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Abstract: Point cloud registration is a fundamental task in computer vision and graphics, which
is widely used in 3D reconstruction, object tracking, and atlas reconstruction. Learning-based
optimization and deep learning methods have been widely developed in pairwise registration due
to their own distinctive advantages. Deep learning methods offer greater flexibility and enable
registering unseen point clouds that are not trained. Learning-based optimization methods exhibit
enhanced robustness and stability when handling registration under various perturbations, such as
noise, outliers, and occlusions. To leverage the strengths of both approaches to achieve a less time-
consuming, robust, and stable registration for multiple instances, we propose a novel computational
framework called SGRTmreg for multiple pairwise registrations in this paper. The SGRTmreg
framework utilizes three components—a Searching scheme, a learning-based optimization method
called Graph-based Reweighted discriminative optimization (GRDO), and a Transfer module to
achieve multi-instance point cloud registration.Given a collection of instances to be matched, a
template as a target point cloud, and an instance as a source point cloud, the searching scheme selects
one point cloud from the collection that closely resembles the source. GRDO then learns a sequence
of regressors by aligning the source to the target, while the transfer module stores and applies the
learned regressors to align the selected point cloud to the target and estimate the transformation of
the selected point cloud. In short, SGRTmreg harnesses a shared sequence of regressors to register
multiple point clouds to a target point cloud. We conduct extensive registration experiments on
various datasets to evaluate the proposed framework. The experimental results demonstrate that
SGRTmreg achieves multiple pairwise registrations with higher accuracy, robustness, and stability
than the state-of-the-art deep learning and traditional registration methods.

Keywords: mathematical optimization; point cloud registration; supervised learning; deep learning

1. Introduction

Point cloud registration has been actively studied in computer vision and graphics [1–6],
and most studies mainly focus on pairwise registration [7]. The primary objective of pairwise
registration is to estimate the transformation parameters that align a source point cloud to a
target point cloud. However, there is a multi-instance point cloud registration scenario, where
multiple instances are aligned to a fixed template via multiple pairwise registrations. Multiple
pairwise registrations make the existing registration methods more time-consuming, especially
for the traditional methods with the estimation of the Hessian or inverse Hessian matrix,
applying them to the registration of the point clouds obtained from LiDAR with variations
in perturbations and point density, demanding high computational capacity and processing
time [8].

Learning-based optimization methods [9–11] efficiently learn gradient directions with-
out calculating Jacobian or Hessian matrices, which is relatively less time-consuming.
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Additionally, they adopt a model- or feature-driven approach to learn regressors from data
to mimic gradients, resulting in heightened stability and robustness in the registration with
various perturbations. However, the current approach restricts the learned regressors to
training and testing an individual model, lacking flexibility and efficiency for multiple
pairwise registrations.

Deep learning methods [12–21] significantly enhance point cloud registration by
automatically extracting features and estimating transformations with learned regressors
based on point correspondences. Their data-driven nature bestows them with flexibility,
enabling the registration of unseen point clouds. However, this reliance on data can
potentially impact registration performance, particularly when confronted with diverse
perturbations such as noise, outliers, and occlusions.

To enhance the efficiency, stability, and robustness of multiple pairwise registrations,
we introduce SGRTmreg, a new computational framework. Given a collection of point
clouds, a source point cloud, and a target point cloud, the process for SGRTmreg to achieve
registration unfolds in three steps: (1) Selecting a point cloud similar to the source from
the collection based on graph structure, coordinates, node importance, and normal vectors
via a searching scheme. (2) Learning regressors from the source using the Graph-based
Reweighted Discriminative Optimization (GRDO) method by registering the source to the
target. GRDO encodes features and learns regressors from key points in graph structures,
reducing memory storage and computational costs. (3) Using the learned regressors to
estimate the transformation from the selected point cloud to the target via a transfer module.
Notably, the learned regressors possess the versatility to be employed in registering any
other point clouds resembling the selected one.

We demonstrate the potential of SGRTmreg in multiple pairwise registrations on the
ModelNet40 dataset and showcase the high performance of GRDO in registration under
various perturbations on synthetic datasets, the WHU-TLS dataset [22] and the UWA
dataset [23]. Our experimental results exhibit the accuracy and stability of SGRTmreg in
multiple pairwise registrations, with GRDO surpassing advanced registration methods in
robustness, accuracy, and stability. The contributions of this paper are the following:

• SGRTmreg achieves higher accuracy and robustness in the multiple pairwise registrations.
• GRDO outperforms advanced learning-based optimization methods in robustness,

stability, and computational/storage efficiency.
• The proposed key points selection method retains detailed information compared to

common downsampling approaches [24].

2. Related Work
2.1. Point Cloud Registration

Point cloud registration aligns two point clouds into a common coordinate system. The
Iterative Closest Point (ICP) method [25] is widely used to find the optimal rigid transforma-
tion by iteratively minimizing the point cloud difference. Coherent Point Drift (CPD) [26]
casts point cloud registration as the matching of Gaussian mixture models, which moves
the Gaussian mixture model centroids coherently to preserve the topological structure of
point clouds. Bayesian Coherent Point Drift (BCPD) [27] replaces the motion coherence
theory in CPD with Bayesian inference. Both CPD and BCPD focus on point-to-point
distance without considering local surface geometry. LSGCPD [28] incorporates varying
levels of point-to-plane penalization alongside point-to-point penalization. TEASER++ [29]
leverages estimation theory, geometry, graph theory, and optimization to register point
clouds in the presence of large amounts of outlier correspondences. A scale-adaptive ICP
method is introduced in [30] for aligning objects differing by rigid transformations (trans-
lations, rotations) and uniform scaling. QGORE [31] employs “rotation correspondence”
to establish a one-point RANSAC for lower bound estimation and proposes geometric con-
sistency voting for tight upper bound seeking, which is the first quadratic–time guaranteed
outlier removal method for point cloud registration. These traditional methods approach
point cloud registration as an optimization problem involving designing objective functions



Sensors 2024, 24, 4144 3 of 27

and function solutions. Objective functions are typically tailored to address the registration
under specific perturbations, such as noises, outliers, and occlusions. Gradient-based
methods are widely employed as function solvers, which often require approximations of
the Hessian or inverse Hessian matrices, making it challenging to solve objective functions
with a large number of parameters or high storage requirements.

To avoid calculating gradients, learning-based optimization methods utilize super-
vised sequential update methods to learn regressors emulating gradient directions. Ref. [30]
uses regressors to update shape parameters based on image features. The Discriminative
Optimization method (DO) [10] adopts the least-squares method to learn regressors mapped
to the features of point clouds to estimate transformation parameters. The Reweighted
Discriminative Optimization method (RDO) [11] designs an asymmetrical parameter treat-
ment scheme to learn regressors. While learning-based optimization methods demonstrate
robustness and stability in handling registrations with various perturbations, they are
unable to register multiple point cloud pairs using the learned regressors from individual
point clouds.

The success of deep learning techniques in image processing has been extended to
point cloud registration. PointnetLK [16] utilizes the Lucas–Kanade algorithm [32] to
estimate transformation on a global feature space. DCP [17] replaces the Lucas–Kanade
algorithm with differentiable singular value decomposition. RPMNet [20] inputs point
clouds and normals to extract features and then estimate point correspondences. RGM [21]
transforms point clouds into graphs and calculates correspondences via a graph feature
extractor. FMR [18] estimates transformation by minimizing a feature-metric projection
error without seeking correspondences. DeepGMR [19] formulates registration as KL-
divergence minimization between mixtures of Gaussians. SACF-Net [14] incorporates a
novel feature interaction mechanism to enhance pointwise matching by leveraging both
low-level geometric and high-level context-aware information. GeoTransformer [33] en-
codes pair-wise distances and triplet-wise angles to learn geometric features for registration,
which ensures invariance to rigid transformations and enhances robustness in low-overlap
scenarios. PAnet [34] proposes a point-attention-based multi-scale feature fusion network
for partially overlapping point cloud registration. RoReg [35] utilizes oriented descriptors
and estimated local rotations throughout the registration pipeline. It introduces a novel
oriented descriptor, RoReg-Desc, which is employed for estimating the local rotations. GM-
CNet [36] employs a novel transformation-robust point transformer module to adaptively
aggregate local features with respect to the structural relations, taking advantage of both
handcrafted rotation-invariant features and noise-resilient spatial coordinates to estimate
correspondences for full-range partial-to-partial point cloud registration. RIGA [37] de-
velops descriptors with rotation-invariant and globally-aware methods to extract robust
correspondences for registration. PointTr [38] employs a learnable geometric position
update module and a deeper cross-attention module to automatically learn and capture
the geometric structure and features among partial point clouds. The limitations of these
methods are twofold: (1) performance drops significantly when applied to unseen point
clouds with structural differences from the training data; (2) vulnerability to perturbations
due to high data reliance. Nevertheless, deep learning methods provide greater flexibility,
enabling training on large amounts of data and testing with any relevant data, a limitation
of learning-based optimization methods.

In summary, learned-based optimization methods offer advantages over traditional
registration methods by learning regressors directly from data without the need for design-
ing objective functions or calculating gradient matrices. They also exhibit greater robustness
compared to deep learning methods and are less dependent on data size. However, they
may lack the flexibility of deep learning methods, as they solely rely on learned regressors
for registering an individual point cloud pair. Given this, we develop a framework named
SGRTmreg for multiple pairwise registrations, utilizing the core insight of learning-based
optimization methods—supervised sequential update methods.
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2.2. Supervised Sequential Update Methods

Learning-based optimization methods use supervised sequential update methods to
learn regressors that mimic gradient directions, avoiding explicit gradient calculations.
This is completed by learning a sequence of regressors that maps a feature vector to an
update vector that points to the desired parameters. Here, we provide a brief review of
supervised sequential update methods.

Dollár et al. [39] propose a cascaded pose regression to compute 2D object poses in
images. Cao et al. [40] develop an explicit shape regression method for face alignment by
learning a vectorial regression function. Tuzel et al. [41] present a learning-based tracking
method combined with object detection, where a linear regression function represents the
descent direction. Xiong et al. [9] learn a sequence of regressors to update shape parameters
based on image features per iteration. Most supervised sequential update methods focus on
image-based tracking and pose estimation. Vongkulbhisal et al. [10,42] propose DO as an
extension of the supervised sequential update methods and apply DO in the 3D registration.
Inspired by DO, Zhao et al. [11] introduce an asymmetrical parameter treatment scheme in
the least squares method, and Deng et al. [43] develop a generative optimization method
for non-rigid registration.

While these methods offer the advantage of not requiring gradient calculation, they
suffer from a longer feature extraction time with increasing points, making the registration
of dense point clouds infeasible. Additionally, they are commonly used for identical point
cloud registration, wherein the test point cloud is generated by introducing a specific
perturbation to a training point cloud, which is determined by the following updating
criteria of regressors:

xt+1 = xt − Dt+1f(xt). (1)

Here, f : Rp → R f is a function that encodes a feature of a point cloud, and Dt+1 ∈ Rp× f

is a regressor that regresses the feature f(xt) to an update vector. xt+1 is the updating
parameter vector for transformation estimation. The prerequisite for the learned regressors
Dt+1 attained in the training stage being used to estimate the parameter vector xt+1 of the
test point cloud is that the features of training and test point clouds must be similar, or at
the very least, possess the same dimensions. Accordingly, we devise a search scheme to
select a point cloud similar to the target, ensuring the successful application of the learned
regressor for the registration of the target model.

3. Methodology

In this section, we denote a collection of point clouds as P , a source point cloud as Q,
and a target point cloud as M. SGRTmreg aims to utilize one sequence of regressors Dt+1
to register two point cloud pairs (⟨Q, M⟩ and ⟨S, M⟩), where S is the selected point cloud
from P and is the most similar to Q. Note that if there is another point cloud S

′
similar to

S, SGRTmreg can utilize Dt+1 to register ⟨S′
, M⟩ as well.

The critical steps for SGRTmreg to achieve the registration of multiple point cloud
pairs are: (1) Utilizing a searching scheme to select the point cloud S closely resembling the
source point cloud Q from the collection P . (2) Learning the sequence of regressors Dt+1
by registering Q and M via the Graph-based Reweighted Discriminative Optimization
(GRDO) method. (3) Applying Dt+1 in a transfer module to estimate the transformation
parameters aligning S to M, as shown in Figure 1. Specifically, first, the searching scheme
identifies the similar point cloud S by successively comparing the similarity of key points
in the source point cloud Q with those in each point cloud in the collection P across four
screening stages, considering graph structure, coordinate distribution, node importance,
and normal vector information. Then, GRDO learns the sequence of regressors Dt+1 by
aligning Q to M via the extracted feature fQ from the key points in Q. Last, the transfer
module estimates the transformation from S to M by mapping the learned regressors Dt+1
to the feature fS of the key points in S.
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Figure 1. The framework of SGRTmreg includes three steps: (1) a searching scheme for selecting a
similar point cloud S from a collection P for the source model Q by comparing the similarity of P and
Q in four screen stages; (2) considering graph structure, coordinate distribution, and the importance
of nodes and normal vector information, a learning-based optimization method called GRDO for
learning a single sequence of regressors Dt+1 via the alignment of the source model Q and the target
model M; (3) a transfer module for estimating the transformation between ⟨S, M⟩ by transferring the
learned regressors Dt+1 to the selected model S. To reduce storage requirements and computation
costs, each step works on the extracted key points.

3.1. Key Point Extraction

To reduce the storage requirement for designing features and learning regressors Dt+1
while cutting computational costs for GRDO, we design a key point extraction approach
for downsampling point clouds. Figure 2 shows the process of key point extraction. Given
a point cloud, Delaunay triangulation is applied to the top view (xy-view) of the point
cloud to form a graph [44], where nodes represent vertices and edges represent connections
between nodes. Then, the degrees of all nodes in the graph are counted. The degree of a
node is the number of connections that it has to other nodes in the graph. Nodes with higher
degrees have more connections, signifying their greater importance. Nodes connected
by the non-shared edge between two triangles will be extracted as boundary points. The
nodes whose degree has the most or the second most occurrence number and boundary
points are selected as key points. Figure 3 shows that the proposed key point extraction
approach reduces points while preserving detailed model information in contrast to the
random and uniform downsample methods [24].

Figure 2. The process of key point extraction. The pink and orange are the extracted key points.
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Figure 3. The comparison of our key point extraction approach with the random and uniform
downsample methods. This figure shows the zoomed-in model from the XZ and XY perspectives.
The dark circles show the difference. The red circles show the main detailed difference.

3.2. Searching Scheme

The searching scheme aims to identify the most similar point cloud S from the set P by
comparing the similarity between each point cloud Pi ∈ RNPi×3 and the target Q through
four screening stages: (1) Measure the graph structure similarity between point cloud
pairs ⟨Pi, Q⟩ by employing the Hamming distance on their degree lists ⟨DegPi

, DegQ⟩.
(2) Measure the similarity of coordinate distribution ⟨CoPi , CoQ⟩ by clustering the mix of
key points in ⟨Pi, Q⟩ via the Dirichlet Process Gaussian Mixture Model (DPGMM) [45].
(3) Measure the similarity in the importance of graph nodes ⟨NodePi , NodeQ⟩ using
the Eigenvector centrality method [46]. (4) Measure the similarity in normal vectors
⟨NorVPi , NorVQ⟩ in Euclidean space. The point cloud Pi passing these four screening
stages will be chosen as the similar point cloud S, as shown in Figure 4.

Figure 4. The structure of the searching scheme, including four screening stages, considering graph
structure, coordinate distribution, the importance of nodes, and normal vector information. The
dotted rectangle displays the candidate point clouds moving to the next screening stage. The points
circled by blue and black are clustered in the same group. Red shows the nodes with the highest
importance and pink with the lowest.

3.2.1. Similarity in Graph Structure

After converting a point cloud into a graph via the Delaunay triangulation in
Section 3.1, the degree of nodes is initially used to sift through candidate point clouds.
DegPi

=
[
de1

Pi
, · · · , dej

Pi
, · · ·

]
and DegQ =

[
de1

Q, · · · , dej
Q, · · ·

]
are the degree lists of Pi and
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Q, respectively, where each element represents the degree of a node. We sort degrees based
on their occurrences and ensure that the length of DegPi

matches that of DegQ. If the
length of DegPi

is larger, the degree with less occurrence will be removed. If it is shorter,
DegPi

will be filled with 0.

Pi
De = 1 −

dH

(
DegPi

, DegQ

)
L

. (2)

where dH is the Hamming distance. The Hamming distance between DegPi
and DegQ is

the count of differing elements at corresponding positions. L is the length of DegQ. Pi will
enter the second stage as a candidate if the similarity Pi

De is larger than β. β ∈ (0.5, 1) will
always be set manually.

3.2.2. Similarity in Coordinate Distribution

The coordinate distribution reflects the rough shape of a point cloud. The similarity
in coordinate distributions ⟨CoPi , CoQ⟩ is measured by applying DPGMM to cluster the
mixture of key points in ⟨Pi, Q⟩. Suppose the mixture has been divided into K clusters
Ck =

{
Ck

Pi
, Ck

Q

}
, k ∈ {1, · · · , K}. Ck

Pi
represents key points from Pi, and Ck

Q represents key

points from Q, both clustered in Ck, with dimensions RNk
Pi
×3 and RNk

Q×3.

RPi =

[
N1

Pi

NPi
, · · · ,

NK
Pi

NPi

]
. (3)

RQ =

[
N1

Q

NQ , · · · ,
NK

Q

NQ

]
. (4)

The elements in RPi and RQ depict the proportion of Ck
Pi

in CoPi and that of Ck
Q in CoQ.

NPi and NQ are the number of key points in Pi and Q, respectively.

τPi =
K

∑
k=1

(
k · δ

(
Nk

Pi

NPi
− max

(
RPi

)))
. (5)

τQ =
K

∑
k=1

(
k · δ

(
Nk

Q

NQ − max
(

RQ
)))

. (6)

where δ is the Dirac delta function [47]. Equations (5) and (6) illustrate that CτPi
and CτQ

cluster most of the points in Pi and Q. If τPi = τQ, it implies that Pi and Q have similar
coordinate distributions (as shown in the cluster circled in Figure 4), and Pi will be moved
onto the next round. Please note that if CoQ is equally divided, Pi will also enter the next
round as a candidate.

3.2.3. Similarity in the Importance of Nodes

After sifting out point clouds with shapes similar to source Q, the similarity in internal
structure is considered for further screening. The internal structure is revealed through
node importance, quantified using the eigenvector centrality method [46]. The eigenvector
centrality method evaluates the importance of a node based on how important the nodes
in contact with it are: the higher the latter is, the higher the former becomes. Assuming the
key points in source Q have been converted to the graph GQ with an adjacency matrix A,
the absolute value of its principal eigenvector serves as the score for all nodes, revealing the
eigenvector centrality of the graph GQ [46]. The eigenvector centrality of Pi can be attained
in the same way. If the average score of all nodes in Pi is closest to that of Q, Pi becomes a
candidate for the next screening stage. To prevent eliminating the most similar point cloud
during this screening, we relax the number of candidates entering the next stage to β′.
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3.2.4. Similarity in Normal Vectors

The similarity in normal vectors is the final criterion for selecting the similar point
cloud S. NorVP =

[
nP1 , nP2 , · · · nPN̄

]
is the normal vectors of the candidate collection. N̄

is the number of candidates in this round. The Euclidean distance between each normal of
Q and NorVP is calculated, generating a distance matrix E with the size of NQ × ∑N̄

i=1 NPi .

Em,n = dE⟨nm
Q, nn

Pi
⟩. (7)

where m and n are the indices of the normal vectors of Q and NorVP , respectively. dE is
the Euclidean distance.

Ec
m,n =

{
1 Em,n = min(Em,:)
0 Em,n ̸= min(Em,:).

(8)

Matrix Ec with the size of NQ × ∑N̄
i=1 NPi locates the points with the highest similarity of

normal vectors. Em,: represents the mth row of E.

N1
P =

NP1

∑
n=1

Ec
:,n. (9)

N j
P =

∑
j
i=1 NPi

∑
n=∑

j−1
i=1 NPi+1

Ec
:,n, j ∈ {2, 3, · · · , N̄}. (10)

where Ec
:,n represents the nth column of Ec. N j

P counts the number of points with the

highest similarity in Pj. The j-th point cloud with the maximal value of N j
P is the final

selected similar point cloud S.

3.3. Graph-Based Reweighted Discriminative Optimization (GRDO)
3.3.1. Sequence of Regressors

Let fQ be the feature of Q and Dt+1 ∈ Rp× f be a matrix mapping the feature to an
update vector. Given an initial parameter vector x0 ∈ Rp, the updating process is as follows:

xt+1 = xt − Dt+1 × fQ. (11)

The update process ends until xt+1 converges to a stationary point, and the sequence of
regressors Dt+1, t = 0, 1 · · · are learned through approximating the estimated parameter
vector xi

t+1 to the ground truth xi
∗.

Dt+1 = min
D̂

1
N

N

∑
i=1

∥∥∥Wt

(
xi

t+1 − xi
∗

)∥∥∥2

2

= min
D̂

1
N

N

∑
i=1

∥∥∥Wt

(
xi

t − D̂ × fQ − xi
∗

)∥∥∥2

2
.

(12)

where N is the number of point clouds that participate in the training process, xi
t is the

parameter vector of the i-th point cloud at the t-th iteration. Wt ∈ Rp×p is a weighting
diagonal matrix. The detailed explanation of (12) has been provided in [11]. For simplicity,
we denote xi

t as xt for any point cloud.

3.3.2. Design the Feature fQ

Good registration occurs when the surfaces of two shapes are aligned [10]. To achieve
such registration, we design a feature function hQ to encode the relative position informa-
tion of key points, making GRDO learn Dt+1 in the direction that aligns surfaces, as shown
in Figure 5. We quantize the space around M into a uniform grid G spanning [−2, 2] in each
dimension and denote a grid as gj. Let ni be the normal vector of the key point mi in M, com-
puted from the local plane fitted by its six neighboring points; g+ =

{
gj : nT

i
(
gj − mi

)
> 0

}
be the set of grids on the ‘front’ of qi; and g− =

{
gj : nT

i
(
gj − mi

)
< 0

}
contains the re-
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maining grids. We design a sparse matrix Sp to store the relative position information
between the uniform grid G and M.

[
Sp
]+

i,j =

{
exp

(
− 1

œ2

∥∥gj − mi
∥∥2
)

gj /∈ g+

0 gj ∈ g+
(13)

[
Sp
]−

i,j =

{
exp

(
− 1

œ2

∥∥gj − mi
∥∥2
)

gj /∈ g−

0 gj ∈ g− (14)

Sp =
[[

Sp
]+

i,j;
[
Sp
]−

i,j

]
(15)

i = 1, · · · , dM, j = 1, · · · , d3
G.

where σ controls the width of the exp function, and dM is the number of key points in M.

Figure 5. The process of feature extraction.

We introduce a function F that applies rigid transformation with parameter x to the
source point cloud Q. F(Q; x) records the transformation of Q per iteration. Then, we
count the number of key points in the transformation F(Q; x) that fall into each grid to
form a counted vector cQ. Then, the feature fQ can be calculated as follows:

fQ = cQ × Sp. (16)

Feature fQ is employed to learn the sequence of regressors Dt+1 via (12). The learned
regressors Dt+1 will be employed to estimate the transformation for the pair ⟨S, M⟩ in the
transfer module.

3.4. Transfer Module

The transfer module intends to share the learned regressors Dt+1 with S to estimate
the transformation parameter xt+1 aligning the pair ⟨S, M⟩ via the following formula:

xt+1 = xt − Dt+1 × fS. (17)

The number of key points in the transformation F(S; x) that fall into each grid forms
the vector cS. The feature of the selected point cloud fS can be calculated as follows:

fS = cS × Sp. (18)

For clarity, we provide the pseudocodes for training GRDO and parameter estimation,
as shown in Algorithms 1 and 2. We start by training D1 using initial data

{(
xi

0, xi
∗
)}N

i=1,
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Wt, and fQ with (12), followed by updating x1 with D1 using (11). At each step, a new
parameter vector can be created by recursively applying the update rule in (11). The
learning process is repeated until certain termination criteria are met, for example, until the
error is not reduced too much or the maximum number of iterations T is reached. Then, we
count the number of key points in the transformation of S falling into each grid to form the
vector cS and utilize the sparse matrix Sp via (15) to obtain the feature fS according to (18).
Finally, the learned sequence of regressors {Dt}T

t=1 and feature fS are applied in (17) to
estimate the transformation parameter from the selected model S to the target model M.

Algorithm 1 Training a sequence of update maps

Require:
{(

xi
0, xi

∗
)}N

i=1, T, δ, Q
Ensure: {Dt}T

t=1
1: for t = 0 to T − 1 do
2: Compute Wt according to [11]
3: Compute fQ with (16)
4: Compute Dt+1 with (12)
5: for i = 1 to N do
6: Update xi

t+1 := xi
t − Dt+1fQ

7: end for
8: end for

Algorithm 2 Parameter estimation

Require: x0, {Dt}T
t=1, δ, S

Ensure: xT
1: Count the number of key points in S falling into each grid to form cS
2: for t = 0 to T − 1 do
3: Compute Sp with (15)
4: Compute fS with (18)
5: Update xt+1 := xt − Dt+1fS
6: end for

4. Experimentation

This section describes applying the proposed framework SGRTmreg for the reg-
istration of multiple point cloud pairs. Three registration experiments are conducted:
(1) The comparison with traditional registration methods—DO [42], RDO [11], BCPD [27],
LSGCPD [28], and TEASER++ [29] on synthetic datasets (http://visionair.ge.imati.cnr/
(accessed on 25 October 2020)) [48] (in Figure 6a,b) to show the accuracy and robustness
of GRDO. (2) The comparison with deep learning registration methods—FMR [18], Deep-
RGM [19], RPMNet [20], and RGM [21] on the ModelNet40 datasets [49] (in Figure 6c,d),
which involves the selection of a similar point cloud and parameter transfer, and aims to
showcase the efficacy of SGRTmreg on the registration of multiple point cloud pairs. (3) The
comparison with traditional and deep learning registration methods on the WHU-TLS
(Terrestrial Laser Scanner) dataset [22] (in Figure 6e,f). (4) The comparison with traditional
and deep learning registration methods on the range-scan UWA dataset [23] (in Figure 6g,h)
to demonstrate the registration capability of GRDO on real-world datasets.

http://visionair.ge.imati.cnr/
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Figure 6. The 3D registration datasets.

4.1. Experimental Design

We normalize each point cloud Pi, the target point cloud M, and the source point
cloud Q to [−1, 1]3. The normalized Q and the normalized Pi are compared to select the
similar point cloud S via the searching scheme (Section 3.2). We register Q and M to learn
the regressors Dt+1 in the training process of GRDO. Then, the learned regressors Dt+1 are
utilized to register S and M.

4.1.1. GRDO Training

The parameters in the training process are similar to those in DO [42]. Given the
source model Q and the target model M, we first normalized them to lie in [−1,1]. Then,
we applied the following perturbations to the source model Q to generate the training
samples: (i) Rotation and Translation: The rotation is within 45◦ and the translations is in
[−0.3, 0.3]3, which represents the ground truth (x∗ in (12)). (ii) Noise and Outliers: Gaussian
noise with the standard deviation 0.05 is added to Q; 0 to 300 points within [−1.5, 1.5]3 are
added as the sparse outliers. A Gaussian ball of 0 to 200 points with a standard deviation
of 0.1 to 0.25 simulates the structured outliers. (iii) Occlusion: We remove 40% to 90% points
from Q to simulate occlusions [42]. We generate 30,000 training samples, and set x0 as
06, (N = 30,000, x0 = 06 in Equation (12)). Please note that the rotation range in the above
settings covers the relative position of the target model M and the source model Q.

4.1.2. Evaluation Metrics

Mean Square Error (MSE) evaluates the performance of registration methods, which
measures the average squared difference between the coordinates of the registered point
cloud and the target point cloud. Since DO, RDO, BCPD, LSGCPD, GRDO, and TEASER++
are all implemented in MATLAB 2022b, the computation time in seconds serves as an
additional metric for assessing these registration methods.

4.1.3. Parameter Settings

For DO and RDO, we set σ2 as 0.03. The value of the tolerance of the absolute difference
between the current estimation and ground truth in iterations is 1 × 10−4. For BCPD, the
expected percentage of outliers is 0.1, the parameter in the Gaussian kernel is 2.0, and the
expected length of the displacement vector is 400. For LSGCPD, the expected percentage of
outliers is 0.1, and the maximum iteration is 30. For TEASER++, Graduated Non-Convexity
(GNC) [50] is used to estimate rotation, and the factor for increasing/decreasing the GNC
function control parameter is set to 1.4. All deep learning networks are trained on a Nvidia
Geforce 2080Ti GPU with 12 G memory. The parameter settings for FMR, RGM, DeepGMR,
and RPMNet are shown in Table 1.
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Table 1. Parameter settings for deep learning methods.

Method Iteration Optimizer Learning Rate Epoch Batch Size

FMR 10 Adam 1 × 10−3 100 32
RGM 2 SGD 1 × 10−3 300 4

DeepGMR 1 Adam 1 × 10−3 100 32
RPMNet 2 Adam 1 × 10−4 1000 8

4.1.4. Registration Experiments

Registration on synthetic datasets. The source model Q is downsampled by selecting
∼1500 points to generate model S. The performance is evaluated under various perturba-
tions: (1) Rotation: The initial angle is 0◦, 30◦, 60◦, 90◦, 120◦, and 150◦ [default = 0◦ to 45◦].
(2) Noise: The standard deviation of Gaussian noise is set to 0, 0.02, 0.04, 0.06, 0.08, and 0.1
[default = 0]. (3) Outliers: We set the number of outliers to 0, 100, 200, 300, 400, and 500,
respectively [default = 0]. (4) Occlusion: The occlusion ratio is set to 0, 0.15, 0.30, 0.45, 0.60,
and 0.75 [default = 0]. The random translation of all generated scenes is within [−0.3, 0.3]3.
When one parameter is changed, the values of other parameters are fixed to the default
value. We will test 750 test samples in each variable setting.

Registration on the ModelNet40 dataset. The ModelNet40 dataset contains pre-
aligned shapes from 40 categories, split into 9843 for training and 2468 for testing. We
randomly select one instance from the testing sets of two categories (Airplane and Car) as
the given source models Q. Similar models S are selected from the training sets of these two
categories via the proposed searching scheme. Figure 7 shows the selected similar point
cloud (green) for the given point clouds (red). The perturbation settings on the ModelNet40
dataset are similar to those on synthetic datasets.

Figure 7. The search results for the given source models. Red shows the given source point clouds.
Green shows the selected similar point clouds.

Registration on the WHU-TLS and UWA datasets. The WHU-TLS dataset comprises
115 scans and over 1740 million 3D points collected from 11 different environments with
point density, clutter, and occlusion variations. The perturbation settings on the WHU-
TLS dataset are similar to those on synthetic datasets. We uniformly sample from the
original model with the replacement of almost 8000 points to generate the model Q. The
UWA dataset contains 50 cluttered scenes with five objects taken with the Minolta Vivid
910 scanner in various configurations. All objects are heavily occluded (60% to 90%). From
the original model of the object (chef), ∼400 points are sampled using pcdownsample to
generate the model Q. We also downsample the scene to ∼1000 points to generate the
model M. We initialize M from 0 to 45 degrees from the ground truth orientation with
random translation within [−0.3, 0.3]3.

4.2. Experimental Results and Discussion
4.2.1. Registration on Synthetic Datasets

Figure 8 presents the computation time of traditional methods on synthetic datasets.
(Top) and (Bottom) display the log10 computation time on the Skeleton Hand model and
the Dancing Children model, respectively. (Left) shows that the computation time of
learning-based methods (DO, RDO, and GRDO) takes longer as the rotation angle increases.
Nevertheless, GRDO exhibits shorter computation time compared to DO and RDO. This
is because GRDO extracts features from a limited number of key points, leading to less
time to recount the number of key points falling into each grid. In contrast, BCPD needs
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more computing time. Meanwhile, the TEASER++ algorithm stands out as the most time-
efficient method, even when dealing with large rotations. The time advantage of TEASER++
stems from its adoption of GNC for rotation estimation without solving the large-scale
semidefinite programming problem. (Second and Third) show that GRDO still takes less
computation time to achieve registration under various noises and outliers than DO and
RDO. (Right) illustrates that all methods require less computation time as the occlusion
ratio increases. However, the decline in computation time is particularly noticeable for
GRDO, BCPD, and TEASER++.
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Figure 8. The log10 computation time of traditional registration methods on synthetic datasets
(Top—Skeleton Hand, Bottom—Dancing Children). Each X-axis represents varying degrees of
perturbation: rotation angles, standard deviation of noise, number of outliers, and occlusion rate.

Tables 2 and 3 present the MSE of the registration results on Skeleton Hand and
Dancing Children models under various perturbations, respectively. We analyze the MSE
distribution via two box-plot factors (Maximum and IQR—Interquartile Range). A smaller
maximum value indicates higher registration accuracy, while a smaller IQR signifies greater
performance stability. The tables show the minimal maximum registration error in bold
and the minimal IQR value in italics. The results highlight that BCPD and GRDO exhibit
superior stability compared to other methods. Also, the registration accuracy of GRDO is
the highest, especially when handling the registration with various noise and outliers.

Table 2. The registration results on the skeleton hand (10−4).

DO RDO GRDO BCPD LSGCPD TEASER++

Maximum IQR Maximum IQR Maximum IQR Maximum IQR Maximum IQR Maximum IQR

R (90) 2.491 1.445 2.497 1.488 1.121 1.261 4.794 5.746 3351 1393 3795 3226

R (120) 2239 3339 1273 3334 1266 2085 3713 3371 2807 1305 3865 2875

R (150) 3789 3311 3589 3010 3456 2649 3773 3376 3529 1449 3805 2996

N (006) 56.00 39.00 6.205 3.151 5.982 3.064 53.00 4.931 1585 39.00 3682 2957

N (008) 59.00 62.00 6.932 5.170 6.853 5.112 77.00 4.352 1539 62.00 4060 2803

N (010) 66.00 73.00 7.418 3.988 7.207 3.882 104.0 4.536 1414 73.00 3934 2769

O (300) 9.067 7.132 5.719 3.274 5.567 3.254 742.0 355.0 1696 1114 4983 2697

O (400) 11.00 8.068 6.101 3.676 6.084 3.662 743.0 459.0 1635 1099 5234 2749

O (500) 9.792 8.566 7.713 4.180 7.012 4.055 719.0 337.0 1546 627.0 4999 2673

I (045) 491.0 497.0 493.0 497.0 513.0 448.0 1586 2772 1443 915.0 5371 2882

I (060) 1051 974.0 1046 974.0 998.0 926.0 1103 1903 1484 1059 5192 2561

I (075) 1286 1397 1283 1400 1246 1295 1258 2097 1492 959.0 5623 3075
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Table 3. The registration results on the dancing children model (10−4).

DO RDO GRDO BCPD LSGCPD TEASER++

Maximum IQR Maximum IQR Maximum IQR Maximum IQR Maximum IQR Maximum IQR

R (90) 2684 423.0 2675 420.0 2235 263.0 0.007 0.002 3695 1381 4773 2313

R (120) 2862 350.0 2862 346.0 2133 194.0 4304 2855 3776 1483 4823 1875

R (150) 4230 2793 4125 2793 3807 1090 4283 2855 4471 1211 4310 2205

N (006) 17.00 17.00 13.00 9.000 9.000 9.000 35.00 0.938 1995 1234 4946 2058

N (008) 24.00 17.00 16.00 9.000 12.00 9.000 60.00 1.710 1779 1033 5012 2393

N (010) 25.00 17.00 19.00 12.00 17.00 12.00 91.00 2.060 1732 1047 5195 2386

O (300) 13.00 12.00 12.00 10.00 8.000 9.000 488.0 9.577 2004 1311 7283 3536

O (400) 15.00 10.00 11.00 7.000 11.00 7.000 616.0 7.399 2002 1150 6373 2470

O (500) 14.00 12.00 13.00 7.000 11.00 7.000 459.0 7.464 1939 1108 6882 2803

I (045) 705.0 863.0 706.0 858.0 739.0 802.0 1355 2281 1706 1012 6029 2534

I (060) 1455 1192 1350 1192 1389 1866 1025 2212 1672 1075 8092 3958

I(075) 2496 1696 2493 1703 2702 1210 1296 2368 1817 1015 6882 3542

4.2.2. Registration on the ModelNet40 Dataset

Figure 9 shows the comparison with deep learning methods on the ModelNet40 dataset.
The top and bottom show the registration results on the airplane and car models, respectively.
Because RGM requires the same size of point clouds to be matched, RGM is unsuitable for regis-
trations involving outliers or occlusions. Hereby, the performances of GRDO, FMR, RPMNet,
and DeepGMR are compared. RPMNet and RGM show lower registration accuracy under
various rotations. GRDO struggles with accuracy and stability for larger rotations (90◦ and
above), while DeepGMR excels in these scenarios. Additionally, GRDO demonstrates robustness
to noise and outliers, outperforming FMR. When dealing with different degrees of occlusions,
RPMNet is the least accurate, while GRDO maintains high accuracy and stability.
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Figure 9. Cont.
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Figure 9. The log10 MSE of registration results on the ModelNet40 dataset (Top—Airplane,
Bottom—Car) under various perturbations. Each X-axis represents varying degrees of perturba-
tion, namely rotation angles, standard deviation of noise, number of outliers, and occlusion rate.

4.2.3. Registration on the WHU-TLS Dataset

Figure 10 displays the registration results on Campus and Heritage Building under the
following perturbations: rotation—90◦, noise—std = 0.08, outliers—400, missing ratio—0.60. It
can be seen that DeepGMR and GRDO demonstrate higher accuracy in registration when the
rotation angle is 90◦. When the standard deviation of Gaussian noise is 0.08, DeepGMR, GRDO,
RDO, and DO perform better. Regarding the registration with outliers, LSGCPD, GRDO, RDO,
and DO show superior performance. GRDO consistently maintains high accuracy even when
the occlusion ratio reaches 60%.

Figure 10. The registration results on the WHU-TLS dataset (Top—Campus, Bottom—Heritage
Building). Each column shows the registration results under a specific perturbation, while each row
displays the registration results of different methods.
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Figure 11 displays registration results on the WHU-TLS dataset under different pertur-
bations, with the top for Campus and the bottom for Heritage Building. The red indicates
the log MSE of deep learning methods, and the blue represents that of DO, RDO, and
GRDO. The green shows that of BCPD, LSGCPD, and TEASER++. DeepGMR performs
well with the registration under larger rotations (over 90◦). DeepGMR, GRDO, and FMR
demonstrate higher accuracy in achieving registration under varying degrees of noise.
Traditional methods, notably DO, RDO, and GRDO, outperform deep learning methods in
handling registration under outliers and occlusions.
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Figure 11. The log10 MSE of registration results on the WHU-TLS dataset (Top—Campus,
Bottom—Heritage Building). Red signifies deep learning methods, blue represents learning-based
optimization methods, and green indicates traditional registration methods. Each X-axis represents
varying degrees of perturbation: rotation angles, standard deviation of noise, number of outliers, and
occlusion rate. For the sake of comparison, the comparison is marked by arrows and numeric values.

4.2.4. Registration on the UWA Dataset

Figure 12 shows the registration results on the UWA dataset. Except for DO, RDO, and
GRDO, other methods showcase unsatisfactory performance in registering the model and
scene. RDO stands out for its accuracy. In contrast, GRDO performs poorly. GRDO is solely
trained on the chef model, lacking exposure to other objects within the scene. It achieves
registration using key points from both chef and scene models. Due to the body of the
chef model being missing in the scene, the extracted key points from the scene graph differ
significantly from those of the chef model, resulting in the poor performance of GRDO.

MSE = 8.3838e-04 MSE = 7.3638e-04 MSE = 0.0012  MSE = 0.0721 MSE = 0.0721                   

MSE = 0.0631 MSE = 0.1130 MSE = 0.1130 MSE = 0.1130 MSE = 0.1130

DO RDO GRDO BCPD LSGCPD

TEASER++   FMR   RGM   RPMNet   DeepGMR

Figure 12. The registration results on the UWA dataset.

5. Discussion
5.1. Key Points Extraction

We conduct experiments on the Campus model to explore the influence of point cloud
density on the key point extraction. Figure 13 illustrates the point clouds with varying
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densities attained through random, uniform, and nonuniform downsampling, along with
the extracted key points. The key points effectively capture the model shape and details
(highlighted by red rectangles), as seen in Figure 13, except for those extracted using the
uniform downsample method. This method merges points within the same box, averaging
their locations, colors, and normals, leading to a loss of detailed information.

Figure 13. Campus model with different densities and the extracted key points. The value in the
bottom-right corner represents the number of points.

Additionally, we extract key points from point clouds with varying rotations, noise
levels, and sampling rates to explore the robustness and effectiveness of Delaunay trian-
gulation in terms of different perturbations. Figure 14 displays key points extracted via
Delaunay triangulation from the Campus model (WHU-TLS dataset) and the Chair model
(ModelNet40 dataset) rotated at 0◦, 30◦, 60◦, and 90◦ along the X, Y, and Z axes. The
bold black number indicates the number of key points extracted from a single point cloud,
while the black points illustrate differences among key points extracted from rotated and
non-rotated point clouds. It can be seen that the number of key points extracted from the
point cloud rotated 90◦ is nearly half that of the non-rotated point cloud. For symmetric
shapes like the Chair model, rotation has less impact on the performance of Delaunay
triangulation, and the extracted key points adequately cover both the shape and its details
in terms of various rotation angles. However, for intricate shapes like the Campus model,
extracted key points generally outline the shape but overlook detailed information. As
the rotation angle increases, the disparity between key points extracted from rotated and
non-rotated point clouds widens, evident in the black area in the third and fourth columns.
Figure 15 depicts key points extracted via Delaunay triangulation from the Campus model
(WHU-TLS dataset) and the Chair model (ModelNet40 dataset) under various noise and
sampling rates. The first row displays the extracted key points under Gaussian noise
standard deviations of 0, 0.02, 0.04, and 0.06. The second and third rows show the extracted
key points via the random sampling technique and the nonuniform sampling technique,
respectively. The sampling rates are 100%, 80%, 60%, and 40%. The bold black number
signifies the number of key points extracted from a single point cloud. The preservation of
shape and detail highlights the robustness of the key point extraction to variations in noise
and sampling.
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Figure 14. The key points extracted via Delaunay triangulation from the Campus model (WHU-TLS
dataset) and the Chair model (ModelNet40 dataset) rotated at 0◦, 30◦, 60◦, and 90◦ along the X, Y,
and Z axes.

Figure 15. The key points extracted via Delaunay triangulation from the Campus model (WHU-TLS
dataset) and the Chair model (ModelNet40 dataset) under various noise and sampling rates.

To further explore the influence of key points extracted by Delaunay triangulation on
the final registration, we rotate the Dancing Children model 30◦, 60◦, 90◦, and 120◦ along
the X, Y, and Z axes to extract their key points, while comparing the number of key points
and the registration error. The number of key points and their registration error is shown
in Table 4. Please note that the number of key points in this table represents the size of the
intersection of the key points of the rotated model and the key points of the original model.
The number of key points of the original model is 3269. It can be seen that no matter how
many degrees the model is rotated, the number of key points is about 2000, which is greater
than half of the number of key points of the original model. To discuss the influence of
the number of key points on registration error, we also compare the MSE of registration
under varying rotations between the key points and the original model. It can be seen that
although the registration accuracy of the original model is higher than that of the rotated
model, the gap is small. Additionally, as the degree of rotation is increased, the registration
accuracy is lowered.

In summary, combining Figure 14 with Table 4, we can find that although the key
points extracted by Delaunay triangulation are rotation-dependent, the shape and most
details are maintained, making the gap between the registration error of the key points and
that of the original model slight.
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Table 4. The number of key points (NP) and their registration error (MSE).

Key Points Original Model

30◦ 60◦ 90◦ 120◦ 30◦ 60◦ 90◦ 120◦

NP MSE NP MSE NP MSE NP MSE MSE MSE MSE MSE

X-axis 1850 0.0191 1792 0.0225 1668 0.0242 1777 0.1287 0.0141 0.0271 0.0389 0.1387

Y-axis 1834 0.0152 1833 0.0150 1646 0.0815 1786 0.0894 0.0102 0.0178 0.0798 0.0882

Z-axis 1716 0.0192 1709 0.0465 1608 0.1415 1702 0.1689 0.0145 0.0468 0.1401 0.1625

5.2. Searching Scheme

The proposed searching scheme comprises four screening criteria: (1) R1—similarity
in graph structure; (2) R2—similarity in coordinates; (3) R3—similarity in the importance
of graph nodes; (4) R4—similarity in normal vectors. To demonstrate the indispensability
of screening criteria, we conduct the ablation study on MPI Dynamic FAUST [51] and
ModelNet40 datasets.

The MPI Dynamic FAUST dataset includes 10 subjects with 14 poses, and each pose
contains hundreds of sequences, from which we randomly select one subject and its 14 poses
as searching instances, as shown in Figure 16. We select instance6 (rectangle) as the reference
instance Q and try to find its similar instance S from the remaining 13 instances. The ellipse
shows the difference between these 13 instances and instance6. instance1 and instance12 are
regarded as the target instances because the difference between these instances with Q is
slight. Table 5 shows the result of the ablation study on the MPI Dynamic FAUST dataset.
The number of candidates represents the number of instances entering the next screening
round. The value after “/” represents the candidate number when β′ = 1 and β = 1. The
value before “/” shows the candidate number when β′ = 3 and β = 0.80. The collaboration
of these four screening criteria takes 5.538106 s to find the target instance S-instance12. Also,
we find that if the parameters are set loosely, S will not be easily eliminated.

Figure 16. The searching instances in the MPI Dynamic FAUST dataset.

Table 5. Result of ablation study of searching scheme on the MPI dynamic FAUST dataset.

Number of Training Instances Number of Candidates Index

R1 13 10/3 1, 2, 4, 5, 7, 9, 10, 11, 12, 14/4, 11, 14

R1, R2 13 7 2, 5, 7, 9, 10, 12, 14

R1, R2, R3 13 3/1 10, 12, 14/14

R1, R2, R3, R4 13 1 12

To further explore the robustness of the searching scheme, we conduct experiments
in the selected subject with its 14 poses under varying sampling and noise levels, and the
Shape Distributions [52] method is used for comparison. The shape distribution quanti-
tatively describes and compares 3D geometry using geometric characteristics evaluated
by a shape function. The D2 shape distribution is renowned for its suitability in model
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classification and comparison. The Bhattacharyya coefficient is utilized to measure the
similarity between shape distributions [53]. Given the reference instance Q and the re-
maining 13 candidates, we test the robustness of the proposed searching scheme using
three cases: (1) Searching for a similar instance S under varying noise levels. The standard
deviation of Gaussian noise is set to 13 random numbers within the range of 0 to 0.3.
(2) Searching for a similar instance S under varying sampling rates. The sampling rate is
set to 13 random numbers within the range of 0.7 to 1. (3) Searching for a similar instance
S under varying sampling rates and noise levels, referring to the mentioned settings of
sampling rate and the standard deviation. The search results are shown in Table 6. The
value after “/” represents the index of the selected similar S, and the value before “/”
shows the candidates with higher similarity to the given reference instance Q (instance6). It
can be seen that the proposed searching scheme is feasible for handling search tasks under
various perturbations and has higher robustness than the Shape Distributions method.

Table 6. The search results for the MPI Dynamic FAUST dataset under varying perturbations.

Varying Noise Varying Sampling Varying Noise and Sampling

Searching Scheme 10, 12, 14 /12 11, 12, 13/12 9, 10, 12/12

D2 Shape Distribution 2, 5, 9/9 1, 10, 11/11 1, 10, 11 /10

To confirm this conclusion, we randomly select one subject with a single pose (chicken
wings) comprising 216 sequences with varying levels of occlusions and outliers from the
MPI Dynamic FAUST datasets, as shown in Figure 17. We select instance01 as the reference
instance Q and try to find its similar instance S from the remaining 215 instances. Table 7
shows the result of the ablation study on the MPI Dynamic FAUST dataset with the pose of
chicken wings. The candidates entering the second screening round are shown in Figure 18.
The black represents the reference instance instance01. instance56 is the selected similar
instance S of the Shape Distributions method. It can be seen that the proposed search
scheme performs better than the Shape Distribution method.

Figure 17. The sequence of the poses of chicken wings.

The ModelNet40 dataset contains 40 categories of CAD models, among which we
select the “Car” category as the study object. The training set includes 190 instances, and
the test set contains 95 instances. We randomly select instance102 as Q and try to find its
target instance S in the remaining 284 instances. Table 8 shows the ablation study results.
“\” is used to replace the index value when the number of candidates is large. We can find
that R1 can eliminate almost one-half of instances whose graph structure is far different
from that of Q, and R2 can achieve a similar effect in reducing the number of candidates.
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Table 7. Result of ablation study on the MPI dynamic FAUST dataset with the pose of chicken wings.

Number of Training Instances Number of Candidates Index

R1 215 11 3, 4, 5, 6, 7, 8, 9, 13, 14, 15, 17

R1, R2 215 8 3, 4, 5, 6, 7, 8, 9, 13

R1, R2, R3 215 3 3, 6, 7

R1, R2, R3, R4 215 1 3

Figure 18. The candidates entering the second screening round and the final selected similar point
clouds (dashed rectangles).

Table 8. Result of ablation study of searching scheme on the ModelNet40 (car) dataset.

Number of Training Instances Number of Candidates Index

R1 284 109/98 \

R1, R2 284 47 \

R1, R2, R3 284 3/1 159, 211, 240/159

R1, R2, R3, R4 284 1 240

In addition, we test the proposed searching scheme on objects with unseen categories
using a mixed dataset comprising the MPI Dynamic FAUST dataset, ModelNet40 dataset,
and SHREC’20 dataset. The SHREC’20 dataset [54] includes an elastic-stuffed toy rabbit
with 11 partial scans and one full scan. For this experiment, we focus on the “Car” category
from the ModelNet40 dataset with instance102 as the reference instance Q, resulting in a total
of 310 candidate instances. We set β′ = 5 and β = 0.99. Table 9 shows the ablation study
results. Due to β′ = 5, there are five candidates entering R4, as shown in Figure 19. It can be
seen that the proposed searching scheme can locate targets in objects with unseen categories.

Table 9. Result of ablation study of searching scheme on the mixture of datasets.

Number of Training Instances Number of Candidates Index

R1 310 100 \

R1, R2 310 47 \

R1, R2, R3 310 5/1 142, 159, 208, 211, 240

R1, R2, R3, R4 310 1 240
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Figure 19. The instances from the mixed dataset entering the final screening.

These four screening criteria play distinct roles in the searching scheme. R1 filters
out instances whose structure is far different from that of Q. R2 eliminates instances with
dissimilar point distributions to Q. R3 screens instances with similar node proximity to Q.
R4 selects the most similar instance based on the normal vector. In summary, the proposed
searching scheme follows a coarse-to-fine approach to efficiently search S for Q. Each of the
four screening criteria is essential and complements one another. Please note that R2 will
discard similar point cloud S if the rotation angle between S and Q exceeds 75◦ because
DPGMM clusters point clouds by coordinates in R2.

5.3. GRDO
5.3.1. Partial Point Cloud Registration

We conduct registration experiments on the MVP dataset [36] under various rotations
to evaluate the performance of GRDO on partial point cloud registration. The MVP dataset
is a large-scale multi-view partial point cloud dataset comprising over 100,000 high-quality
scans, and it provides a training set with 62,400 partial–complete point cloud pairs and a
test set with 41,800 pairs. We randomly select six pairs for registration. Notably, GRDO is
solely trained on complete models, employing the following training parameters: rotation—
90◦, noise—0, outliers—0, and missing ratio—0.4 to 0.9. In the test stage, we use the learned
regressors to register the partial point cloud pairs directly. Figure 20 shows that GRDO can
register partial point cloud pairs and perform well under varying occlusions yet struggles
with larger rotations.

Figure 20. Registration on the MVP dataset with various rotation angles.
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5.3.2. Different Density Distribution

Given that GRDO extracts key points based on graph structures, we suspect its sensitivity
to matching point clouds with varying densities, especially when the source and target point
clouds are from different or noisy density distributions. We conduct registration experiments on
the MVP dataset with varying densities to investigate this. We first rotate the original model
by 45◦, 90◦, and 120◦ to obtain the ground truth, then add Gaussian noise with a standard
deviation of 0.02 to the ground truth, which is downsampled via the random sample, uniform
sample, and nonuniform sample methods to create target models. The training parameters are
rotation—150◦, noise—std = 0.05, outliers—0, and missing ratio—0. The registration results
are shown in Figure 21. As the number of points increased, the registration accuracy improved
significantly. Surprisingly, even with a threefold difference in the number of points between
point clouds (2048 vs. 512), GRDO successfully registered them, proving its resilience to density
distribution variations while maintaining high accuracy.

Figure 21. Registration on the MVP dataset with various density distributions.

To explore the influence of the number of points on computation time, we downsample
the MVP dataset (motorcycle) to 10,000, 5000, 2500, 1000, and 500 points, respectively, while
comparing the computation time. The computation time is shown in Figure 22. Please
note that the computation time is the time for registering the model with 10,000, 5000, 2500,
1000, and 500 points to the model with 10,000 points, respectively. It can be seen that as the
number of points decreases, the computation time becomes shorter.
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Figure 22. The computation time on the motorcycle model with different sizes.

5.4. Transfer Module

To validate the transfer module in transformation estimation, we conduct a compar-
ative experiment on the ModelNet40 dataset between registration using GRDOTF (with
the module) and GRDONTF (without the module). Figure 23 shows the registration results
on Airplane and Car models. GRDOTF is represented by the solid line with a square,
while GRDONTF is shown by the solid line with a circle. Top displays the comparison of
computation time. Bottom shows the log10MSE. GRDONTF generally has shorter computa-
tional time, better registration accuracy, and similar robustness and stability compared to
GRDOTF. Despite having lower accuracy compared to GRDONTF, GRDOTF exhibits high
robustness and stability, surpassing most of the comparison methods. Thus, the transfer
module is essential and highly effective for learning-based optimization in the registration
of multiple point cloud pairs.
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Figure 23. The comparison of GRDO with transfer module (GRDOTF) and GRDO without transfer
module (GRDONTF) under different perturbation settings on the ModelNet40 dataset (A—Airplane,
C—Car). Top displays the comparison of computation time. Bottom shows the log10MSE. Each X-axis
is varying degrees of perturbation, namely rotation angles, standard deviation of noise, number of
outliers, and occlusion rate.

5.5. Comparison with Learning-Based Methods

The memory requirement is O
(

N
((
(c1+c2)NM+c2NS))+c3NM × NM) for learning

Dt+1 in DO, which largely depends on the number of points [11]. GRDO extracts fea-
tures from key points, substantially reducing the storage requirement for learning Dt+1.
Compared to deep learning methods, learning-based optimization approaches (DO, RDO,
and GRDO) achieve more stable and robust registration under various perturbations.
Deep learning methods face challenges in converging to optimal solutions when dealing
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with perturbations like noises and outliers due to their data-driven nature. In contrast,
model/feature-driven learning-based optimization methods excel in handling such per-
turbations. Although learning-based optimization methods are not as flexible as deep
learning methods, SGRTmreg provides a new perspective for achieving it. A breakthrough
in developing a more general feature could enable learning-based optimization methods to
achieve multi-number and multi-category point cloud registration efficiently.

5.6. Limitations

GRDO outperforms DO and RDO in terms of computation time and storage, but it
has limitations in achieving registration on model and scene. These limitations arise from
the key point extraction process, which relies on the graph structure. When matching point
clouds with significantly different graph structures, the performance of GRDO diminishes,
making it challenging to register partial point cloud pairs with vastly different graph struc-
tures, such as large outdoor and indoor scenes. While the proposed SGRTmreg framework
can achieve multiple pairwise registrations, it is limited to similar point cloud pairs due to
the poor generalization of the feature extraction method, restricting the applicability of the
learned regressors.

6. Conclusions

This paper presents SGRTmreg, a framework for the registration of multiple point
cloud pairs, featuring a proficient searching scheme to find similar point clouds, the
learning-based optimization algorithm GRDO for registering point cloud pairs, and a trans-
fer module for additional registrations. The searching scheme selects a similar point cloud
for a given one from a collection by using four similarity measurements: graph structure,
shape, inner structure, and surface direction. Experimental results demonstrate that the
searching scheme can select similar point clouds under various perturbations and from
mixed datasets. GRDO learns shared regressors from key points of point clouds, enabling
faster and more efficient registration. Experimental results show its high robustness and
efficiency. Four experiments validate the potential of SGRTmreg, showing its high perfor-
mance in point cloud registration. Compared to deep learning and learning-based methods,
SGRTmreg exhibits superior accuracy, efficiency, and robustness. GRDO stands out among
advanced learning-based optimization methods with reduced computational cost.

Future work includes designing a generalized parameter representation for rigid
and non-rigid registration and developing a novel feature encoding method to estimate
correspondences for real-world scene registration. On this basis, we anticipate applying
GRDO, the searching scheme, and the transfer module to a wider range of computer
graphics and computer vision tasks, such as non-rigid registration and image denoising.
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