM) classifier for detecting deviations from normal memory dump file
patterns as malware. It integrates OCSVM and PCA for increased sensitivity and efficiency.

3. Dataset

The dataset used in this project is called IoT-23 [18]. This dataset was released in
January 2020 and compiled by the Stratosphere Laboratory at CTU University in the Czech
Republic and funded by Avast Software. This dataset comprises 23 different network traffic
captures (scenarios); 20 are from IoT devices infected with malware, each labeled with the
malware name, and 3 are from benign IoT devices including a Philips HUE smart lamp, an
Amazon Echo, and a Somfy smart door lock. These captures were made on real hardware
devices in a controlled environment with normal internet access. The dataset includes
detailed information such as README.md files, original pcap files, Zeek conn.log.labeled
files with network flow and behavior labels, and other analysis files. The coon.log.labeled
files being used as datasets in this study are labeled NetFlows generated by Zeek based
on the pcap files for each individual scenario. Different than network traffic in the pcap
files, NetFlow is a network protocol developed by Cisco for collecting IP traffic information
and monitoring network flow. Cisco standard NetFlow version 5 defines a flow as a
unidirectional sequence of packets that all share seven values which define a unique key
for the flow. The seven attributes are as follows: ingress interface (SNMP ifIndex), source
IP address, destination IP address, IP protocol number, source port for UDP or TCP (0 for
other protocols), destination port for UDP or TCP (type and code for ICMP, or 0 for other
protocols), and IP Type of Service.

4. Methodology

Figure 1 shows the process of our method. In this study, our method is divided into
2 main parts: the first part is data processing and feature engineering, and the second part
is anomaly detection. In the first part, we focus on cleaning the data and extracting useful
features from the data while converting the categorical features into numerical features by
applying encoding techniques TF-IDF and one-hot encoding.

Sensors 2024, 24, 4122 5 of 19

Figure 1. The process of the anomaly detection experiment.

4.1. Data Processing and Feature Engineering
The data from both captures are merged and processed together to ensure con-

sistency across all features. Distinct labels are assigned to samples from different captures
to facilitate easy separation later. The conn.log.labeled file is treated as a CSV file contain-
ing 21 features, with 20 features listed in Table 1 and the last feature being the detailed
label. In this project, the original detailed label, which specifies the type of malware attack
for each sample, is simplified to a binary label indicating whether it is benign or malicious.
Consequently, the detailed label is not used. Features such as the timestamp and UID,
which do not contribute to the analysis, are removed. Additionally, features local_orig
and local_resp, which are entirely empty, and the services feature, which contains over
99% missing values, are also removed. This leaves 15 features, comprising 7 numeric and
8 categorical features. The categorical features are encoded into numeric values to facili-
tate processing by the algorithm.

Table 1. All features in the original dataset.

Feature Description Process
ts Timestamp of when the connection was logged. Removed.

uid Unique identifier for the connection. Removed.
id.orig_h Originating host’s IP address. Split to 4 new features for each part of the IP.

id.orig_p Originating host’s port number.
Create 3 new labels based on the range of port

number and one-hot encoded.
id.resp_h Responding host’s IP address. Split to 4 new features for each part of the IP.

id.resp_p Responding host’s port number.
Create 3 new labels based on the range of port

number and one-hot encoded.
proto Protocol used for the connection. One-hot encoded.

service Service being accessed, if detectable. Removed due to high missing values.
duration Duration of the connection in seconds. Removed due to low variance.

orig_bytes Number of bytes sent by the originating host. Removed due to low variance.
resp_bytes Number of bytes sent by the responding host. Removed due to low variance.

conn_state State of the connection at the time of logging.
Combined label S1, S2, and S3 to S and one-

hot encoded.

local_orig
Boolean indicating if the originating host is part of the local

network. Removed due to high missing values.

local_resp Boolean indicating if the responding host is part of the local
network. Removed due to high missing values.

missed_by
tes

Number of bytes missed in the connection due to dropped
packets. Removed due to low variance.

history Sequence of connection state history. Encoded using TF-IDF.
orig_pkts Number of packets sent by the originating host. Unchanged.

Figure 1. The process of the anomaly detection experiment.

For anomaly detection, most previous studies have traditionally relied on supervised
learning methods, necessitating well-labeled datasets for training to build hybrid models
for static or dynamic analysis. This conventional approach, while beneficial in structured
environments, encounters significant challenges in the IoT context, where labeling vast
amounts of data is impractical due to the sheer volume and heterogeneity. Only a limited
number of studies have ventured into exploring the use of unlabeled data, which this project
aims to address, because there remains a significant research void in comprehensively
employing these unsupervised methods for IoT malware detection that becomes more
important given the practical difficulties in obtaining labeled data in real-world settings.

Sensors 2024, 24, 4122 5 of 19

4.1. Data Processing and Feature Engineering

The data from both captures are merged and processed together to ensure consistency
across all features. Distinct labels are assigned to samples from different captures to
facilitate easy separation later. The conn.log.labeled file is treated as a CSV file containing
21 features, with 20 features listed in Table 1 and the last feature being the detailed label.
In this project, the original detailed label, which specifies the type of malware attack for
each sample, is simplified to a binary label indicating whether it is benign or malicious.
Consequently, the detailed label is not used. Features such as the timestamp and UID,
which do not contribute to the analysis, are removed. Additionally, features local_orig and
local_resp, which are entirely empty, and the services feature, which contains over 99%
missing values, are also removed. This leaves 15 features, comprising 7 numeric and 8
categorical features. The categorical features are encoded into numeric values to facilitate
processing by the algorithm.

Table 1. All features in the original dataset.

Feature Description Process

ts Timestamp of when the connection was logged. Removed.

uid Unique identifier for the connection. Removed.

id.orig_h Originating host’s IP address. Split to 4 new features for each part of the IP.

id.orig_p Originating host’s port number. Create 3 new labels based on the range of
port number and one-hot encoded.

id.resp_h Responding host’s IP address. Split to 4 new features for each part of the IP.

id.resp_p Responding host’s port number. Create 3 new labels based on the range of
port number and one-hot encoded.

proto Protocol used for the connection. One-hot encoded.

service Service being accessed, if detectable. Removed due to high missing values.

duration Duration of the connection in seconds. Removed due to low variance.

orig_bytes Number of bytes sent by the originating host. Removed due to low variance.

resp_bytes Number of bytes sent by the responding host. Removed due to low variance.

conn_state State of the connection at the time of logging. Combined label S1, S2, and S3 to S and
one-hot encoded.

local_orig Boolean indicating if the originating host is part of the
local network. Removed due to high missing values.

local_resp Boolean indicating if the responding host is part of the
local network. Removed due to high missing values.

missed_bytes Number of bytes missed in the connection due to
dropped packets. Removed due to low variance.

history Sequence of connection state history. Encoded using TF-IDF.

orig_pkts Number of packets sent by the originating host. Unchanged.

orig_ip_bytes Number of IP layer bytes sent by the originating host. Unchanged.

resp_pkts Number of packets sent by the responding host. Removed due to low variance.

resp_ip_bytes Number of IP layer bytes sent by the responding host. Removed.

label Label indicating whether the connection was benign or
the type of malicious. Changed to binary.

The remaining categorical features, excluding connection state and connection his-
tory, are IP addresses and port numbers. Port numbers are categorized into three labels:
well-known ports (0-1023), registered ports (1024-49,151), and dynamic/private ports
(49,152-65,535). For IP addresses, given the extremely low appearance of IPv6 addresses

Sensors 2024, 24, 4122 6 of 19

in the datasets used, each address is split into four separate numeric features, and IPv6
addresses are split into four zeros. This approach is supported by Shao et al.’s study [19],
which found that splitting IPv4 addresses into four numeric features performs better than
one-hot encoding. Unlike their study, which dealt with a limited number of different IP
addresses, the dataset in this study contains a large variety of IP addresses, making one-hot
encoding impractical.

In machine learning, one-hot, also called dummy variables, refers to a group of binary
values among which the valid combination of values is only those with 1 s, and all the
others are 0 s. One-hot encoding is a technique that is based on this representation to
transform categorical features into numerical features. In this dataset, handling categorical
features conn_state and history can be challenging, requiring a deeper understanding of
networking and cybersecurity. For conn_state, direct one-hot encoding is feasible due to
the small number of labels as Table 2 shows. Although conn_state has a limited number
of labels, adding more than 10 dimensions to the dataset is not ideal, especially when
some labels have very few occurrences compared to the most frequent label. Therefore, for
conn_state, labels containing RST are combined into a new label RST, as they all represent
an unusual reset request for the TCP connection. Similarly, labels S0 and SF are combined
into one label, as they essentially represent the same condition with a minor difference in
byte transformation.

Table 2. All possible values for the connection state feature.

Conn_State Summarized State Process

S0 Connection attempt seen, no reply Unchanged.

S1 Connection established, not terminated (0 byte counts) Combined to new label S.

SF Normal establish and termination (>0 byte counts) Merged into S0.

REJ Connection attempt rejected Unchanged.

S2 Established, Orig attempts close, no reply from Resp Combined to new label S.

S3 Established, Resp attempts close, no reply from Orig Combined to new label S.

RSTO Established, Orig aborted (RST) Combined to new label RST.

RSTR Established, Resp aborted (RST) Combined to new label RST.

RSTOS0 Orig sent SYN then RST; no Resp SYN-ACK Combined to new label RST.

RSTRH Orig sent SYN-ACK then RST; no Orig SYN Combined to new label RST.

SH Orig sent SYN then FIN; no Resp SYN-ACK (“half-open”) Unchanged.

SHR Resp sent SYN-ACK then FIN; no Orig SYN Unchanged.

OTH No SYN, not closed. Midstream traffic. Partial connection. Unchanged.

A more in-depth analysis is needed for connection history, which is an extremely
important feature that contains the details of the connection, and some of the details are
critical in identifying malicious activities. The values of connection history are a random
string pattern formed by a set of strings, as Table 3 shows, and each string represents a
state in the entire connection history of each NetFlow. Thus, the values of this feature are
not labels but also not numeric, and one-hot encoding cannot be applied to this feature
without losing information that might be critical. We propose to use term frequency
and inverse document frequency (TF-IDF), which is a technique often used in natural
language processing to process this feature. Common approaches to process these types
of features, such as frequency encoding or target encoding, are simple solutions; however,
these approaches might not reflect the details that each value represents. By using TF-IDF,
not only will it not result in too many dimensions and loss of information but also it could
consider the impact of each individual string, because TF-IDF works by assigning a score to
each term that reflects the importance of a term in the corpus. In this case, the corpus is the

Sensors 2024, 24, 4122 7 of 19

value for this feature, and the terms are each an individual string. This technique also has
the potential to be combined with n-grams in a future study, when higher computational
power is available, that also considers the relationship between multiple terms in a corpus.
After applying this technique to the history column, it will result in 12 new features for
each individual string shown in Table 3. The values for each new feature are the TF-IDF
score if this string is in the original value, and all the new features are numerical.

Table 3. All letters and characters that compose the string pattern in the history feature.

History Description

S A SYN without the ACK bit set

H A SYN-ACK (“handshake”)

A A pure ACK

D Packet with payload (“data”)

F Packet with FIN bit set

R Packet with RST bit set

C Packet with a bad checksum

I Inconsistent packet (Both SYN and RST)

Q Multi-flag packet (SYN and FIN or SYN + RST)

T Retransmitted packet

W Packet with zero window advertisement

ˆ Flipped connection

At this stage, there are 6 labels each in conn_state and history, and 3 labels in proto,
allowing for one-hot encoding to be applied. Upon a further examination of the numerical
features, it is found that some features contain more than 99% of the same value, which in-
dicates that these features are highly likely to have minimal impact on the target. To ensure
in extreme cases that these types of features could also be characteristic, the frequency is
calculated separately for each type of label, and if a feature contains over 99% of the same
value for all types including benign, it will be removed. Consequently, the final dataset
comprises 18 features.

4.2. Anomaly Detection Techniques

Detecting malware is essentially an anomaly detection problem; however, most previ-
ous studies have used both malicious and benign data for training, which is logical because
the results will be more accurate. However, in real world situations, malicious data are
not always accessible, especially for a real time malware detection system, therefore, the
training must be performed only based on the normal benign data. This project delves into
an underexplored territory in IoT cybersecurity research—the exclusive use of unlabeled
positive data for training detection models and the aim to build on the limited existing
research and advance the field by proposing methodologies that are specifically tailored
to exploiting unlabeled data, ensuring both the practicality and effectiveness of malware
detection in diverse IoT settings. This focus on unlabeled data represents a significant
departure from traditional methods and positions our study as a crucial contribution to the
evolving landscape of IoT cybersecurity.

In the scope of one-class classification, various algorithms have been utilized to identify
anomalies, each with their unique strengths and weaknesses. The one-class Support Vector
Machine (SVM) is a popular method that constructs a hyperplane to separate normal data
from outliers, excelling in scenarios with a clear margin of separation. However, it can
be computationally intensive and struggles with high-dimensional data. The Isolation
Forest, on the other hand, isolates observations by randomly selecting a feature and then
randomly selecting a split value between the maximum and minimum values of the selected

Sensors 2024, 24, 4122 8 of 19

feature. This method is particularly effective in handling high-dimensional data and is
computationally efficient, but it may be less effective when the anomalies are not well-
isolated or when the dataset contains noise. Autoencoders, a type of neural network
architecture, are designed to reconstruct input data and identify anomalies by measuring
the reconstruction error. They are highly flexible and can model complex, non-linear
relationships, making them suitable for a wide range of applications. However, they
require significant computational resources and substantial amounts of data for training,
and their performance can be sensitive to the choice of architecture and hyperparameters.
In summary, while one-class SVM is robust for well-defined margins, Isolation Forest is
better for high-dimensional data, and autoencoders offer flexibility for complex patterns.
Each method’s effectiveness depends on the specific characteristics and requirements of
the dataset and application.

Both one-class SVM and Isolation Forest are proven to be effective for anomaly detec-
tion problems. One-Class SVM is adapted from the traditional SVM, specifically designed
for anomaly detection. Isolation Forest is another unsupervised learning method for
anomaly detection which is probability based. In most cases, one-class SVM has proven
to have more accuracy than Isolation Forest; however, in this case, where the dataset is
large and dimensions are relatively high, SVM could encounter a significant performance
decrease, especially for non-linear kernels. Isolation Forest, on the other hand, handles
large datasets easier and has negligible performance impact with higher dimensions.

An autoencoder is a structure of deep learning anomaly detection as Figure 2 shows.
It typically consists of two main parts, an encoder and a decoder. The encoder compresses
the input into a latent-space representation, and the decoder reconstructs the input data
from this representation. The aim is to learn a representation that captures the most notable
features of the data and detect anomalies using the reconstruction error.

Sensors 2024, 24, 4122 8 of 19

significant departure from traditional methods and positions our study as a crucial con-
tribution to the evolving landscape of IoT cybersecurity.

In the scope of one-class classification, various algorithms have been utilized to iden-
tify anomalies, each with their unique strengths and weaknesses. The one-class Support
Vector Machine (SVM) is a popular method that constructs a hyperplane to separate nor-
mal data from outliers, excelling in scenarios with a clear margin of separation. However,
it can be computationally intensive and struggles with high-dimensional data. The Isola-
tion Forest, on the other hand, isolates observations by randomly selecting a feature and
then randomly selecting a split value between the maximum and minimum values of the
selected feature. This method is particularly effective in handling high-dimensional data
and is computationally efficient, but it may be less effective when the anomalies are not
well-isolated or when the dataset contains noise. Autoencoders, a type of neural network
architecture, are designed to reconstruct input data and identify anomalies by measuring
the reconstruction error. They are highly flexible and can model complex, non-linear rela-
tionships, making them suitable for a wide range of applications. However, they require
significant computational resources and substantial amounts of data for training, and
their performance can be sensitive to the choice of architecture and hyperparameters. In
summary, while one-class SVM is robust for well-defined margins, Isolation Forest is bet-
ter for high-dimensional data, and autoencoders offer flexibility for complex patterns.
Each method’s effectiveness depends on the specific characteristics and requirements of
the dataset and application.

Both one-class SVM and Isolation Forest are proven to be effective for anomaly de-
tection problems. One-Class SVM is adapted from the traditional SVM, specifically de-
signed for anomaly detection. Isolation Forest is another unsupervised learning method
for anomaly detection which is probability based. In most cases, one-class SVM has
proven to have more accuracy than Isolation Forest; however, in this case, where the da-
taset is large and dimensions are relatively high, SVM could encounter a significant per-
formance decrease, especially for non-linear kernels. Isolation Forest, on the other hand,
handles large datasets easier and has negligible performance impact with higher dimen-
sions.

An autoencoder is a structure of deep learning anomaly detection as Figure 2 shows.
It typically consists of two main parts, an encoder and a decoder. The encoder compresses
the input into a latent-space representation, and the decoder reconstructs the input data
from this representation. The aim is to learn a representation that captures the most nota-
ble features of the data and detect anomalies using the reconstruction error.

Figure 2. The structure of the autoencoder used in this study. Figure 2. The structure of the autoencoder used in this study.

In this study, an autoencoder with a sequential architecture was employed for malware
detection through anomaly detection. The model comprises six densely connected layers.
The input layer has 17 neurons, corresponding to the dimensionality of the input data.
The encoder part of the autoencoder consists of two hidden layers with 16 and 8 neurons,
respectively, reducing the dimensionality of the input data to a compressed representation.
The bottleneck layer, the smallest layer in the network, has 4 neurons. The decoder part
mirrors the encoder, with two hidden layers of 8 and 16 neurons, respectively, aiming
to reconstruct the input data from the compressed representation. The output layer has
17 neurons, matching the number of input features, and is used to compare the recon-
structed data with the original input. The model has a total of 933 trainable parameters,

Sensors 2024, 24, 4122 9 of 19

making it a relatively lightweight neural network suitable for detecting anomalies in the
context of malware detection.

In the context of determining the reconstruction error threshold to classify anomalies,
using the Median Absolute Deviation (MAD) instead of percentiles to determine the
threshold is a more robust approach. MAD is a measure of variability that is less sensitive
to outliers in the data, making it a suitable choice for anomaly detection tasks where the goal
is to identify rare or unusual observations. By calculating the MAD of the reconstruction
errors between the original input and the reconstructed output of the autoencoder, a
threshold can be set based on a multiple of the MAD value. This threshold can then be used
to classify observations as normal or anomalous. Using MAD as the basis for the threshold
helps to reduce the impact of extreme values in the data, leading to more stable and reliable
anomaly detection. This approach is more robust and scalable than the percentiles method
and can potentially achieve better performance for unseen data.

Median = median(X)
D = |X − Median|

MAD = median(D)

Let X be the dataset. The first step is to obtain the median for the data set. Then, D
represents the array of absolute deviations from the median, and lastly, the MAD score
is equal to the median of D. In a normal distribution, the MAD is related to the standard
deviation (σ) of the equation.

MAD ≈ 0.6745 × σ

We obtain the MAD score, which is a z-score using the following equation.

MAD score = 0.6745 × AD
MAD

One-class classification and anomaly detection are closely related concepts in machine
learning, often used interchangeably, yet they have distinct differences. We compared the
performance of one-class training with multi-class training and propose to use one-class
training instead of multi-class training, because one-class training focuses on creating a
model that learns to recognize instances from a single class, typically the “normal” or
“benign” class, and treats any deviation from this class as an anomaly. This approach is
particularly useful when there is a lack of labeled data for the “anomalous” or “malicious”
class, as it allows the model to learn the characteristics of the normal class without the need
for labeled examples of anomalies.

In this study, the need for one-class classification arises particularly in scenarios such
as IoT malware detection, where access to labeled malicious samples is limited, and the
diversity of malware types makes it challenging to cover all possible variations in a training
dataset. By focusing on learning the characteristics of benign data, one-class classification
provides a robust solution that can generalize well to detect not only known types of
malware but also unknown variants that may emerge in the future. This ability to adapt
to new threats without requiring extensive labeled data makes one-class classification a
valuable approach for maintaining the security of IoT systems in a constantly evolving
threat landscape.

4.3. Evaluation Metrics

In the context of IoT malware detection using one-class classification, the evaluation
of the model’s performance is crucial to ensure its effectiveness in identifying anomalies.
Commonly used metrics for this purpose are precision, recall, and F1 scores, which provide
insights into the model’s accuracy and sensitivity.

Precision measures the proportion of correctly identified positive instances (true
positives) out of all instances classified as positive (true positives and false positives). In

Sensors 2024, 24, 4122 10 of 19

the context of malware detection, a high precision indicates that the model is accurate in
identifying malicious samples, with fewer benign samples being incorrectly labeled as
malicious. While precision is important, it is not the sole focus in this scenario, as the cost
of missing a true malware sample (false negative) can be significantly higher than the cost
of a false alarm (false positive).

Precision =
True Positives (TP)

True Positives (TP) + False Positives (FP)

Recall, also known as sensitivity or true positive rate, measures the proportion of
actual positive instances (true positives) that are correctly identified by the model out of all
actual positive instances (true positives and false negatives). In the context of IoT malware
detection, recall is of paramount importance. A high recall means that the model can detect
a considerable proportion of the malware samples, minimizing the risk of undetected
threats that could compromise the security of IoT systems. Given the potentially severe
consequences of missed malware detections, prioritizing recall is a strategic decision aimed
at ensuring the highest level of security.

Recall =
True Positives (TP)

True Positives (TP) + False Negatives (FN)

In practice, there is often a trade-off between precision and recall, especially in the
context of anomaly detection and one-class classification. To address this trade-off, the
F1 score can be used as a harmonic means of precision and recall, providing a balanced
measure of the model’s performance. However, in scenarios where the primary goal is to
capture as many anomalies or malware samples as possible, recall is given precedence. This
means that while striving for a high recall, some decrease in precision may be acceptable to
ensure that the model is sensitive to potential threats.

F1 = 2 × Precision × Recall
Precision + Recall

In anomaly detection problems, especially in scenarios where the class distribution
is imbalanced (i.e., the number of normal instances outweighs the number of anomalies),
the Area Under the Receiver Operating Characteristic (AUC-ROC) curve can be a better
metric than precision, recall, or the F1 score. The ROC curve plots the true positive
rate (TPR) against the false positive rate (FPR) at various threshold settings, providing a
comprehensive view of the model’s performance across all thresholds. This is useful in
anomaly detection, where the cost of false negatives can be high. The AUC-ROC is less
sensitive to class imbalance than precision, recall, or F1 score, as it evaluates the model’s
ability to distinguish between classes rather than its ability to correctly label instances.
Therefore, a high AUC-ROC score could indicate that the model is capable of detecting
anomalies with a low rate of false positives, which is often the primary goal in anomaly
detection tasks.

In addition to the above metrics, the Precision–Recall (PR) curve is another valuable
tool for evaluating the performance of a malware detection model, especially in the context
of imbalanced datasets. The PR curve plots the precision (y-axis) against the recall (x-axis)
at various threshold settings, providing a detailed view of the trade-off between precision
and recall for different threshold values. This perfectly fits the goal of achieving higher
recall in this study. Unlike the ROC curve, which plots the true positive rate against the
false positive rate, the PR curve is more informative for imbalanced datasets where the
number of negative instances (benign samples) significantly outweighs the number of
positive instances (malware samples).

In scenarios where the actual number of negatives is large, a model might produce
a large number of false positives while still maintaining a small false positive rate (FPR),
leading to a misleadingly high Area Under the ROC Curve (AUC-ROC) score. This can

Sensors 2024, 24, 4122 11 of 19

create a false sense of security, as the model may not be as effective as the AUC-ROC score
suggests. In contrast, the Precision–Recall curve is more sensitive to the number of false
positives, as precision directly incorporates the number of false positives into its calculation.
Therefore, a drop in precision due to an increase in false positives is immediately visible in
the PR curve.

For this reason, in the context of IoT malware detection, where the cost of false negatives
is high and the dataset is often imbalanced for anomaly detection problems, the PR curve
can provide a more realistic assessment of the model’s performance. A high area under
the Precision–Recall curve (AUC-PR) indicates that the model could achieve high precision
while maintaining high recall, which is crucial for effectively detecting malware without
overwhelming the system with false alarms. Furthermore, the Precision–Recall curve does
not only provide a more realistic performance evaluation. The area under the PR curve
(AUC-PR) can also be a more informative summary statistic than the traditional AUC.

5. Results and Comparison

In this section, we primarily focus on comparing the performance of multi-class train-
ing, which utilizes both benign and malicious unlabeled samples, with that of one-class
training, which exclusively employs benign samples in the training dataset. We evaluate
two distinct algorithms, Isolation Forest and deep autoencoder, across both training ap-
proaches. While one-class SVM is theoretically capable of achieving superior results in
anomaly detection tasks, its practical application is limited by its inability to efficiently
handle large-scale datasets. This limitation is particularly pronounced for non-linear SVMs,
rendering them impractical for datasets of the size considered in this study.

5.1. Train-Test Split

For the benign data, we allocate 40% for training, 30% for testing, 20% for validation,
and the remaining 10% for tuning. In the one-class training scenario, the entire 40% of the
benign data is used as the training set. However, for multi-class training, we modify the
training set by replacing 20% of the benign samples with malicious samples to achieve an
80:20 ratio between benign and malicious data. The test sets for both training approaches
maintain an 80:20 ratio of benign to malicious samples. We select three major attack types
that have a total of over 99% among all malicious samples. For each of the three major
attack types—PartOfAHorizontalPortScan, DDoS, and Okiru—we select an equal number
of samples corresponding to 20% of the benign test samples from each attack type, resulting
in four test sets for each attack category. In the rest of the attack types, there are total
of 4981 samples combined after removing duplicates; these samples are combined into
one separate test set called attack, and a small benign sample is selected to also create an
80:20 ratio for this test set. In a nutshell, we have 15,334,261 samples for all the training sets
and 13,494,149 samples for all the test sets.

5.2. Model Tuning

The performance of anomaly detection models, such as Isolation Forest and autoen-
coders, is significantly influenced by the choice of hyperparameters. For Isolation Forest,
key hyperparameters include the number of trees and the sample size used for building
each tree. Increasing the number of trees generally improves the model’s robustness and
stability by averaging out the anomalies, but it also increases computational cost. Similarly,
a larger sample size can capture more data variability, enhancing the model’s accuracy,
yet it may also lead to higher memory consumption and longer training times. On the
other hand, autoencoders have several critical hyperparameters, including the architecture,
learning rate, and regularization techniques. A different technique involving a deeper or
wider network can capture more complex patterns but may also risk overfitting, particu-
larly with limited data. The learning rate affects how quickly the model converges; too high
a learning rate can lead to instability, while too low can slow down training. Regularization
techniques like dropout or L2 regularization help prevent overfitting by adding noise or

Sensors 2024, 24, 4122 12 of 19

penalizing large weights, respectively. The proper tuning of these hyperparameters is
essential for achieving optimal performance, as it balances the trade-off between model
complexity, computational efficiency, and generalization capability. Consequently, hyperpa-
rameter optimization, often through techniques like grid search or Bayesian optimization,
is a crucial step in deploying effective anomaly detection models.

However, the influence of hyperparameters is not always as expected; proper tests are
still needed. In this study, because we have already prepared tunning sets with the same
distribution as the training and testing sets and proper feature engineering, we do not need
to consider the random selection of max samples and max features. This left the Isolation
Forest model with 2 main hyperparameters, which are contaminations and the number of
estimators. We conducted a grid search on 3 values for each of the hyperparameters, which
are 0.05, 0.1, and 0.15 for contamination and 100, 200, and 300 for the number of estimators,
with a total of 9 combinations. As expected, the number estimators have a direct impact on
the training time; the increase in time is approximately the same as the ratio of increasing
the number of estimators. However, increasing the number of estimators does not directly
lead to higher accuracy; in some cases, it even reduced the accuracy, but overall, these
3 different numbers of estimators achieved approximately the same results. Considering
the performance, 100 estimators were selected. Contamination is the anomaly threshold
for the Isolation Forest model, and for one-class classification problems, even though the
training sets only contain normal data, a proper threshold can still be helpful to rule out a
small percentage of outliers to make the model more sensitive to normal data. The precision
and recall trade off needs to be considered when tuning this parameter. Based on the results
on the tuning samples, 0.15 contamination produces lower accuracy than 0.05 and 0.1,
which both reached a 99% F1 score on the tuning sets with very close results. Because
Isolation Forest models can handle large datasets with good performance, we trained two
models using both 0.05 and 0.1 contamination, and 0.1 achieved better results than 0.05.

For the autoencoder, we applied early stopping for the number epochs that stops
training if the validation loss does not improve more than 0.0001 over 5 epochs and a
learning rate schedule starting at 0.001 learning rate with a 0.9 decay rate. Further, for the
activation function, because the output layer is between 0 and 1, we choose the sigmoid as
the activation function for the output layer. Then, we experimented with activation function
ReLU, leaky ReLU, and Tanh for a 4-layer architecture with 8 and 4 as the dimensions.
ReLU achieved the better results. Then, we experimented with different batch sizes 64, 128,
and 256. Technically, smaller batch size can help generalize better by introducing noise in
the gradients, with slower training time. Further, as expected, batch size 64 achieved better
results and the training time slowed down at approximately the same rate at which the
batch size increased, but using batch size 64, the model still converged within 20 epochs,
which is an acceptable performance. Moreover, we have also added drop out layers and
L2 regularization, but adding these layers does not improve the results, and we presume
that this is because of the low complexity of the data. Finally, we experimented with a
6-layer architecture with 16, 8, and 4 as dimensions, and it achieved close but better results
on the tuning sets over the 4-layer architecture. As for the threshold, in Section 4.2, we
introduced using a z-score to determine the threshold for the reconstruction error produced
by the autoencoder, which is much more robust compared to a percentile threshold like the
contamination value in the Isolation Forest model. For the cut-off value, which represents
the number of standard deviations away from the mean, while calculating the z-score, 3 to
3.5 is a common range used as the cut-off value. A high cut-off value could decrease the
recall; however, we reached 100% recall within this range, so we increased the cut-off, and
it reached the highest precision while maintaining 100% recall.

Sensors 2024, 24, 4122 13 of 19

5.3. Isolation Forest

One-class SVM could potentially achieve better performance for anomaly detection
problems over Isolation Forest. However, the speed makes it intolerable when dealing
with a large data set, especially for non-linear kernels. After reducing the dimensions, the
size of the data set is still too big, even for linear SVM. On the other hand, Isolation Forest
is an algorithm specifically designed for anomaly detection. It is based on the principle
of isolating anomalies using decision trees, which are constructed by randomly selecting
features and splitting values. This approach allows Isolation Forest to handle large datasets
efficiently, as the computational complexity is linear with the number of samples and
logarithmic with the number of trees in the forest. Additionally, Isolation Forest is less
sensitive to the dimensionality of the data, as each tree considers only a subset of features
at each split. This characteristic enables Isolation Forest to maintain fast performance
and produce decent results even when the dimensionality of the data is high, making it a
more suitable choice for anomaly detection in large and high-dimensional datasets. The
following table shows the precision, recall, F1 scores, and time-related performance for all
three test sets with two different training strategies.

In Table 4, the results using one-class training are significantly better than those using
multi-class training, which means the training set contains both benign and malicious sam-
ples. Using the one-class training method, both the DDoS test set and Okiru test set achieve
100% recall with 84% precision, which means that all the anomalies are captured. The
PartOfHorizontalPortScan test set also achieves 95% recall, with 81% precision, compared
to the results using multi-class training, where only the Okiru test set reaches 100% recall
but with only 54% precision. The DDoS and PartOfHorizontalPortScan test sets achieve
73% and 76% recall, with 46% and 47% precision. The training times and testing times are
also slightly faster when using one-class training compared to using multi-class training.
The results prove that using one-class training is not only feasible but also achieves much
better results and are also more robust to several types of malware attack.

Table 4. Comparing the scores for multi-class training with one-class training using Isolation Forest.

Training Method Training Time Testing Set Test Time Precision Recall F1

multi-class training 8 m 51.5

ddos 455.5 s 0.46 0.73 0.57

okiru 414.4 s 0.54 1 0.7

portscan 395.6 s 0.47 0.76 0.58

average 421.8 s 0.49 0.83 0.62

one-class training 6 m 6.1 s

ddos 311.1 s 0.84 1 0.91

okiru 311.9 s 0.84 1 0.91

portscan 308.5 s 0.81 0.83 0.82

average 310.5 s 0.83 0.94 0.88

Because the test sets are imbalanced, precision, recall scores may not accurately repre-
sent the performance of the models. Figure 3 shows the AUC-ROC and AUC-PR curves for
all the test cases. It is clear to see that in both AUC plots, the area under curves for one-class
training are bigger than the multi-class training, which means the overall performance is
better. Further, the gaps between curves are also smaller when using one-class training, and
the curves for DDoS and Okiru test sets are even overlapped, which proves the robustness
of the model.

Sensors 2024, 24, 4122 14 of 19

Sensors 2024, 24, 4122 14 of 19

(a)

(b)

Figure 3. (a) AUC-PR curve and AUC-ROC curve for multi-class training using isolation forest. (b)
AUC-PR curve and AUC-ROC curve for one-class training using isolation forest.

5.4. Deep Learning Autoencoder
In previous tests for Isolation Forests, it has already been proven that one-class train-

ing with only benign samples is feasible and provides better results over multi-class train-
ing. However, not all test sets achieved 100% recall, and the precisions also have room to
improve. Deep learning autoencoders can achieve better performance for anomaly detec-
tion compared to Isolation Forest, especially when dealing with large and complex da-
tasets. Autoencoders can learn non-linear and high-dimensional representations, making
them particularly effective for anomaly detection, as they can capture the underlying
structure of normal data and identify deviations or anomalies more accurately. Further-
more, autoencoders can scale well with large datasets due to the parallel processing capa-
bilities of modern deep learning frameworks and hardware accelerators like GPUs. In con-
trast, while Isolation Forest is efficient and effective for many anomaly detection tasks, it
may not capture the complex dependencies and patterns in the data as well as autoencod-
ers, particularly in high-dimensional spaces. Table 5 shows the performance metrics for 3
test sets using the same one-class training set.

Figure 3. (a) AUC-PR curve and AUC-ROC curve for multi-class training using isolation forest.
(b) AUC-PR curve and AUC-ROC curve for one-class training using isolation forest.

5.4. Deep Learning Autoencoder

In previous tests for Isolation Forests, it has already been proven that one-class training
with only benign samples is feasible and provides better results over multi-class training.
However, not all test sets achieved 100% recall, and the precisions also have room to im-
prove. Deep learning autoencoders can achieve better performance for anomaly detection
compared to Isolation Forest, especially when dealing with large and complex datasets.
Autoencoders can learn non-linear and high-dimensional representations, making them
particularly effective for anomaly detection, as they can capture the underlying structure
of normal data and identify deviations or anomalies more accurately. Furthermore, au-
toencoders can scale well with large datasets due to the parallel processing capabilities
of modern deep learning frameworks and hardware accelerators like GPUs. In contrast,
while Isolation Forest is efficient and effective for many anomaly detection tasks, it may
not capture the complex dependencies and patterns in the data as well as autoencoders,
particularly in high-dimensional spaces. Table 5 shows the performance metrics for 3 test
sets using the same one-class training set.

Sensors 2024, 24, 4122 15 of 19

Table 5. Scores for one-class training using autoencoder.

Training Method Training Time Testing Set Test Time Precision Recall F1

multi-class training
5 m 46 s *
17 epochs

ddos 321 s 0.88 0.76 0.82

okiru 321 s 1 0.78 0.88

port 322 s 1 0.78 0.88

average 321.3 s 0.96 0.77 0.86

one-class training
11 m 52 s *
8 epochs

ddos 538 s 0.9 1 0.95

okiru 555 s 0.9 1 0.95

port 553 s 0.9 1 0.95

average 548.7 s 0.9 1 0.95

The * means the average training time per epoch “times” the total number of epochs. It can be changed to the total
training time followed by parentheses with the average time. For example, 60 m 2 s (5 m 46 s/epoch).

As Table 5 shows, all 3 test sets achieved the same results, which are 100% recall
and 90% precision using one-class training compared to an average 77% recall and 96%
precision using multi-class training, which meets the expectation that adding malicious
samples to the training set will increase the model’s sensitivity to benign samples but may
decrease the model’s sensitivity towards malicious samples and robustness. Compared
to the isolation forest model, not only did the performance improve but also it achieved
perfect robustness over three different types of attacks. Speed-wise, the autoencoder was
trained for 20 epochs, but it stopped converging at 17 epochs, and it took 5 m 46 s for each
epoch. Considering that the training is not designed to be performed on any IoT devices
and accounts for the improvement in performance, the longer training time is acceptable.
The testing times are also longer than using Isolation Forest; for each sample, it takes an
average 41.13 µs. compared to 23.11 µs using the Isolation Forest model. Figure 4 below is
the AUC plots, which also indicate that the area is larger than the Isolation Forest plots,
and all three curves are perfectly aligned, indicating the robustness of the model.

Sensors 2024, 24, 4122 15 of 19

Table 5. Scores for one-class training using autoencoder.

Training Method Training Time Testing Set Test Time Precision Recall F1

multi-class training 5 m 46 s *
17 epochs

ddos 321 s 0.88 0.76 0.82
okiru 321 s 1 0.78 0.88
port 322 s 1 0.78 0.88

average 321.3 s 0.96 0.77 0.86

one-class training 11 m 52 s *
8 epochs

ddos 538 s 0.9 1 0.95
okiru 555 s 0.9 1 0.95
port 553 s 0.9 1 0.95

average 548.7 s 0.9 1 0.95
The * means the average training time per epoch “times” the total number of epochs. It can be
changed to the total training time followed by parentheses with the average time. For example,
60m 2s(5m 46s/epoch).

As Table 5 shows, all 3 test sets achieved the same results, which are 100% recall and
90% precision using one-class training compared to an average 77% recall and 96% preci-
sion using multi-class training, which meets the expectation that adding malicious sam-
ples to the training set will increase the model’s sensitivity to benign samples but may
decrease the model’s sensitivity towards malicious samples and robustness. Compared to
the isolation forest model, not only did the performance improve but also it achieved per-
fect robustness over three different types of attacks. Speed-wise, the autoencoder was
trained for 20 epochs, but it stopped converging at 17 epochs, and it took 5 m 46 s for each
epoch. Considering that the training is not designed to be performed on any IoT devices
and accounts for the improvement in performance, the longer training time is acceptable.
The testing times are also longer than using Isolation Forest; for each sample, it takes an
average 41.13 µs. compared to 23.11 µs using the Isolation Forest model. Figure 4 below is
the AUC plots, which also indicate that the area is larger than the Isolation Forest plots,
and all three curves are perfectly aligned, indicating the robustness of the model.

Figure 4. AUC-PR curve and AUC-ROC curve for one-class training using autoencoder.

Because the autoencoder detects anomalies by using the reconstruction error, it could
also be helpful to visualize the distribution of the errors. Figure 5 below displays the dis-
tribution of reconstruction loss for all three test cases. The reconstruction loss for benign
and malicious samples are well separated. In the Okiru and PartOfHorizontalPortScan
test sets, there are overlapping situations for benign and malicious samples. Furthermore,

Figure 4. AUC-PR curve and AUC-ROC curve for one-class training using autoencoder.

Because the autoencoder detects anomalies by using the reconstruction error, it could
also be helpful to visualize the distribution of the errors. Figure 5 below displays the
distribution of reconstruction loss for all three test cases. The reconstruction loss for benign
and malicious samples are well separated. In the Okiru and PartOfHorizontalPortScan test
sets, there are overlapping situations for benign and malicious samples. Furthermore, for
all three test cases, there is a small portion of benign samples that fall between 0.125 and
0.150 on the x-axis, which will be misclassified as false positives.

Sensors 2024, 24, 4122 16 of 19

Sensors 2024, 24, 4122 16 of 19

for all three test cases, there is a small portion of benign samples that fall between 0.125
and 0.150 on the x-axis, which will be misclassified as false positives.

Figure 5. Reconstruction MSE distribution for benign and malicious classes on three testing sets. Figure 5. Reconstruction MSE distribution for benign and malicious classes on three testing sets.

6. Discussion

Scalability is a critical factor when evaluating anomaly detection models, particularly
in the context of the increasing complexity and volume of IoT data. Isolation Forest is

Sensors 2024, 24, 4122 17 of 19

inherently scalable due to its tree-based structure, which allows it to handle large, high-
dimensional datasets efficiently. Its linear time complexity with respect to the number of
samples makes it well-suited for real-time anomaly detection in IoT environments, where
data streams continuously and unpredictably. Additionally, Isolation Forest’s ability to
operate effectively with minimal tuning further enhances its scalability across diverse
IoT applications. Conversely, autoencoders, which are neural network-based models,
offer robust capabilities to capture complex, non-linear patterns in data. However, their
scalability is constrained by several factors. Training autoencoders on large datasets can be
computationally intensive and time-consuming, often requiring significant computational
resources such as GPUs or distributed computing frameworks. Moreover, the performance
of autoencoders heavily relies on architecture design and hyperparameter tuning, which
can be challenging and resource demanding as data complexity increases. Despite these
challenges, autoencoders’ flexibility in modeling intricate data relationships makes them
valuable for specific IoT applications where detailed anomaly characterization is crucial.
Furthermore, the computation problem can be solved by server-based training, especially
in IoT systems, where data need to be collected from all the IoT devices instead of just
one device; this makes it more practical and feasible to utilize server-based workflows
for data processing and model training, and the trained model will be deployed to the
IoT devices to monitor the network and detect malware. As for the testing speed, even
though the Isolation Forest model still tests faster than the anomaly detection model, as
Section 5 shows, both models can test one sample within one millisecond, making the fast
testing speed advantage of the Isolation Forest model more negligible. In summary, while
Isolation Forest provides a scalable and efficient solution for anomaly detection in large-
scale IoT data, the importance of these advantages diminished for server-based training,
while autoencoders offer powerful capabilities for capturing complex data patterns.

When using machine learning models for malware detection, interpretability is a
crucial factor for cybersecurity experts. Isolation Forest, being an ensemble method, works
by recursively partitioning data points and is relatively interpretable because it provides
insights into anomalies by identifying data points that require fewer partitions to isolate.
This allows experts to understand why certain points are classified as outliers, aiding in the
investigation of potential malware. On the other hand, autoencoder models, which are a
type of neural network, encode data into a lower-dimensional space and then reconstruct it,
flagging significant reconstruction errors as anomalies. While effective, the interpretability
of autoencoders is generally lower due to their complex, black-box nature. Techniques such
as the visualization of latent spaces, reconstruction error analysis as in Figure 5, and layer-
wise relevance propagation can help experts gain insights into the model’s decision-making
process. Balancing detection performance with interpretability is essential, as it empowers
cybersecurity experts to trust and effectively act on the models’ outputs in the fight against
malware. However, these interpretations are still based on the models’ outputs, which
requires the cybersecurity experts to have knowledge on machine learning to be able to
understand. The employment of explainable AI (XAI) can help with this situation. XAI
aims to make machine learning models more transparent and understandable by providing
explanations of how decisions are made. For instance, in the context of Isolation Forest,
XAI methods could visualize which features contribute the most to the isolation of a data
point, effectively showing decision weights and helping experts understand which aspects
of the data are most indicative of anomalies. Similarly, for autoencoders, XAI tools can help
by identifying which features or input dimensions have the largest reconstruction errors,
thus highlighting the parts of the data that the model finds suspicious. By presenting these
insights in an accessible way, XAI can bridge the gap between complex model outputs and
the practical understanding needed by cybersecurity experts to make informed decisions.
Incorporating XAI can significantly enhance the usability of these models in real-world
cybersecurity applications by making the detection process more transparent and the results
more actionable for experts without deep machine learning expertise.

Sensors 2024, 24, 4122 18 of 19

7. Conclusions and Future Work

The findings from our research suggest a significant advancement in the domain
of malware detection, favoring a one-class training approach over a multi-class training
approach. Our experiments reveal that one-class training is not only feasible but also yields
superior results compared to its multi-class counterpart. This success is primarily due to the
one-class approach’s inherent capacity to mitigate the training bias associated with specific
types of malware data. Such biases often skew the learning process and compromise the
model’s generalizability. Additionally, one-class training offers a more economical and
streamlined method for detecting malware by obviating the need for extensive malicious
data collection and exhaustive labeling efforts. The robust performance of the one-class
models, despite the reduced requirement for labeled data, marks a promising direction for
efficient and cost-effective malware detection strategies.

Future research endeavors will concentrate on refining the data foundation, feature
representation, and model architecture to bolster the effectiveness of malware detection sys-
tems further. The next phase will seek to incorporate data that mirrors the unpredictability
and complexity of real-world scenarios more closely, thus addressing the limitations of data
collected from controlled environments. Emphasis will also be placed on enhancing feature
extraction techniques, particularly using n-grams within connection history analysis. This
shift aims to capture a broader spectrum of behavioral patterns, though it may result in
an increased number of features. Therefore, feature selection and reduction techniques
will be essential to manage the expanded feature set without compromising the model’s
interpretability or performance.

In parallel, efforts will be made to explore the potential of more intricate autoencoder
designs. The relatively basic autoencoder employed in this study offers a foundational start-
ing point, suggesting a vast unexplored potential for complex architectures. Innovations
in autoencoder structures, potentially integrating advanced neural network techniques,
hold the promise of significantly improving the model’s capability to detect subtle and
sophisticated patterns indicative of malware presence.

Author Contributions: Conceptualization, R.A.M. and J.K.; Methodology, T.S.; Software, T.S.; Val-
idation, T.S.; Investigation, J.K.; Resources, R.A.M.; Data curation, W.W.; Writing—original draft,
T.S.; Writing—review & editing, R.A.M., Y.H. and J.K.; Supervision, J.K.; Project administration,
Y.H.; Funding acquisition, Y.H. All authors have read and agreed to the published version of
the manuscript.

Funding: This research was funded by National Science Foundation grant number OIA-2119691.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data is available upon request.

Acknowledgments: The authors express their gratitude to the funding provided to support this
study from National Science Foundation (NSF) EPSCoR RII Track-2 Program under the grant number
OIA-2119691. The findings and opinions expressed in this article are those of the authors only and do
not necessarily reflect the views of the sponsors.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Meneghello, F.; Calore, M.; Zucchetto, D.; Polese, M.; Zanella, A. IoT: Internet of Threats? A Survey of Practical Security

Vulnerabilities in Real IoT Devices. IEEE Internet Things J. 2019, 6, 8182–8201. [CrossRef]
2. Kimani, K.; Oduol, V.; Langat, K. Cyber security challenges for IoT-based smart grid networks. Int. J. Crit. Infrastruct. Prot. 2019,

25, 36–49. [CrossRef]
3. Smart Meter Hacks Cost Hundreds of Millions Annually, FBI Says. NBCNews.com. 2012. Available online: https://www.

nbcnews.com/id/wbna47003851 (accessed on 7 June 2024).

https://doi.org/10.1109/JIOT.2019.2935189
https://doi.org/10.1016/j.ijcip.2019.01.001
https://www.nbcnews.com/id/wbna47003851
https://www.nbcnews.com/id/wbna47003851

Sensors 2024, 24, 4122 19 of 19

4. Sandworm Disrupts Power in Ukraine Using a Novel Attack against Operational Technology, Google. Available online: https:
//cloud.google.com/blog/topics/threat-intelligence/sandworm-disrupts-power-ukraine-operational-technology (accessed on
7 June 2024).

5. Pajouh, H.H.; Dehghantanha, A.; Khayami, R.; Choo, K.-K.R. Intelligent OS X malware threat detection with code inspection.
J. Comput. Virol. Hacking Tech. 2018, 14, 213–223. [CrossRef]

6. Sudheera KL, K.; Divakaran, D.M.; Singh, R.P.; Gurusamy, M. ADEPT: Detection and Identification of Correlated Attack Stages in
IoT Networks. IEEE Internet Things J. 2021, 8, 6591–6607. [CrossRef]

7. Sahu, A.K.; Sharma, S.; Tanveer, M.; Raja, R. Internet of Things attack detection using hybrid Deep Learning Model. Comput.
Commun. 2021, 176, 146–154. [CrossRef]

8. Cui, Z.; Xue, F.; Cai, X.; Cao, Y.; Wang, G.-G.; Chen, J. Detection of Malicious Code Variants Based on Deep Learning. IEEE Trans.
Ind. Inform. 2018, 14, 3187–3196. [CrossRef]

9. Vinayakumar, R.; Alazab, M.; Soman, K.; Poornachandran, P.; Venkatraman, S. Robust Intelligent Malware Detection Using Deep
Learning. IEEE Access 2019, 7, 46717–46738. [CrossRef]

10. Ye, Y.; Chen, L.; Hou, S.; Hardy, W.; Li, X. DeepAM: A heterogeneous deep learning framework for intelligent malware detection.
Knowl. Inf. Syst. 2018, 54, 265–285. [CrossRef]

11. Fang, Z.; Wang, J.; Li, B.; Wu, S.; Zhou, Y.; Huang, H. Evading Anti-Malware Engines with Deep Reinforcement Learning. IEEE
Access 2019, 7, 48867–48879. [CrossRef]

12. Jahromi, A.N.; Hashemi, S.; Dehghantanha, A.; Parizi, R.; Choo, K. An Enhanced Stacked LSTM Method With No Random
Initialization for Malware Threat Hunting in Safety and Time-Critical Systems. IEEE Trans. Emerg. Top. Comput. Intell. 2020, 4,
630–640. [CrossRef]

13. Pei, X.-J.; Deng, X.; Tian, S.; Zhang, L.; Xue, K. A Knowledge Transfer-based Semi-Supervised Federated Learning for IoT Malware
Detection. IEEE Trans. Dependable Secur. Comput. 2023, 20, 2127–2143. [CrossRef]

14. Pu, G.; Wang, L.; Shen, J.; Dong, F. A Hybrid Unsupervised Clustering-Based Anomaly Detection Method; Tsinghua Science and
Technology: Beijing, China, 2021.

15. Zhang, L.; Yin, J.; Ning, J.; Wang, Y.; Adebisi, B.; Yang, J. A Novel Unsupervised Malware Detection Method based on Adversarial
Auto-encoder and Deep Clustering. In Proceedings of the 2022 9th International Conference on Dependable Systems and Their
Applications (DSA), Wulumuqi, China, 4–5 August 2022; pp. 224–229.

16. Tajoddin, A.; Abadi, M. RAMD: Registry-based anomaly malware detection using one-class ensemble classifiers. Appl. Intell.
2019, 49, 2641–2658. [CrossRef]

17. Al-Qudah, M.; Ashi, Z.; Alnabhan, M.M.; Abu Al-haija, Q. Effective One-Class Classifier Model for Memory Dump Malware
Detection. J. Sens. Actuator Netw. 2023, 12, 5. [CrossRef]

18. Garcia, S.; Parmisano, A.; Erquiaga, M.J. IoT-23: A Labeled Dataset with Malicious and Benign IoT Network Traffic; Version 1.0.0; Data
Set; Zenodo: Genève, Switzerland, 2020.

19. Shao, E. Encoding IP Address as a Feature for Network Intrusion Detection. Master’s Thesis, Purdue University Graduate School,
West Lafayette, IN, USA, 2019.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://cloud.google.com/blog/topics/threat-intelligence/sandworm-disrupts-power-ukraine-operational-technology
https://cloud.google.com/blog/topics/threat-intelligence/sandworm-disrupts-power-ukraine-operational-technology
https://doi.org/10.1007/s11416-017-0307-5
https://doi.org/10.1109/JIOT.2021.3055937
https://doi.org/10.1016/j.comcom.2021.05.024
https://doi.org/10.1109/TII.2018.2822680
https://doi.org/10.1109/ACCESS.2019.2906934
https://doi.org/10.1007/s10115-017-1058-9
https://doi.org/10.1109/ACCESS.2019.2908033
https://doi.org/10.1109/TETCI.2019.2910243
https://doi.org/10.1109/TDSC.2022.3173664
https://doi.org/10.1007/s10489-018-01405-0
https://doi.org/10.3390/jsan12010005

	Introduction
	Related Work
	Supervised Learning
	Unsupervised Learning
	One-Class Classification

	Dataset
	Methodology
	Data Processing and Feature Engineering
	Anomaly Detection Techniques
	Evaluation Metrics

	Results and Comparison
	Train-Test Split
	Model Tuning
	Isolation Forest
	Deep Learning Autoencoder

	Discussion
	Conclusions and Future Work
	References

