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Abstract: Detail preservation is a major challenge for single image super-resolution (SISR). Many
deep learning-based SISR methods focus on lightweight network design, but these may fall short in
real-world scenarios where performance is prioritized over network size. To address these problems,
we propose a novel plug-and-play attention module, rich elastic mixed attention (REMA), for SISR.
REMA comprises the rich spatial attention module (RSAM) and the rich channel attention module
(RCAM), both built on Rich Structure. Based on the results of our research on the module’s structure,
size, performance, and compatibility, Rich Structure is proposed to enhance REMA’s adaptability
to varying input complexities and task requirements. RSAM learns the mutual dependencies of
multiple LR-HR pairs and multi-scale features, while RCAM accentuates key features through
interactive learning, effectively addressing detail loss. Extensive experiments demonstrate that REMA
significantly improves performance and compatibility in SR networks compared to other attention
modules. The REMA-based SR network (REMA-SRNet) outperforms comparative algorithms in
both visual effects and objective evaluation quality. Additionally, we find that module compatibility
correlates with cardinality and in-branch feature bandwidth, and that networks with high effective
parameter counts exhibit enhanced robustness across various datasets and scale factors in SISR.

Keywords: single-image super-resolution; Rich Structure; attention; rich elastic mixed attention

1. Introduction

Single image super-resolution (SISR) aims to rebuild a high-resolution (HR) image
based on its low-resolution (LR) counterpart. It is widely used in digital multimedia,
facial recognition, remote sensing image restoration, medical image processing, and other
domains [1], and many SISR algorithms have been proposed, including interpolation, recon-
struction, algebraic characteristics, and learning-based methods [2,3]. In recent years, there
have been remarkable advancements in deep learning-based SISR algorithms. However,
one of the major challenges of deep learning-based algorithms is high-frequency detail
preservation. Numerous studies have proposed diverse algorithms to address this chal-
lenge, including residual learning [4,5], recursive structures [6–8], dense connections [9–11],
and multi-path learning [12,13]. In recent times, attention-based algorithms have gained
prominence, notably after the popularity of Transformer-based algorithms. In fact, there
have already been plenty of studies proposing attention-based SISR methods [14–17] to re-
store details. Most studies prefer to design a specific SISR network utilizing attention rather
than a plug-and-play attention module to improve the reconstruction quality, resulting in a
lack of flexibility in methods. And, only a few researchers have proposed flexible attention
modules for SR tasks [18–20], except for directly plugging classic attention modules into
SR networks [21,22].

In fact, many researchers have solely focused on proposing size-oriented attention
modules to enhance performance without increasing or even reducing model complexity.
However, in real-world scenarios, there is a significant number of tasks that prioritize
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performance over size, rather than solely emphasizing low-complexity modules with
limited performance improvement. Therefore, to address the requirements of various
tasks effectively, a flexible module should encompass both size-oriented and performance-
oriented characteristics, which are aspects that are rarely discussed. Moreover, according
to our experiment results, some size-oriented modules may function effectively within
one network; however, their compatibility with other networks may not be guaranteed.
Indeed, this raises a more general question in deep learning: why does a plug-and-play
module work in one network but not in another? And what are the factors influencing the
performance of a plug-and-play module? These issues are not well-studied.

To address the challenges mentioned above, we identify the influential factors affecting
the performance of a plug-and-play module and propose the rich elastic attention module
(REMA), which is a plug-and-play attention module for SISR. For the flexibility of the module,
we propose Rich Structure, which allows seamless switching between size-oriented and
performance-oriented modes to accommodate various requirements and ensure compatibility
with different networks. And Rich Structure is the basic structure of REMA.

From the attention module’s perspective, it is essential to identify the key features
affecting SR quality. Thus, we divide SISR into two steps: (1) upsampling LR images to the
target size; and (2) minimizing the difference between the resized image and the ground-
truth image, succinctly referred to as ‘upscaling’ and ‘denoising’. An effective attention
module should highlight key features throughout this process. Building upon the structure
and inspiration from CBAM [23], REMA enhances key feature representation in these steps
from spatial and channel aspects by enriching the in-module feature pass-through. Using
the proposed Rich Structure, REMA can seamlessly switch between size-oriented and
performance-oriented modes, ensuring flexibility for different requirements by controlling
the bandwidth of in-module features pass-through.

To evaluate the effectiveness of REMA, we integrate it into our proposed modified
EDSR [4] and name the resulting model REMA-SRNet. Extensive experiments are con-
ducted on commonly used SR benchmarks. We compare REMA with other comparative
algorithms and plug-and-play attention modules. The results demonstrate the effectiveness
of Rich Structure, REMA, and REMA-SRNet.

In summary, the main contributions of this paper are as follows:

• We identify the key factors affecting the performance of a plug-and-play module
and propose Rich Structure, enabling seamless switching between size-oriented and
performance-oriented modes for a plug-and-play module to satisfy the diverse needs
of different tasks.

• We propose a SISR attention module, based on Rich Structure, called REMA, consisting of
RSAM and RCAM. RSAM employs a creative method to enhance performance through
learning LR-HR mapping mode and multi-scale feature fusion. RCAM enhances the
overall performance by learning and reducing noise caused by upsample operations and
dimension–resolution changes led by convolution operations, using interactive learning.
REMA can be easily integrated into networks with various architectures and significantly
improve detail reconstruction accuracy at different scale factors.

• Extensive experiments demonstrate that REMA can carry a simple ResNet backbone
SR network to the state of the art while balancing performance and model size. More-
over, the impact of the number of parameters on a module’s effectiveness and the
overall networks’ robustness across different datasets and scale factors is comprehen-
sively discussed in the experiments.

The remainder of this paper is organized as follows: Section 2 provides a brief overview
of related work on deep learning-based SISR networks, attention modules, and attention-
based SR models. In Section 3, we detail our proposed REMA, including problem analysis,
overall structural design, and module architecture. Section 4 validates the effectiveness
of our method, compares its performance with existing alternatives, and highlights its
significant advantages. Finally, Section 5 summarizes the study and outlines directions for
future work.
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2. Related Works
2.1. Deep Learning-Based SR Methods

SRCNN is the first CNN-based end-to-end SISR network [24]. It interpolates the
input image to the target size and employs three convolution layers for LR-HR non-linear
mapping learning. SRCNN preserves more details than traditional methods, leading to its
widespread adoption. Subsequently, CNN-based SISR methods have gained popularity.
Examples include ESPCN [25] and FSRCNN [26], which directly take LR images as inputs
directly to reduce complexity and increase network speed. ESPCN uses sub-pixel convolu-
tional layers as reconstruction layers, while FSRCNN employs deconvolution layers for
HR reconstruction.

To enhance performance, many researchers have integrated techniques such as residual
learning, dense connections, recursive structures, and multi-scale or multi-level fusion into
their networks. For instance, Kim et al. proposed VDSR [5], which makes the network
deeper through residual learning and gradient clipping to improve reconstruction quality.
EDSR [4] employs more residual blocks without batch normalization layers to deepen the
network and utilizes pixel shuffle to optimize reconstruction performance. Methods like
DRRN [7] and DRCN [6] introduce recursive structures to share parameters among layers
and deepen the network without significantly increasing the model size. Others, such as
RCAN [27], implement a cascading mechanism on a residual network to reuse hierarchical
features and balance the number of parameters and accuracy.

Additionally, MSRN [28] creates two sub-branches and uses convolutions of differ-
ent sizes in a residual block, fusing features interactively to obtain multi-scale features.
The multi-scale dense convolutional network (MDCN) [9] densely connects each layer in
multi-scale residual blocks to fully utilize multi-scale features within the block. Moreover,
ESRGCNN [29] adapts group convolutional residual blocks for multi-level feature fusion
and computational cost reduction. UNetSR [30] directly realizes shallow–deep feature
fusion via skip connections, akin to U-Net architecture.

According to these studies, dense connections, recursive learning, multi-scale or multi-
level feature fusion, and other techniques share a common goal. They aim to efficiently
create and learn features at different scales within the backbone structure, a critical aspect
of improving CNN-based SISR algorithms.

2.2. Attention and Attention-Based SR Models

Attention is a method used to recalibrate the weights of input features in deep learning,
aiding models in focusing on key features. In fact, attention-based modules find wide
application in various computer vision tasks. The squeeze-and-excitation (SE) block [31]
was introduced to adjust informative features within channels. Woo et al. [23] proposed
the convolutional block attention module (CBAM), incorporating both channel and spatial
attention to adjust feature weights. Coordinate attention (CA) [32] embeds positional
information into channel attention, facilitating the capture of long-range dependencies
while preserving precise positional information.

Attention-based methods are also prevalent in SISR tasks. RCAN [27] implements a
residual-in-residual (RIR) structure with channel attention, enhancing performance by fusing
high- and low-frequency features via skip connections. DRLN [10] combines densely con-
nected layers with residual blocks and incorporates a Laplacian pyramid attention mechanism
to enhance image quality. Multi-scale feature fusion block (MSFFB) utilized in a multi-scale
channel and spatial attention module (CSAM) in MCSN [33] facilitates multi-scale feature
representation learning, enhancing the feature selection ability of the channel attention module.
PAN [18] employs a pixel attention module in the backbone and upscale layers, generating a
3D attention map at the pixel level to improve performance with fewer parameters. PRRN [34]
incorporates a progressive representation recalibration block to extract meaningful features
by utilizing pixel and channel information and employing a shallow channel attention mech-
anism for efficient channel importance learning. RNAN [35] proposes residual non-local
attention to obtaining non-local hybrid attention, further enhancing performance by adap-
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tively adjusting the interdependence between feature channels. Dynamic attention, as used in
attention to network (A2N) [36], comprises non-attention component branches and composite
attention branches to dynamically suppress unnecessary attention adjustments. The non-local
spatial attention network (NLSN) [20] optimizes the computational cost of non-local attention
via sparse attention. SwinIR [16] and Swin2SR [17] construct networks based on the Vision
Transformer, achieving superior performance.

Few studies focus on plug-and-play attention modules for SISR tasks. Wang et al. [19]
proposed the lightweight attention module BAM to suppress large-scale feature edge noise
while retaining high-frequency features, which is the most relevant research to our topic.
BAM includes the adaptive context attention module (ACAM) for noise reduction and the
multi-scale spatial attention module (MSAM) for preserving high-frequency details.

3. Methodology
3.1. Motivation and the Overall Framework

In our proposed module, the objective is to cater to the requirements of both performance-
prioritized and size-prioritized tasks. Therefore, the initial focus is on maximizing performance
to meet the demands of performance-prioritized tasks. Subsequently, efforts are directed toward
controlling the module size to align with the needs of size-prioritized tasks. Consequently, all
parameter-friendly designs are not considered during the initial stage of the module design
process. This concept permeates throughout the entire module design, distinguishing our
approach from others that opt for lightweight structures directly in their methods. However,
this does not mean module size is not important at all for us. Indeed, this is a problem with
parameter efficiency. A parameter-efficient module should not only use fewer parameters
to exchange limited performance improvement but also boost the performance with more
parameters and reach parameter efficiency globally. And ‘Rich Structure’ is proposed for this
purpose. Table 1 illustrates the implications of nouns, abbreviations, and symbols used in the
following text.

Table 1. Implications of nouns, abbreviations, and symbols

Abbreviation/Symbols Implication

REMA rich elastic mixed attention
REMA-SRNet REMA-based SR network

RSAM rich spatial attention module
RCAM rich channel attention module

AvgPool average pooling
Adp Avg pool adaptive average pooling

Adp mixed pool adaptive average⊕maximum pooling
SF scale factor
R The ratio of the elastic adjuster

Conv convolution
FC fully connected layer

Concate Concatenate

⊗ element-wise multiplication
⊕ element-wise addition
⊖ element-wise subtraction

3.2. Module with Rich Structure

For a module, the flexibility involves more than just being plug-and-play, it also in-
volves robustness across different datasets and compatibility to networks with varying
characteristics. Identifying influential factors related to these aspects is crucial. Our exper-
iments reveal that key factors affecting the plug-and-play module performance include
the overall shape (cardinality, channel bandwidth, and depth) and task-specific effective
algorithms. Hence, we propose REMA based on these considerations.
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Current plug-and-play attention modules can be categorized into two types based on
cardinality (the number of branches with feature transformation): single-branch modules
like CBAM, SE, and PA, and multi-branch modules like CA and BAM. However, our
experiments show that single-branch modules, which we define as having a plain structure,
exhibit less performance improvement than most multi-branch modules when facing input
features with higher complexity. Thus, our method is designed as a multi-branch structure
to ensure compatibility.

Attention modules with multiple branches, such as Inception-like [37] and ResNeXt [38],
or Res2Net-like blocks [39], may encounter challenges related to size-oriented designs,
leading to reduced robustness and overall performance across various scale factors in the
SISR task. These modules adopt a similar approach to parameter control. For instance,
prevalent Inception-like modules split the input feature maps along the channel dimension,
transform the features, and then concatenate them for fusion. Likewise, ResNeXt and
Res2Net employ bottleneck or grouped convolution to split, transform, and aggregate or
concatenate features in the final stage. They all follow a ’split–transform–aggregate or
concatenate’ structure to balance performance and module size, utilizing the bottleneck
structure to split input features. Additionally, single-branch attention modules utilize this
structure to adjust their size. Figures 1 and 2 illustrate how these methods split features or
control module sizes using the dimension reduction ratio (r). In other words, the ‘bottleneck’
structure can become a performance bottleneck under certain conditions.

Figure 1. Illustration of dimension reduction in size-oriented attention modules. (a) Dimension
reduction in SE-like modules, and the channel attention module of BAM and CBAM and their
variants. (b) Dimension reduction in CA.
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Figure 2. Illustration of size-oriented and performance-oriented modules. (a) ResNeXt-like block.
(b) Inception-like block. (c) Module with Rich Structure (ours).

However, the issue does not lie solely with the bottleneck structure. In fact, the real
concern that deserves more attention is why the focus remains solely on the reduction
in dimensions, or in other words, why finding a ratio to minimize the model size while
maintaining performance is the predominant research direction. What would occur if a
similar bottleneck structure were employed but with increased dimensions, i.e., widening
the bandwidth of channels for feature pass-through, rather than reducing it? Only a few
studies have addressed this question, such as [40,41]; the authors approached the topic
from the perspective of the entire backbone, comparing the widened residual and Inception
block with a deeper backbone, demonstrating the effectiveness of widening the bandwidth
of channels. Our experiments also prove this from the module perspective. In other words,
switching between size-oriented and performance-oriented modules could be unified
within the same framework.

Therefore, Rich Structure is proposed as a multi-branch structure with a bi-directionally
adjustable channel bandwidth of features in each branch (Figure 2). Specifically, in our
proposed method, instead of using ‘split–transform–concatenate/aggregate structure’, we
directly copy or rescale the inputs to different scales, transform features in each branch, and
then aggregate them together. In other words, the structure is ‘copy/rescale–transform–
aggregate’. Therefore, the overall width of the features in our module will be much larger
and appear fatter, thus denoted as the Rich Structure. On the other hand, dimension reduc-
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tion (C/r, r ∈ [1,+∞)) is replaced with the proposed elastic adjuster (C × R, R ∈ (0,+∞)).
When R ∈ (0, 1), the module functions akin to a ‘split–transform–concatenate/aggregate’
structure to fulfill the requirements of size-prioritized tasks. Conversely, when R ∈ [1,+∞),
the module utilizes additional parameters to enhance performance. Thus, with the help of
Rich Structure, REMA could seamlessly switch between size-oriented and performance-
oriented modes to ensure flexibility to different requirements.

3.3. Rich Elastic Mixed Attention (REMA)

As mentioned above, the performance-related factors include the shape of the module
and task-specific effective algorithms. For the former, we design Rich Structure to ensure
compatibility with inputs of varying complexity and flexibility for different tasks. However,
it is far less important than the latter. Thus, RSAM and RCAM are designed based on the
characteristics of SISR, and Rich Structure amplifies their effectiveness. RSAM and RCAM
function like miniature SR networks in REMA.

The goal of deep learning-based SISR tasks is to minimize the difference between
the reconstructed image and the real HR image, which can be expressed by the following
formula [42]:

θ̂F = argθF minL
(

ISR, Iy
)
+ λΦ

(
θ
)

(1)

where θF denotes the parameters of the SR model F. L devotes the loss between the
reconstructed image ISR and the ground-truth HR image Iy, and θ̂F denotes the model
parameter that minimizes L. Φ

(
θ
)

is the regularization term, and λ serves as the trade-off
parameter employed to adjust the proportion of the regularization term. In other words,
the purpose of deep learning-based SISR models is to find the θ̂F to make ISR as close to Iy
as possible.

From the module perspective, the key is to identify features that deserve more attention
during the process mentioned above. To simplify the problem, we decompose the HR
reconstruction process into two steps: upscaling the LR image to the target size and
eliminating the difference in details between the upscaled image and the real HR image.
The process can be expressed in the following formula:

Iy = f (ILR ⊗ Mup, DHR) (2)

where ILR refers to the low-resolution image, Mup is the LR-HR upscale mapping mode.
And DHR denotes the difference between the upscaled LR image ILR ⊗ Mup and Iy.

Obviously, the key to high-quality HR image reconstruction lies in the accurate estima-
tion of Mup and DHR. Therefore, inspired by CBAM, which enhances feature representation
from both spatial and channel aspects, we propose a rich spatial attention module (RSAM)
and a rich channel attention module (RCAM) to improve SISR network performance. Un-
like CBAM, we eschew lightweight design and instead increase cardinality, the in-branch
channel dimensions, and depth. Specifically for SISR tasks, the inadequacy of CBAM
and other lightweight attention modules results in a lack of sufficient space for feature
maps with various resolutions for interactive learning, which is crucial for Mup and DHR
estimation. Since learning LR-HR mapping involves avoiding details missing due to reso-
lution changes, there should be at least one pair of feature maps with different resolutions.
Therefore, a multi-branch structure is employed in both RSAM and RCAM to enrich the
in-module features passed through to aid SISR networks in learning Mup and DHR. On
the other hand, a multi-branch structure also ensures better multi-scale and multi-level
feature fusion for enhancing long-range dependency learning [43], which has already been
proven effective in other studies. Thus, we combine multi-scale fusion, LR-HR interactive
learning, and attention mechanisms to propose REMA. To verify the effectiveness of REMA
for SISR tasks, we apply REMA to a simple ResBlock-based backbone SISR network named
REMA-SRNet and compare it with other methods. We apply RSAM and RCAM in parallel
at the ResBlock to enhance the backbone performance. Additionally, we fuse features from
the LR image and integrate REMA into the reconstruction block to improve performance
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under high-scale factors. The detailed structures of REMA and REMA-SRNet are illustrated
in Figure 3.

Figure 3. Illustration of the proposed REMA-SRNet. The backbone of REMA-SRNet is based on
residual blocks incorporating REMA (REMA ResBlock). The reconstruction layers utilize bilinear
upsampling followed by a 3 × 3 convolution and Leaky ReLU layers. REMA is applied at 4×
and 8× upscaling, with a long skip connection from the bilinear-upscaled LR input, followed by
a 1 × 1 convolution for dimension alignment. SF denotes the scale factor. For 2×, 4×, and 8×
reconstruction, the number of REMA ResBlocks is 16 and the number of reconstruction blocks is 1, 2,
and 3, respectively.

3.4. Rich Spatial Attention Module (RSAM)

RSAM aims to enhance long-range feature extraction and non-linear LR-HR mapping
mode Mup learning through dynamic multi-scale feature fusion with spatial attention. The
main difference between RSAM and other widely used multi-scale feature fusion methods lies
in the construction of the feature pyramid. As shown in Figure 4, in contrast to methods that
utilize convolutions with different kernel sizes [44], or lightweight convolutions like dilated
or factorized convolution [45] to learn and fuse features from the same feature maps, RSAM
constructs the feature pyramid from rescaled input feature maps based on the scale factor.

Figure 4. The difference in multi-scale feature generation between RSAM and other conventional methods
(assuming the scale factor is 2×). (a) RSAM (ours) learns multi-scale features and LR-HR mapping together.
(b) Conventional methods (like ASPP and Inception blocks) can only obtain multi-scale features.
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Thus, regardless of how the scale factor changes, RSAM could learn Mup correctly.
Within this module, RSAM generates three LR-HR pairs and scans them with receptive
fields of the same size to fuse features. Obviously, the advantage of our method is that
such a design can obtain multi-scale features as well as preserve the complete structural
information of LR-HR mapping, which is key to SISR tasks.

Specifically, RSAM dynamically upsamples and downsamples the input according
to the scale factor. Following this, two sub-branches are created to accommodate each
additional scale of the input. The rescaled feature maps in all branches are then scanned by
a 3 × 3 convolution to acquire multi-scale features. Subsequently, RSAM generates a total
of three sets of LR-HR mapping information. Assuming the scale factor is 2×, the generated
mapping pairs are 2×, 2×, and 4×, as depicted in Figure 4. Finally, attention maps for three
scales are generated along spatial dimensions, and features from each branch are adjusted
and enhanced for the LR-HR mapping mode. Further details are provided in Figure 5. And
the entire process is formulated as follows:

Figure 5. Illustration of RSAM.

Fup
s f = µ(F) (3)

Fdn
s f = η(F) (4)

Mmain
s f = σ(c[AdpMixedPool(cr(F, R))]) (5)

Mup
s f = σ(c[AdpMixedPoolη(cr(Fup

s f , R)]) (6)

Mdn
s f = σ(c[AdpMixedPoolµ(cr(Fdn

s f , R))] (7)

FRSA
s f = c([Mmain

s f ⊗ F ⊕ Mup
s f ⊗ η(Fup

s f )⊕ Mdn
s f ⊗ µ(Fdn

s f )], R) (8)

The input feature map is F ∈ RC×H×W . Then, RSAM resizes the input accord-
ing to the scale factor. And the upsampled and downsampled Fs are represented by
Fup

s f ∈ RC×(H×s f )×(W×s f ) and Fdn
s f ∈ RC×(H/s f )×(W/s f ), respectively, obtained through up-

sampling µ and downsampling η via bilinear interpolation, where s f denotes the target
scale factor of the sampling operation (e.g., 2×, 4×, or 8× in our experiments). After
a 3 × 3 convolution layer and ReLU activation cr(·), each pathway employs adaptive
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average- and max-pooling operations with scale adjustment, followed by concatenation
along the channel axis with scale recovering (AdpMixedPoolµ(·), AdpMixedPoolµ(·) and
AdpMixedPoolη(·)). Subsequently, a 1 × 1 convolution layer c(·) and a Sigmoid operation
σ generate 2D spatial attention maps Mmain

s f ∈ RH×W , Mup
s f ∈ RH×W , and Mdn

s f ∈ RH×W for
each pathway. Element-wise multiplication ⊗ is applied, and the output of each branch is
fused via element-wise addition ⊕, resulting in the refined output FRSA

s f of the input F, after
recovering the dimension by a 1 × 1 convolution c(·). The adjustment in the bandwidth of
the channel is finished by the first and last convolution layers. R denotes the ratio of the
elastic adjuster. The output channel of the first convolution operation is C × R, and the last
convolution layer restores the channel to that of the input.

3.5. Rich Channel Attention Module (RCAM)

After completing the learning process of upscaling, during the denoising stage, RCAM
focuses on pixels causing differences to their ground-truth images after rescaling to the
same size, aiming to effectively capture such features to minimize DHR and highlight
these features along the channel dimensions during channel changes. Similar to RSAM,
RCAM creates a sub-branch for downscaling the input. Additionally, in this sub-branch,
the number of channels is also adjusted alongside the scale, as differences may arise
from both rescale and convolution operations. This sub-branch establishes a middle
level between layers for learning multi-level features interactively. Moreover, from a
super-resolution perspective, this sub-branch offers an intermediate layer for progressive
sampling, enhancing reconstruction quality under high-scale factors, a capability not
achieved by other channel-related attention modules (e.g., CAM and SE) (Figure 6). Further
details are provided in Figure 7.

Figure 6. Comparison of RCAM and other channel attention modules. (a) RCAM (ours); (b) other
channel attention modules.

And the entire RCAM process is formulated as follows:

FMain = F (9)

FSub = ηF (10)

f Main
cr3 = cr(cr(cr(FMain, R))) (11)

f Sub
cr3 = cr(cr(cr(Fsub))) (12)
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f D = c([ f Main
cr3 ⊖ µ f Sub

cr3 ], R) (13)

MRCA = σ(FC(ReLU(FC(AvgPool1×1( f D))) (14)

FRCA = F ⊗ MRCA (15)

In our experiment, RCAM resizes the input feature F ∈ RC×H×W and utilizes a Convo-
lution ReLU (CR) layer to create FSub ∈ RC/2×H/2×W/2 for the sub-branch. Subsequently, a
CR layer (cr(·)) is employed for feature extraction, adjusting the scale and channel number
to match the feature maps of the main pathway. Simultaneously, FMain undergoes filtering
by three CR layers to retain features at the original resolution. The intermediate feature
maps of each pathway are denoted as f Main

cr3 and f Sub
cr3 respectively. Following this, features

that exhibit significant differences (or noise) f D when resolution changes are obtained via
an element-wise subtraction operation ⊖. Subsequently, spatial dimensions are compressed
to 1 × 1 using adaptive average pooling AvgPool1×1(·), followed by FC-ReLU-FC layers
and the Sigmoid function σ to generate attention maps MRCA of f D, resulting in FFCA

as the adjusted output of the input F. Like RSAM, the adjustment in the bandwidth of
the channel is finished by the first and last convolution layers. R denotes the ratio of the
elastic adjuster. The output channel of the first convolution operation is C × R, and the last
convolution layer restores the channel to that of the input.

Figure 7. Illustration of RCAM.

3.6. REMA-Based Backbone

As discussed, efficiently extracting features at various scales in the backbone is crucial
for CNN-based SISR algorithms. In REMA-SRNet, REMA is integrated into the residual
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block (REMA ResBlock) in the backbone. As depicted in Figure 8, during the feature
extraction process, input features in each residual block layer pass through and iteratively
generate LR-HR image pairs within the layer. Compared with connection-based algorithms
that achieve features from various scales through connection transfer, the REMA-based
backbone provides richer features at diverse resolutions.

Figure 8. Comparison of REMA-based Backbone and Other Methods. The trend of scale changes in
the backbone is denoted by green waves .

4. Experiments
4.1. Implementation Details and Datasets

To assess the effectiveness of Rich Structure, REMA, and REMA-SRNet, we employ images
from [46] for training and validation, following DIV2K’s default split. Evaluation metrics include
the peak signal-to-noise ratio (PSNR, dB) and structural similarity (SSIM), computed in the RGB
space, where higher values indicate superior reconstruction. The best models are selected based
on the highest PSNR + SSIM on the validation set of DIV2K and evaluated on five commonly
used datasets (BSDS100 [47], Set14 [48], Set5 [49], Manga109 [50], and Urban100 [51]), and an
additional three datasets (Historical [52], PIRM [53], and General100 [26]) for comprehensive
study, under upscaling factors of 2×, 4×, and 8×, respectively. HR images are center-cropped to
256× 256 patches, downscaled via bicubic interpolation to generate LR image pairs for training
and testing, without any data augmentation. Optimization employs Adam with an initial
learning rate of 0.0001, halved every 50 epochs, β1 set to 0.9, β2 set to 0.999, and ϵ set to 10−6.
The batch size is set to 1, and training lasts 300 epochs, using PyTorch 2.0.0 on a desktop with
an Intel I5-8600 CPU, 64GB RAM, and NVIDIA GTX 3090 GPU. The training loss function is
L1 loss.

Lℓ1(P) =
1
N ∑

p∈P
|x(p)− y(p)| (16)

where P represents the calculated area, and p denotes the pixel’s position within area P.
The pixel values at position p in both the prediction area x(p) and the ground truth map
GT area y(p) are taken into account.

4.2. Evaluation Metrics

We evaluate SR images using two widely used metrics: the peak signal-to-noise ratio
(PSNR) and structural similarity (SSIM). PSNR serves as an objective metric to assess image
quality and measure the degree of difference between an original image and a compressed
or distorted version. The PSNR calculation relies on mean square error (MSE), quantifying
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the squared differences between corresponding pixels in the original and reconstructed
images. The formula for PSNR is as follows:

MMSE =
1

WH

W−1

∑
i=0

H−1

∑
j=0

[X(i, j)− Y(i, j)]2 (17)

PSNR = 10 log10

(
X2

MAX
MMSE

)
(18)

where W and H are the width and height of the image, (i, j) represent pixel positions,
and X and Y denote the super-resolved image and the ground-truth image, respectively.
XMAX is the maximum pixel value range, and MMSE stands for mean square error. Higher
PSNR values indicate lower distortion and better image quality, typically ranging from
20 to 50. PSNR values exceeding 30 dB are generally considered indicative of good image
quality. Recognizing that PSNR is a limited indicator that fails to capture human subjective
perception of images, we also utilize SSIM as an evaluation index. SSIM accounts for
contrast, brightness, and structural similarity. The calculation for the SSIM value at the
pixel position, p, is as follows:

SSIM(p) =
2µxµy + C1

µ2
x + µ2

y + C1
·

2σxy + C2

σ2
x + σ2

y + C2
(19)

Here, µx, µy,σx, σy, and σxy denote the mean, standard deviation, and covariance of
pixels at position p in the prediction map and the true value map. Constants C1 and C2 are
included to prevent division by zero. The SSIM value falls within the range of (0, 1), with
values closer to 1 indicating a superior HR reconstruction effect.

4.3. Ablation Studies

In this section, ablation studies are conducted to verify the effectiveness of each part of
REMA. The experiments span networks with various settings, scale factors, and integration
positions, as well as comparisons with other attention modules in REMA-SRNet and other
SISR networks. Meanwhile, the effectiveness of Rich Structure is verified by comparing it with
REMA using Inception- and ResNeXt-like structures. Furthermore, the impact of parameter
count on performance and robustness is discussed based on the experimental results.

The baseline model in our experiment is the proposed modified EDSR (replacing
REMA ResBlock with residual blocks in REMA-SRNet). Specifically, the pixel shuffle
layer is replaced by bilinear upsampling followed by 3 × 3 convolutions and Leaky ReLU
layers, connected with the bilinear-upscaled LR input. To validate the proposed methods,
we employ two sets of network configurations: default (64-16-64) as REMA-SRNet and
alternative (40-16-40) as REMA-SRNet-M. The adjuster ratio R is set to 1 by default. For 2×,
4×, and 8× reconstruction, the number of reconstruction layers is 1, 2, and 3, respectively.

In all experiments, robustness is evaluated across all eight datasets. The Historical
dataset specifically assesses the module’s capability in handling out-of-distribution (OOD)
samples. Additionally, two sets of network configurations mentioned above (#C_In is 40 or
64) are employed to test module compatibility with varying complexities of input features.

4.3.1. Study of REMA in the Backbone

Figure 3 illustrates the utilization of REMA within a residual block of the backbone
networks. To analyze the effectiveness of REMA, except the baseline, five models were
constructed: RSAM, RCAM, RSAM-RCAM, RCAM-RSAM, and REMA, and they represent
the model with RSAM and RCAM, and employ them together in parallel, respectively. The
results of all the above ablation experiments are shown in Table 2.
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Table 2. The effect of each part of REMA in the backbone (4×). #C_In denotes the input tensor’s
channel count. Numerical comparisons maintain precision to 12 decimal places, with the top two
results highlighted in red and blue.

MODEL #C_In BSDS100 General100 Historical Manga109 PIRM SET14 SET5 Urban100
PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

Baseline 40 25.17 0.6993 28.45 0.8257 22.04 0.6696 26.36 0.8413 28.16 0.8918 25.84 0.7374 29.78 0.8651 22.73 0.6711
RCAM 40 25.20 0.7002 28.52 0.8275 22.01 0.6678 26.48 0.8437 28.21 0.8930 25.85 0.7387 29.90 0.8667 22.84 0.6756
RSAM 40 25.20 0.7009 28.50 0.8272 22.00 0.6703 26.44 0.8434 28.32 0.8941 25.84 0.7385 29.90 0.8674 22.74 0.6736

REMA 40 25.23 0.7019 28.54 0.8285 22.00 0.6707 26.53 0.8457 28.22 0.8930 25.88 0.7394 30.01 0.8689 22.86 0.6775

Baseline 64 25.22 0.7005 28.52 0.8263 22.03 0.6701 26.44 0.8435 28.29 0.8929 25.83 0.7376 29.88 0.8676 22.82 0.6753
RCAM 64 25.24 0.7022 28.63 0.8297 22.03 0.6721 26.61 0.8475 28.35 0.8963 25.89 0.7401 30.04 0.8701 22.88 0.6803
RSAM 64 25.24 0.7023 28.63 0.8294 22.03 0.6718 26.61 0.8473 28.43 0.8971 25.89 0.7400 29.99 0.8697 22.90 0.6801

REMA 64 25.27 0.7026 28.67 0.8302 22.05 0.6722 26.65 0.8484 28.41 0.8962 25.97 0.7410 30.04 0.8700 22.92 0.6816

The results indicate that employing only RSAM in the backbone enhances PSNR
and SSIM across most datasets, except for the Set14 and Historical datasets when the
input tensor has 40 channels. However, RCAM also underperforms in the Historical
dataset, attributed to significant differences between the Historical dataset images and the
distribution of training datasets. Configuring them in parallel (REMA) boosts performance
across most datasets. Moreover, with a 64-channel input tensor, all models show significant
performance improvements. Notably, using RSAM and RCAM separately substantially
mitigates the performance reduction issue in the Historical dataset. Consequently, the
backbone of REMA demonstrates performance improvements in the Historical dataset.
Overall, these results affirm the effectiveness of our method.

4.3.2. Study of Rich Structure

The study of Rich Structure, along with REMA throughout subsequent experiments, is
examined. To verify the effectiveness of Rich Structure and REMA, we initially compared
REMA with other attention modules. This allows us to identify the key factors influencing
a plug-and-play module and demonstrate the superiority of Rich Structure and REMA.
Additionally, we designed ResNeXt and Inception versions of REMA to highlight the
advantages of Rich Structure in terms of compatibility and flexibility compared to other
popular module structures.

4.3.3. Comparison with Other Attention Modules

We compared the performance of REMA with other attention modules, including
CBAM, SE, CA, and BAM, which were employed in the same way as REMA. Our exper-
iment includes results for 40- and 64-channel input. To ensure a fair comparison, we set
the dimension reduction to 1 (C/r, r = 1), meaning no channel compression is applied. The
results are presented in Table 3.

Table 3. Performance comparison in ResBlock between REMA and other attention modules. #C_In
denotes the input tensor’s channel count. Numerical comparisons maintain precision to 12 decimal
places, with the top two results highlighted in red and blue.

MODEL #C_in BSDS100 General100 Historical Manga109 PIRM SET14 SET5 Urban100
PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

CBAM [23] 40 25.20 0.6999 28.49 0.8270 22.01 0.6687 26.44 0.8435 28.17 0.8935 25.83 0.7370 29.89 0.8663 22.81 0.6755
SE [31] 40 25.20 0.7010 28.51 0.8280 21.98 0.6695 26.51 0.8459 28.24 0.8931 25.87 0.7397 29.97 0.8686 22.78 0.6757
CA [32] 40 25.24 0.7022 28.51 0.8276 21.96 0.6675 26.54 0.8457 28.12 0.8905 25.85 0.7394 29.96 0.8684 22.79 0.6768
BAM [19] 40 25.22 0.7016 28.57 0.8284 21.96 0.6692 26.54 0.8464 28.30 0.8936 25.88 0.7396 29.95 0.8690 22.85 0.6775

REMA 40 25.23 0.7019 28.54 0.8285 22.00 0.6707 26.53 0.8457 28.22 0.8930 25.88 0.7394 30.01 0.8689 22.86 0.6775

CBAM [23] 64 25.21 0.7004 28.57 0.8281 22.01 0.6694 26.48 0.8443 28.30 0.8957 25.86 0.7384 29.87 0.8676 22.81 0.6767
SE [31] 64 25.24 0.7016 28.61 0.8292 22.02 0.6714 26.55 0.8464 28.41 0.8961 25.92 0.7403 29.96 0.8691 22.89 0.6796
CA [32] 64 25.22 0.7014 28.56 0.8281 22.01 0.6700 26.53 0.8457 28.45 0.8959 25.88 0.7397 29.97 0.8689 22.80 0.6780
BAM [19] 64 25.24 0.7016 28.64 0.8294 22.01 0.6698 26.61 0.8476 28.36 0.8957 25.90 0.7400 30.01 0.8691 22.90 0.6804

REMA 64 25.27 0.7026 28.67 0.8302 22.05 0.6722 26.65 0.8484 28.41 0.8962 25.97 0.7410 30.04 0.8700 22.92 0.6816
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The results indicate that for the 40-channel input, there is no significant difference in
the performance of REMA with other attention modules, except CBAM. However, for the
64-channel input, REMA outperforms other attention modules. Furthermore, comparing
the overall improvement when changing the number of channels from 40 to 64, BAM and
REMA show much higher performance than other attention modules in the experiment,
as discussed in the next section. For the Historical dataset, except for REMA, there is a
reduction in performance after integrating other attention modules into the residual block.

4.3.4. Study of Plain, Multi-Branch, and Rich Structure

To elucidate the performance increment difference with increasing input complexity, we
analyze these attention modules from a global structural perspective. According to Table 3,
modules with a multi-branch structure exhibit a greater performance increase with the rise
in input complexity compared to plain structures, except for CA. The primary distinction
among these modules lies in their cardinality: 1 for plain modules (SE and CBAM), and 2, 2,
and 5 for CA, BAM, and REMA, respectively. Based on the results, cardinality is positively
correlated with the overall performance of modules for a 64-channel input. Thus, cardinality
is an influential factor relating to module compatibility, and higher cardinality will enhance
the module’s performance with the growth in input complexity.

However, cardinality is not the sole factor influencing performance. When comparing
the results of CA and BAM, both with a cardinality of two, there exists a performance gap for
the 64-channel input. The main difference lies in the in-branch bandwidth. In fact, CA also
employs a split–transform–aggregate structure similar to Inception-like blocks. The distinction
is that CA splits the features (C× H ×W) along H and W rather than C, as shown in Figure 1b,
while BAM and REMA directly map the complete input to branches. This implies that the
in-branch features are less informative in CA compared to BAM and REMA.

Comparing BAM and REMA, both modules generate spatial and channel attention.
The difference lies in our proposed algorithm, which not only enhances SR-related feature
representation but also generates richer multi-scale and multi-level features compared to
BAM. This is because BAM is a size-oriented module, balancing performance and module
size, resulting in limited room and more constraints for algorithm design. Our proposed
Rich Structure is designed to overcome this limitation. We will delve into this topic in the
following section. Therefore, in-branch feature richness and task-related algorithms are
other influential factors. The richness is defined by the channel bandwidth of the in-branch
features and the diversity of features(multi-scale and multi-level features).

4.3.5. Study of the Elastic Adjuster

For further investigation, we conducted an experiment to analyze the influence of
overall channel bandwidth on performance. The overall channel bandwidth of modules
with plain structures, multi-branch structures, and our proposed Rich Structure differs
significantly, with the plain structure being much slimmer than the others. We redesigned
these modules, replacing dimension reduction with the elastic adjuster (C × R), where R is
set to 3, indicating a widened channel bandwidth by 3 times to determine how bandwidth
affects the performance and to verify the effectiveness of the elastic adjuster in different
attention modules. The results are presented in Table 4, and there is a dedicated section for
this independent experiment in REMA in the following.



Sensors 2024, 24, 4145 16 of 24

Table 4. Performance comparison between widened attention modules #C_In denotes the input
tensor’s channel count. _wide denotes the modules with widened channel bandwidth (×3) by the
elastic adjuster, and R denotes the ratio of the elastic adjuster. The numerical comparisons are accurate
to 12 decimal places, with the best result highlighted in red.

MODEL #C_In R BSDS100 General100 Historical Manga109 PIRM SET14 SET5 Urban100
PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

CBAM [23] 40 1 25.20 0.6999 28.49 0.8270 22.01 0.6687 26.44 0.8435 28.17 0.8935 25.83 0.7370 29.89 0.8663 22.81 0.6755
CBAM_wide 40 3 25.22 0.7014 28.52 0.8279 22.01 0.6707 26.47 0.8439 28.12 0.8931 25.87 0.7392 29.98 0.8686 22.81 0.6748

SE [31] 40 1 25.20 0.7010 28.51 0.8280 21.98 0.6695 26.51 0.8459 28.24 0.8931 25.87 0.7397 29.97 0.8686 22.78 0.6757
SE_wide 40 3 25.21 0.7013 28.54 0.8279 22.02 0.6711 26.49 0.8451 28.30 0.8935 25.89 0.7395 29.87 0.8673 22.80 0.6757

CA [32] 40 1 25.24 0.7022 28.51 0.8276 21.96 0.6675 26.54 0.8457 28.12 0.8905 25.85 0.7394 29.96 0.8684 22.79 0.6768
CA_wide 40 3 25.22 0.7014 28.58 0.8285 22.00 0.6677 26.57 0.8457 28.23 0.8933 25.87 0.7394 29.93 0.8678 22.79 0.6744

BAM [19] 40 1 25.22 0.7016 28.57 0.8284 21.96 0.6692 26.54 0.8464 28.30 0.8936 25.88 0.7396 29.95 0.8690 22.85 0.6775
BAM_wide 40 3 25.22 0.7016 28.53 0.8280 22.00 0.6708 26.54 0.8458 28.28 0.8935 25.87 0.7395 29.93 0.8687 22.82 0.6778

CBAM [23] 64 1 25.21 0.7004 28.57 0.8281 22.01 0.6694 26.48 0.8443 28.30 0.8957 25.86 0.7384 29.87 0.8676 22.81 0.6767
CBAM_wide 64 3 25.21 0.6985 28.47 0.8264 21.99 0.6653 26.45 0.8433 28.13 0.8917 25.84 0.7372 29.95 0.8686 22.82 0.6750

SE [31] 64 1 25.24 0.7016 28.61 0.8292 22.02 0.6714 26.55 0.8464 28.41 0.8961 25.92 0.7403 29.96 0.8691 22.89 0.6796
SE_wide 64 3 25.24 0.7005 28.56 0.8277 21.99 0.6682 26.57 0.8457 28.27 0.8926 25.88 0.7387 29.96 0.8684 22.88 0.6785

CA [32] 64 1 25.22 0.7014 28.56 0.8281 22.01 0.6700 26.53 0.8457 28.45 0.8959 25.88 0.7397 29.97 0.8689 22.80 0.6780
CA_wide 64 3 25.19 0.7002 28.51 0.8277 21.91 0.6649 26.49 0.8456 28.11 0.8920 25.83 0.7381 30.00 0.8694 22.77 0.6757

BAM [19] 64 1 25.24 0.7016 28.64 0.8294 22.01 0.6698 26.61 0.8476 28.36 0.8957 25.90 0.7400 30.01 0.8691 22.90 0.6804
BAM_wide 64 3 25.23 0.7016 28.62 0.8292 22.00 0.6703 26.64 0.8483 28.36 0.8953 25.90 0.7400 30.00 0.8693 22.91 0.6813

The results show that for the 40-channel input, the redesigned wider CBAM and SE
exhibit improvements on most datasets, bringing their performances close to those of the
original CA and BAM, which performed better than them previously. This underscores the
significance of the in-branch feature bandwidth of the channel as a key performance-related
factor, which ultimately affects the overall module’s width. These results highlight how plain
structures and dimension-reduction components, realized by bottleneck structures, actually
limit their potential in performance, proving the effectiveness of the proposed elastic adjuster
in enhancing performance when needed alongside the Rich Structure under certain conditions.
However, for the 64-channel input, a reduction occurs in wider modules, except for BAM. For
BAM, the redesign results in improvements for half of the datasets and reductions on others,
with overall performance close to the original for the 64-channel input. This indicates a limit
to increasing in-branch channel bandwidth for further performance gains.

4.3.6. Study of the Elastic Adjuster in REMA

To analyze the effect of in-branch channel bandwidth in REMA, experiments are
conducted. Specifically, in the experiments, the elastic adjuster’s ratio was varied from 0.5
to 1.5, and the performances of R ∈ [0.5, 1) and R ∈ [1, 1.5], representing the size-oriented
and performance-oriented modes of REMA, were compared. The results are shown in
Table 5.

The results indicate that the overall performance of size-oriented REMA is lower than
the performance-oriented one for the 40-channel input, showing the same trend as the
widened versions of other attention modules. However, for the 64-channel input, different
from other widened attention modules, A can still benefit from the increased bandwidth
for some datasets, including BSDS100, Mange109, Set14, and Urban100. Additionally, the
performance gap between the lowest and highest values for the 64-channel input is not
large, proving that REMA can ensure flexibility to meet different task requirements by
switching the elastic adjuster.

There is still a limit to achieving more performance through parameter exchange.
This limitation may stem from two aspects: input complexity and task-specific algorithms.
Regarding the former, comparing the results of 40_1.5 and 64_0.6, it can be observed that
they have similar numbers of parameters, yet 64_0.6 performs significantly better than
40_1.5, with the only difference being the number of input channels. This illustrates one of
the reasons why models with more parameters do not always yield higher performance
and why a plug-and-play module works in one network but not in another.
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Concerning the latter, comparing REMA with the widened version of BAM (64_1.2),
both having a multi-branch structure with the elastic adjuster and similar overall chan-
nel bandwidth (BAM: 2 × 3, REMA: 5 × 1.2), REMA outperforms BAM on all datasets.
Furthermore, the results of R ∈ [0.5, 1) and R ∈ [1, 1.5] demonstrate that a more effective
parameter exchange provides extra robustness on different datasets, although models with
fewer parameters may perform better on certain datasets.

Table 5. The trend of performance changes with different ratios of the elastic adjuster under 4×.
#C_in_R denotes the number of channels of the input and the elastic adjuster’s ratio. The results of
different input widths are denoted by blue and green . Deeper colors represent higher values.

#C_in_R #P(M) BSDS100 General100 Historical Manga109 PIRM SET14 SET5 Urban100
PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

40_0.5 1.24 25.1891 0.7007 28.4632 0.8269 22.0067 0.6701 26.4201 0.8442 28.1106 0.8925 25.8111 0.7380 29.8876 0.8671 22.7261 0.6737
40_0.6 1.42 25.2001 0.7011 28.5101 0.8274 21.9754 0.6696 26.4401 0.8448 28.2500 0.8932 25.8032 0.7382 29.9097 0.8676 22.7979 0.6760
40_0.7 1.60 25.2416 0.7012 28.5283 0.8277 22.0323 0.6700 26.5091 0.8451 28.2527 0.8924 25.9023 0.7389 29.9764 0.8677 22.8515 0.6759
40_0.8 1.80 25.2216 0.7007 28.4686 0.8270 21.9984 0.6697 26.4743 0.8443 28.0599 0.8918 25.8125 0.7378 29.8401 0.8668 22.7955 0.6753
40_0.9 2.01 25.1979 0.7006 28.5478 0.8275 22.0486 0.6709 26.4414 0.8436 28.2761 0.8936 25.8391 0.7382 29.9706 0.8681 22.7844 0.6741
40_1.0 2.23 25.2304 0.7019 28.5352 0.8285 22.0010 0.6707 26.5325 0.8457 28.2203 0.8930 25.8836 0.7394 30.0089 0.8689 22.8582 0.6775
40_1.1 2.46 25.2125 0.7016 28.5024 0.8278 21.9662 0.6700 26.5181 0.8458 28.2002 0.8924 25.8442 0.7393 29.9410 0.8682 22.8043 0.6773
40_1.2 2.71 25.2251 0.7008 28.5075 0.8277 22.0353 0.6707 26.4892 0.8445 28.1908 0.8918 25.8655 0.7385 29.9313 0.8680 22.8066 0.6755
40_1.3 2.96 25.2137 0.7016 28.5226 0.8283 21.9833 0.6703 26.4796 0.8458 28.1377 0.8928 25.8514 0.7390 29.9491 0.8689 22.8251 0.6780
40_1.4 3.23 25.2094 0.7009 28.5167 0.8275 22.0156 0.6689 26.4634 0.8440 28.1621 0.8927 25.8824 0.7389 30.0125 0.8683 22.7892 0.6743
40_1.5 3.51 25.2120 0.7014 28.5226 0.8284 22.0392 0.6720 26.5478 0.8463 28.3206 0.8942 25.9114 0.7402 29.9412 0.8683 22.8124 0.6762
64_0.5 3.17 25.2544 0.7014 28.6561 0.8297 22.0274 0.6702 26.6492 0.8479 28.3847 0.8954 25.9461 0.7404 30.0146 0.8692 22.9101 0.6806
64_0.6 3.58 25.2543 0.7017 28.6454 0.8296 22.0369 0.6712 26.6163 0.8474 28.3465 0.8956 25.9149 0.7400 30.0163 0.8692 22.8879 0.6795
64_0.7 4.02 25.2573 0.7017 28.6285 0.8298 22.0126 0.6706 26.5892 0.8472 28.3369 0.8951 25.9123 0.7400 30.0121 0.8698 22.9066 0.6803
64_0.8 4.55 25.2574 0.7023 28.6499 0.8300 21.9949 0.6703 26.6493 0.8485 28.3641 0.8956 25.9439 0.7408 30.0906 0.8706 22.9113 0.6807
64_0.9 5.05 25.2556 0.7019 28.6552 0.8301 22.0127 0.6709 26.6080 0.8474 28.3579 0.8957 25.9473 0.7405 30.0138 0.8696 22.8951 0.6801
64_1.0 5.68 25.2675 0.7026 28.6692 0.8302 22.0525 0.6722 26.6482 0.8484 28.4064 0.8962 25.9686 0.7410 30.0447 0.8700 22.9186 0.6816
64_1.1 6.23 25.2606 0.7020 28.6570 0.8304 21.9980 0.6713 26.6233 0.8477 28.3300 0.8954 25.9443 0.7407 30.0728 0.8707 22.9230 0.6813
64_1.2 6.82 25.2668 0.7022 28.6752 0.8305 22.0258 0.6708 26.6442 0.8480 28.4011 0.8954 25.9441 0.7409 30.0737 0.8704 22.9175 0.6817
64_1.3 7.52 25.2690 0.7033 28.6565 0.8305 21.9993 0.6720 26.6622 0.8492 28.3611 0.8959 25.9383 0.7414 30.0376 0.8704 22.9244 0.6823
64_1.4 8.16 25.2599 0.7022 28.6557 0.8302 22.0226 0.6715 26.6717 0.8488 28.3695 0.8954 25.9690 0.7409 30.0291 0.8695 22.8993 0.6808
64_1.5 8.96 25.2652 0.7021 28.6402 0.8300 22.0262 0.6710 26.6583 0.8482 28.4352 0.8966 25.9013 0.7398 30.0441 0.8702 22.9288 0.6814

4.3.7. Size-Oriented vs. Performance-Oriented

In order to investigate how lightweight structures affect performance further, we
compare Rich Structure (copy/rescale–transform–aggregate) with other size-oriented multi-
branch designs. Specifically, we redesign REMA in Inception (split–transform–concatenate)
and ResNeXt (split–transform–aggregate) styles. The split operation is achieved by setting
the elastic adjuster to be 1/3 in RSAM and 1/2 in RCAM to maintain the overall bandwidth
the same as the input feature. Additionally, the main difference between the Inception and
ResNeXt versions lies in the topology of each transforming branch, whereas in ResNeXt,
they are the same. Hence, we propose an extra version of it to maintain multi-scale and
multi-level feature fusion as used in REMA, to verify their effectiveness.

To comprehensively discuss the parameter efficiency of size-oriented and performance-
oriented structures, we also consider the scale factor for two reasons. Firstly, from the
SR task perspective, a higher scale factor makes SR inference more challenging. From
the network perspective, as the scale factor increases, the network becomes more prone
to overfitting since we generate training data by downsampling the ground-truth image
at the target scale factor rate. Consequently, the input patch becomes very small at 8×
(32 × 32), potentially leading to overfitting for a module that performs well at 2× and
4×. In other words, 2×, 4×, and 8× represent three situations, ranging from low to high
difficulty for every parameter that influences performance. Additionally, performance on
the Historical dataset receives more attention as it represents an out-of-distribution (OOD)
scenario. Therefore, we use these factors to test the module’s compatibility and robustness,
with the experiment results presented in Table 6.
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Table 6. Performance comparison between the REMA (Rich Structure), ResNeXt, and Inception
versions of REMA. ResNeXt_MS represents the ResNeXt version of REMA with multi-scale and
multi-level feature fusion. SF denotes the scale factor. The numerical comparisons are accurate to
12 decimal places. The best two results are highlighted in red and blue.

MODEL SF BSDS100 General100 Historical Manga109 PIRM SET14 SET5 Urban100
PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

Inception [37] 2× 29.91 0.8879 35.14 0.9510 27.14 0.8975 34.59 0.9631 33.19 0.9665 30.93 0.8922 35.92 0.9479 28.46 0.8848
ResNeXt_MS 2× 29.93 0.8883 35.17 0.9511 27.19 0.8981 34.55 0.9630 33.26 0.9668 30.91 0.8924 35.97 0.9481 28.51 0.8854
ResNeXt [38] 2× 29.91 0.8879 35.17 0.9510 27.13 0.8974 34.59 0.9630 33.24 0.9668 30.92 0.8920 35.98 0.9481 28.49 0.8848

RichStructure 2× 29.94 0.8887 35.16 0.9511 27.25 0.8994 34.66 0.9632 33.27 0.9668 30.95 0.8928 35.97 0.9481 28.51 0.8860

Inception [37] 4× 25.26 0.7024 28.64 0.8298 22.04 0.6722 26.64 0.8478 28.42 0.8964 25.93 0.7411 29.97 0.8693 22.90 0.6804
ResNeXt_MS 4× 25.25 0.7015 28.64 0.8298 22.02 0.6701 26.61 0.8472 28.40 0.8961 25.92 0.7402 29.98 0.8697 22.88 0.6796
ResNeXt [38] 4× 25.25 0.7018 28.63 0.8293 22.01 0.6700 26.61 0.8471 28.38 0.8958 25.91 0.7404 29.97 0.8692 22.92 0.6798

Rich Structure 4× 25.27 0.7026 28.67 0.8302 22.05 0.6722 26.65 0.8484 28.41 0.8962 25.97 0.7410 30.04 0.8700 22.92 0.6816

Inception [37] 8× 22.37 0.5418 24.05 0.6661 19.24 0.4494 21.10 0.6561 25.15 0.8087 21.96 0.5641 24.84 0.7190 19.55 0.4710
ResNeXt_MS 8× 22.40 0.5417 24.03 0.6649 19.24 0.4489 21.06 0.6526 25.03 0.8051 21.99 0.5645 24.79 0.7161 19.59 0.4698
ResNeXt [38] 8× 22.34 0.5409 23.99 0.6625 19.24 0.4488 20.95 0.6492 25.00 0.7964 21.89 0.5619 24.74 0.7154 19.53 0.4689

Rich Structure 8× 22.40 0.5430 24.10 0.6675 19.24 0.4518 21.17 0.6580 24.99 0.8065 22.01 0.5663 24.83 0.7193 19.61 0.4735

According to the results, Rich Structure outperforms other versions of REMA. Al-
though the performances of Inception and ResNext_MS may be close to the Rich Structure
version of REMA in certain datasets or certain upscale ratios, overall, the Rich Structure
version demonstrates the best capability across different datasets and networks, with less
likelihood of overfitting. Moreover, comparing ResNeXt_MS shows better performance
than ResNeXt under 2× and 4×, and their results are comparable under 8x, highlighting
the effectiveness of the multi-scale and multi-level feature fusion strategy in REMA. These
findings demonstrate the higher compatibility and robustness of our method compared to
other popular size-oriented multi-branch structures when applied in the backbone. Again,
the results demonstrate that extra effective parameters can exchange and provide more
robustness under different scale factors.

4.3.8. Study of REMA in the Reconstruction Layer

Additionally, given the application of REMA in reconstruction layers at high-scale
factors, experiments are conducted at scale factors of 4× and 8×. Figure 3 illustrates the
implementation of REMA in the reconstruction layer, with corresponding results shown
in Table 7.

Table 7. REMA in the reconstruction layer. SF denotes the scale factor. #C_in denotes the input
tensor’s channel count. RB w/ REMA denotes the reconstruction block with REMA. And RB w/o
REMA denotes the reconstruction block without REMA. The numerical comparisons are accurate to
12 decimal places. The best result is highlighted in red.

MODEL SF #C_in BSDS100 General100 Historical Manga109 PIRM SET14 SET5 Urban100
PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

RB w/o REMA 4× 40 25.23 0.7019 28.54 0.8285 22.00 0.6707 26.53 0.8457 28.22 0.8930 25.88 0.7394 30.01 0.8689 22.86 0.6775
RB w/ REMA 4× 40 25.21 0.7014 28.55 0.8285 22.00 0.6709 26.53 0.8464 28.34 0.8946 25.86 0.7389 29.94 0.8684 22.81 0.6764

RB w/o REMA 4× 64 25.27 0.7026 28.67 0.8302 22.05 0.6722 26.65 0.8484 28.41 0.8962 25.97 0.7410 30.04 0.8700 22.92 0.6816
RB w/ REMA 4× 64 25.25 0.7015 28.59 0.8288 22.06 0.6718 26.56 0.8464 28.39 0.8952 25.92 0.7400 29.96 0.8686 22.90 0.6795

RB w/o REMA 8× 40 22.35 0.5414 24.01 0.6609 19.17 0.4467 21.03 0.6502 25.05 0.7827 21.90 0.5624 24.80 0.7173 19.46 0.4660
RB w/ REMA 8× 40 22.37 0.5420 24.08 0.6659 19.22 0.4476 21.13 0.6565 25.09 0.8052 21.94 0.5620 24.92 0.7184 19.57 0.4714

RB w/o REMA 8× 64 22.40 0.5447 24.09 0.6681 19.21 0.4498 21.17 0.6604 24.98 0.8054 22.04 0.5694 24.77 0.7209 19.61 0.4752
RB w/ REMA 8× 64 22.40 0.5430 24.10 0.6675 19.24 0.4518 21.17 0.6580 24.99 0.8065 22.01 0.5663 24.83 0.7193 19.61 0.4735

In summary, the significance of REMA in reconstruction blocks increases with larger-
scale factors. At 4×, it results in a performance decline in most datasets, leading to its
exclusion from REMA-SRNet under 2× and 4×. However, at 8×, there is an improvement
in most datasets when used in reconstruction for the 64-channel input. However, for the
64-channel input, the overall enhancement is less evident. Hence, REMA in reconstruction
layers improves performance at high-scale ratios under specific conditions.
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4.3.9. Study of REMA in Other SISR Network

For further investigation, we incorporate REMA into UNet-SR, a super-resolution net-
work based on the image segmentation network U-Net. UNet-SR employs skip connections
for encoder–reconstruction feature fusion, enhancing reconstitution quality. We utilize
this setup to assess REMA’s effectiveness in other networks and evaluate its impact on
performance when integrated into skip connections. This extends the experiments beyond
the backbone and reconstruction layers, as skip connections were not used in REMA-SRNet
for varying depth feature fusion. Results are summarized in Table 8.

Table 8. Comparison with other attention modules in UNet-SR under 4×. The numerical comparisons
are accurate to 12 decimal places. The best two results are highlighted in red and blue.

MODEL BSDS100 General100 Historical Manga109 PIRM SET14 SET5 Urban100
PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

UNet-SR_CBAM 24.93 0.6963 27.83 0.8150 21.86 0.6629 25.55 0.8263 27.98 0.8632 25.46 0.7299 29.50 0.8599 22.36 0.6586
UNet-SR_SE 24.93 0.6961 27.98 0.8172 21.85 0.6631 25.61 0.8269 28.13 0.8785 25.44 0.7307 29.35 0.8574 22.38 0.6604
UNet-SR_CA 24.92 0.6957 27.83 0.8161 21.86 0.6617 25.48 0.8239 28.08 0.8789 25.41 0.7291 29.26 0.8566 22.34 0.6575
UNet-SR_BAM 24.92 0.6963 27.95 0.8171 21.85 0.6633 25.66 0.8282 28.05 0.8740 25.43 0.7301 29.28 0.8566 22.37 0.6600

UNet-SR_REMA 25.01 0.6994 28.16 0.8220 21.90 0.6677 25.91 0.8335 28.27 0.8866 25.56 0.7338 29.51 0.8604 22.52 0.6663

The results show that the performance of REMA, when added to the skip connection,
surpasses other attention modules at the same position, indicating that REMA remains ef-
fective in various SR models and positions. In fact, the number of input channels gradually
expands, layer by layer, as it progresses from shallow to deep within the skip connections
of UNet-SR. Thus, this also suggests that Rich Structure’s advantage becomes more pro-
nounced when handling inputs with more filters, outperforming other attention modules.

4.3.10. Comparison with Other Comparative Methods

To comprehensively evaluate our methods, we compare REMA-SRNet (R = 1) with
other SISR methods, employing similar approaches such as residual, recursive, and multi-
branch learning, as well as attention-based SR networks. Our experiments encompass both
lightweight and large models, including VDSR [5], ESPCN [25], RCAN [27], PAN [18],
A2N [36], DRLN [10], RCAN [27], ESRGCNN [29], SwinIR [16], NLSN [20], and UNet-SR [30].

Table 9 displays the quantitative results for various scaling factors. In summary, com-
pared to other SOTAs, REMA outperforms other methods for 2×, 4×, and 8× upscaling on
benchmark datasets, showcasing the effectiveness of REMA-SRNet. Further research should
address the parameter-efficiency perspective when discussing trends in results.

The results indicate that methods with large sizes do not necessarily equate to high
performance. In fact, size and performance show some positive correlation at 4×. As
explained earlier, this is due to complex models being prone to overfitting as the complexity
of the training data decreases with the increasing scale factor. For instance, RCAN and
DRLN may achieve better results on certain datasets at 2× and 4× but perform worse
than lightweight models like PAN and A2N at 8× due to overfitting. Conversely, while
lightweight models may excel in specific scale factors or datasets, they may be insufficient
for performance-prioritized tasks or broad compatibility requirements. Thus, parameter
efficiency not only achieves intermediate results with few parameters but also attains
optimal results while maintaining the overall model size. Among the models tested, only
REMA-SRNet and SwinIR achieve this balance. REMA-SRNet generally outperforms
SwinIR while using only 60% of its parameters (Figure 9).
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Table 9. Performance comparison between REMA-SRNet and other comparative methods. HR
images are center-cropped and downscaled via bicubic interpolation to generate LR image pairs for
training and testing, without any data augmentation. PSNR and SSIM are computed in the RGB space.
#P denotes the number of parameters(m). SF denotes the scale factor. The numerical comparisons are
accurate to 12 decimal places. The best two results are highlighted in red and blue.

MODEL #P SF BSDS100 General100 Historical Manga109 PIRM SET14 SET5 Urban100
PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

VDSR [5] 0.21 2× 29.55 0.8815 34.01 0.9425 26.86 0.8890 33.27 0.9547 32.60 0.9605 30.42 0.8842 35.16 0.9428 27.47 0.8672
ESPCN [25] 0.06 2× 29.40 0.8801 33.80 0.9400 26.82 0.8876 33.06 0.9529 32.43 0.9505 30.26 0.8848 35.02 0.9421 27.05 0.8585
RCAN [27] 16.21 2× 29.90 0.8880 35.08 0.9506 27.14 0.8975 34.42 0.9628 33.28 0.9662 30.87 0.8921 35.96 0.9480 28.49 0.8864
PAN [18] 0.25 2× 29.86 0.8869 35.05 0.9502 27.19 0.8977 34.55 0.9629 33.23 0.9666 30.89 0.8920 35.91 0.9477 28.29 0.8818
A2N [36] 0.99 2× 29.85 0.8868 34.99 0.9500 27.20 0.8977 34.50 0.9626 33.21 0.9664 30.88 0.8919 35.85 0.9475 28.26 0.8813
DRLN [10] 32.84 2× 29.81 0.8865 34.91 0.9495 27.21 0.8974 34.38 0.9624 33.10 0.9652 30.79 0.8908 35.84 0.9475 28.21 0.8803
ESRGCNN [29] 2.31 2× 29.70 0.8844 34.41 0.9396 27.04 0.8910 33.89 0.9582 32.86 0.9039 30.63 0.8885 35.49 0.9441 27.86 0.8746
SwinIR [16] 10.4 2× 29.92 0.8882 35.06 0.9507 27.13 0.8971 34.61 0.9634 33.22 0.9660 30.95 0.8923 36.03 0.9481 28.37 0.8844
NLSN [20] 1.63 2× 29.86 0.8873 35.05 0.9504 27.09 0.8962 34.55 0.9627 33.11 0.9658 30.85 0.8913 36.00 0.9480 28.41 0.8846
UNetSR [30] 8.1 2× 29.41 0.8831 34.03 0.9442 26.80 0.8918 33.15 0.9564 32.60 0.9635 30.42 0.8887 35.13 0.9443 27.19 0.8645

REMA-SRNet-M 2.2 2× 29.89 0.8878 35.09 0.9505 27.18 0.8976 34.50 0.9627 33.30 0.9667 30.85 0.8917 35.82 0.9477 28.34 0.8833
REMA-SRNet 5.61 2× 29.94 0.8887 35.16 0.9511 27.25 0.8994 34.66 0.9632 33.27 0.9668 30.95 0.8928 35.97 0.9481 28.51 0.8860

VDSR [5] 0.21 4× 24.93 0.6881 27.83 0.8109 21.78 0.6518 25.30 0.8135 27.99 0.8909 25.37 0.7218 29.17 0.8514 22.31 0.6503
ESPCN [25] 0.07 4× 24.86 0.6868 27.67 0.7978 21.86 0.6445 25.02 0.7940 27.67 0.8418 25.22 0.7157 29.07 0.8417 22.09 0.6354
RCAN [27] 16.35 4× 25.17 0.6999 28.41 0.8232 21.95 0.6644 26.49 0.8403 28.10 0.8889 25.75 0.7347 29.83 0.8648 22.75 0.6740
PAN [18] 0.26 4× 25.01 0.6917 28.06 0.8164 21.92 0.6584 25.65 0.8245 28.02 0.8889 25.50 0.7274 29.41 0.8573 22.46 0.6566
A2N [36] 1 4× 25.01 0.6920 28.10 0.8174 21.92 0.6594 25.69 0.8255 28.09 0.8902 25.52 0.7278 29.43 0.8577 22.48 0.6586
DRLN [10] 32.98 4× 25.15 0.6979 28.38 0.8225 21.97 0.6663 26.32 0.8390 28.22 0.8808 25.77 0.7351 29.82 0.8650 22.71 0.6704
ESRGCNN [29] 2.31 4× 25.06 0.6944 28.08 0.8046 21.92 0.6534 25.97 0.8229 28.05 0.7900 25.59 0.7283 29.48 0.8533 22.52 0.6588
SwinIR [16] 10.45 4× 25.24 0.7025 28.57 0.8282 22.04 0.6675 26.68 0.8472 28.20 0.8842 25.92 0.7402 29.98 0.8679 22.83 0.6772
NLSN [20] 1.77 4× 25.15 0.6992 28.33 0.8222 21.98 0.6666 26.33 0.8341 27.95 0.8872 25.72 0.7335 29.80 0.8623 22.61 0.6680
UNet-SR [30] 8.11 4× 24.93 0.6963 27.97 0.8164 21.86 0.6635 25.62 0.8264 28.14 0.8727 25.41 0.7295 29.36 0.8566 22.39 0.6604

REMA-SRNet-M 2.23 4× 25.23 0.7019 28.54 0.8285 22.00 0.6707 26.53 0.8457 28.22 0.8930 25.88 0.7394 30.01 0.8689 22.86 0.6775
REMA-SRNet 5.68 4× 25.27 0.7026 28.67 0.8302 22.05 0.6722 26.65 0.8484 28.41 0.8962 25.97 0.7410 30.04 0.8700 22.92 0.6816

VDSR [5] 0.21 8× 22.09 0.5230 23.42 0.6388 19.10 0.4263 20.33 0.6015 24.15 0.7841 21.62 0.5343 24.21 0.6778 19.14 0.4383
ESPCN [25] 0.11 8× 22.19 0.5271 23.47 0.6179 19.15 0.4206 20.42 0.5901 24.35 0.6753 21.65 0.5346 24.38 0.6713 19.18 0.4342
RCAN [27] 16.49 8× 22.27 0.5354 23.79 0.6435 19.12 0.4344 20.87 0.6208 24.58 0.7620 21.84 0.5483 24.63 0.6937 19.39 0.4547
PAN [18] 0.27 8× 22.35 0.5407 23.95 0.6621 19.26 0.4469 20.95 0.6481 25.03 0.8063 21.87 0.5591 24.77 0.7137 19.49 0.4661
A2N [36] 1.01 8× 22.34 0.5406 23.96 0.6622 19.25 0.4469 20.96 0.6488 25.00 0.8059 21.85 0.5576 24.77 0.7138 19.48 0.4662
DRLN [10] 33.12 8× 22.30 0.5388 23.90 0.6537 19.07 0.4393 21.02 0.6476 24.79 0.7644 21.80 0.5562 24.61 0.7095 19.44 0.4648
ESRGCNN [29] 2.31 8× 22.24 0.5318 23.79 0.6354 19.12 0.4245 20.79 0.6174 24.78 0.7155 21.81 0.5486 24.57 0.6921 19.36 0.4514
SwinIR [16] 10.68 8× 22.38 0.5417 24.15 0.6629 19.19 0.4417 21.22 0.6501 24.88 0.7854 22.01 0.5617 25.04 0.7173 19.55 0.4680
NLSN [20] 1.91 8× 22.14 0.5293 23.56 0.6293 18.94 0.4244 20.77 0.6166 24.48 0.7566 21.72 0.5421 24.45 0.6872 19.32 0.4495
UNetSR [30] 6.77 8× 22.21 0.5384 23.70 0.6590 19.19 0.4460 20.72 0.6459 24.96 0.7795 21.73 0.5570 24.57 0.7114 19.37 0.4653

REMA-SRNet-M 2.47 8× 22.37 0.5420 24.08 0.6659 19.22 0.4476 21.13 0.6565 25.09 0.8052 21.94 0.5620 24.92 0.7184 19.57 0.4714
REMA-SRNet 6.29 8× 22.40 0.5430 24.10 0.6675 19.24 0.4518 21.17 0.6580 24.99 0.8065 22.01 0.5663 24.83 0.7193 19.61 0.4735

Figure 9. Performance comparison between REMA-SRNet and other SISR methods on BSDS100 (2×).
Our algorithms are highlighted in red.
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4.4. Visual Comparison of Different Models

We selected reconstructed images from the Urban100, BSDS100, General100, and
SET14 datasets to compare reconstruction details. Figure 10 illustrates the HR effects of
REMA-SRNet and other methods, highlighting smoother lines, the preservation of fine
details, and improved textures in the reconstructed images. Specifically, the textures in the
super-resolved images ’img_048’ and ’img_092’ by REMA-SRNet are more accurate, and
the lines in ’monarch’ and ’62096’ are sharper compared to other methods.

Figure 10. Subjective quality assessment for 4× upscaling on the general images from four datasets.
The best results are bold and underlined.
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5. Conclusions

To address the challenge of detail preservation in SISR tasks, we propose a plug-and-
play attention module called REMA. The core component, Rich Structure, is proposed
based on extensive research into how different module structures impact size, compatibility,
and performance. This allows REMA to seamlessly transition between being size-oriented
and performance-oriented, depending on the specific requirements of the task. We separate
the SR process into two steps: upsampling and denoising, with RSAM and RCAM designed
to focus on the key factors in each step, respectively. Building on Rich Structure, we propose
RSAM and RCAM. RSAM focuses on the mutual dependency of multiple LR and HR pairs,
as well as multi-scale features, while RCAM uses interactive learning to emphasize key
features, enhancing detail and noise differentiation and generating intermediate features for
multi-level feature fusion. Thus, with RSAM and RCAM, REMA enhances the SISR process
and the performance of deep learning-based networks by simultaneously improving long-
range dependency learning. Together, these components alleviate issues of algorithm
flexibility and detail preservation.

Extensive experiments validate the effectiveness of REMA, showing significant im-
provements in performance and compatibility compared to other attention modules. Addi-
tionally, REMA-SRNet demonstrates superiority over other SISR networks. Our investiga-
tions into module compatibility reveal a correlation between cardinality, in-branch feature
bandwidth, and compatibility. Further analysis indicates that networks with high effective
parameter counts exhibit enhanced robustness across various datasets and scale factors.

Future work will continue to explore factors influencing the performance and robustness
of modules and aim to improve super-resolution accuracy. We plan to introduce more metrics
and explore higher super-resolution ratios, such as 16×. Our goal is to develop a plug-and-
play module that can automatically adjust its structure and complexity, ensuring cost efficiency
and reducing the need for manual parameter tuning to meet diverse requirements.
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