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Abstract: With the increasing frequency and severity of disasters and accidents, there is a growing
need for efficient emergency alert systems. The ultra-high definition (UHD) broadcasting service
based on Advanced Television Systems Committee (ATSC) 3.0, a leading terrestrial digital broadcast-
ing system, offers such capabilities, including a wake-up function for minimizing damage through
early alerts. In case of a disaster situation, the emergency alert wake-up signal is transmitted, allowing
UHD TVs to be activated, enabling individuals to receive emergency alerts and access emergency
broadcasting content. However, conventional methods for detecting the bootstrap signal, essential
for this function, typically require an ATSC 3.0 demodulator. In this paper, we propose a novel deep
learning-based method capable of detecting an emergency wake-up signal without the need for an
ATSC 3.0. The proposed method leverages deep learning techniques, specifically a deep neural net-
work (DNN) structure for bootstrap detection and a convolutional neural network (CNN) structure
for wake-up signal demodulation and to detect the bootstrap and 2 bit emergency alert wake-up
signal. Specifically, our method eliminates the need for Fast Fourier Transform (FFT), frequency
synchronization, and interleaving processes typically required by a demodulator. By applying a
deep learning in the time domain, we simplify the detection process, allowing for the detection of
an emergency alert signal without the full suite of demodulator components required for ATSC 3.0.
Furthermore, we have verified the performance of the deep learning-based method using ATSC
3.0-based RF signals and a commercial Software-Defined Radio (SDR) platform in a real environment.

Keywords: deep learning; emergency alert; wake-up signal detection; ATSC 3.0; UHD broadcasting

1. Introduction

Recently, the scale and frequency of disasters and accidents have increased, leading
to a significant rise in damages. To enhance efficient disaster preparedness and expedite
damage relief, various broadcasting and communication systems develop emergency alert
technologies [1–6]. The ATSC (Advanced Television Systems Committee) 3.0 standard
is defined as the state-of-the art terrestrial digital broadcasting system specification [7,8]
and one of the systems that offers disaster services. The ATSC 3.0 standard includes a
wake-up function for emergency alerts [7]. This feature enables devices in standby or sleep
mode to recognize emergency alert signals and automatically awaken to deliver emergency
messages to individuals.

To enhance spectral efficiency and robustness, the ATSC 3.0 standard employs various
improved physical layer techniques, including orthogonal frequency division multiplexing
(OFDM) with low-density parity-check (LDPC), layered division multiplexing (LDM),
and others [8]. Moreover, the ATSC 3.0 broadcasting standard includes the advanced
emergency alert (AEA) information service, which is a pivotal element. To provide the
AEA information service, the ATSC 3.0 physical layer system transmits the emergency alert
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wake-up signal through a bootstrap signal. In case of the disaster situation, the emergency
alert wake-up signal is transmitted, and the UHD TV can be woken up and activated
after receiving the wake-up signal. As a result, people can receive the emergency alert
and watch the emergency broadcasting contents through the activated TV. This service
creates significant new value for broadcasters and authorities, as well as viewers in disaster
situation [9].

1.1. Related Works

ATSC 3.0 utilizes a frame structure composed of three primary components: the
bootstrap, preamble, and one or more subframes. The bootstrap provides a universal
entry point into a broadcast waveform and has been designed to be a very robust signal
and receptacle even at low signal levels [7–9]. The bootstrap consists of four OFDM
symbols. The initial OFDM symbol within the bootstrap signal is identical across all
transmission frames and features repetition patterns in the time domain. Using these
characteristics, signal discovery, coarse synchronization, and initial channel estimation are
performed. The other symbols contain an emergency alert wake up field as well as system
configuration parameters, respectively. The wake-up signal composes of two bits, with
each bit located in bootstrap symbols 1 and 2, respectively. Accordingly, some intricate
decoding algorithms have been proposed to ensure reliable decoding of the wake-up bits
at a low signal-to-noise ratio (SNR) levels [10,11]. In recent times, a machine learning
method based on neural networks (NN) has garnered significant attention in the field
of wireless communication [12–17]. In particular, the references [18–20] cover reception
method based on baseband signal. Reference [18] proposed a deep learning-based signal
detection technique for the multiple-input multiple-output (MIMO) system with multipath
fading channel, and the proposed technique can achieve a performance very similar to
an optimal algorithm-based detection technique. Reference [19] demonstrates the use of
two-layer neural networks for pilot design and deep neural networks (DNN) for channel
estimation, achieving superior performance compared to traditional estimation techniques.
Furthermore, reference [20] designed and implemented a convolutional neural network
(CNN)- and DNN-based approach to model the non-linear transfer function between
MIMO transmitters and receivers. Simulation results of the proposed technique show better
robustness can be achieved in a condition of an imperfect channel knowledge compared
with conventional algorithms. Lastly, in [21], the DNN structure is studied for ATSC 3.0
and can detect only the first bootstrap symbol even under low SNR levels.

1.2. Motivation and Contribution

The fundamental concern of the paper is to detect the wake-up signal after the synchro-
nization bootstrap symbol. Conventional bootstrap detection methods’ emergency alert
systems often rely on a full ATSC 3.0 demodulator. This requirement limits the applicability
of these methods, particularly in scenarios where a full demodulator might not be readily
available (e.g., low-power devices or disaster situations). Additionally, conventional meth-
ods typically involve complex signal processing techniques like Fast Fourier Transform
(FFT), frequency synchronization, and interleaving, which can be computationally expen-
sive and decrease overall system efficiency. Therefore, a new deep learning-based wake-up
signal detection method that solves the limitations identified above is needed. Although
the study conducted in [21] has demonstrated significant potential, there are several aspects
that could further improve the performance of bootstrap detection. Compared to [21], the
additional research conducted can be summarized as follows:

- Improve DNN structure by adding four fully connected (FC) layer to learn high-
dimensional complex patterns and features.

- Reconstruct an appropriate training dataset to achieve high detection performance in
wireless channel and prevent overfitting.

- Optimize received complex signal data used as an input DNN structure.
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In this paper, a deep learning-based wake-up signal detection method is proposed
for terrestrial UHD emergency alert service based on ATSC 3.0. The proposed method
comprises two functional blocks. The initial block focuses on bootstrap signal detection
and offset estimation. Within this bootstrap detection block, the first bootstrap symbol is
identified, and the time-offset value of the received first bootstrap symbol is estimated.
The second block is the emergency wake-up signal detection block, capable of detecting
and demodulating the wake-up bits using a deep learning method. Both DNN and CNN
structures are considered for bootstrap detection and emergency wake-up signal detection.
DNN is well-suited for tasks requiring time synchronization due to their ability to handle
temporal sequences effectively. The proposed DNN structure comprises multiple layers
of neurons, allowing it to learn and extract these temporal features from the received
signal. CNNs are effective in spatial data processing and analysis, making them suitable for
wake-up bit detection. Wake-up bits are embedded within the bootstrap signal and can be
identified by examining spatial patterns within the signal. Therefore, the proposed method
can be efficiently used in a serious disaster situation to announce emergency alert contents.
In addition, the proposed method can detect an emergency alert signal without an ATSC 3.0
demodulator, such as a UHD TV, making it efficiently applicable to various systems. This
paper is organized as follows: Section 2 describes bootstrap generation and the structure
of the ATSC 3.0 standard. The proposed deep learning-based bootstrap detection method
is described in Section 3. In Section 4, simulation results and discussions are presented.
Section 5 concludes this paper.

2. Bootstrap Generation and Structure of ATSC 3.0 Standard

The bootstrap facilitates the provision of multiple wireless-based services via time
multiplexing within a single RF channel. Serving as a low-level indicator to support these
services, it allows a receiver to detect and identify the bootstrap signal. Consequently, this
identification provides guidance on accessing the services available through a signal [9].
The bootstrap serves as a universal entry point into an ATSC 3.0-based broadcast waveform,
employing a fixed configuration universally recognized by all receiver devices. It carries
essential information to facilitate the processing and decoding of the signal associated with
a detected bootstrap. In Figure 1, the functional block diagram of the bootstrap generator is
presented. Initially, the sequence generator combines a Zadoff–Chu (ZC) sequence with
a pseudo-noise (PN) sequence, which includes major and minor versions. The resulting
sequence is then transformed into a time-domain sequence through Inverse Fast Fourier
Transform (IFFT). After IFFT, cyclic shifts in the time domain are performed to convey
information signaled via the bootstrap symbols.
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Finally, the cyclically shifted sequence is transformed into two structures (CAB and
BCA) as shown in Figure 2. The initial symbol (bootstrap symbol 0: BS_0) specifically de-



Sensors 2024, 24, 4162 4 of 15

signed for synchronization detection employ the CAB variant. Subsequently, the remaining
bootstrap symbols conform to the BCA variant. In the CAB structure, part B consists of
the last 504 samples of part A with a frequency and phase shift applied to the originating
frequency domain sequence, while part C consists of the last 520 samples of part A. In
the BCA structure, part C consists of the last 520 samples of part A, but part B consists of
the first 504 samples of part C with a frequency shift applied to the originating frequency
domain sequence.
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The complete bootstrap comprises 24 signaling bits. With the exception of the initial
bootstrap symbol, each symbol contains essential signaling information. This information
encompasses parameters crucial for the configuration of the ATSC 3.0 system, as well
as OFDM parameters essential for preamble demodulation. Table 1 shows the signaling
information incorporated in the bootstrap, along with the corresponding allocation of bits
for each piece of information.

Table 1. Signaling fields for bootstrap symbols.

Syntax No. of Bits Format

Bootstrap Symbol 0
(BS_0) - - -

Bootstrap Symbol 1
(BS_1)

ea wake-up 1 1 uimsbf
min time to next 5 uimsbf

system bandwidth 2 uimsbf

Bootstrap Symbol 2
(BS_2)

ea wake-up 2 1 uimsbf
bsr coefficient 7 uimsbf

Bootstrap Symbol 3
(BS_3) preamble structure 8 uimsbf

The concatenation of these two bits results in the formation of a 2 bit value representing
emergency wake-up information. Consequently, four distinct states emerge, and the
presence of at least one ‘1’ in this concatenated value signifies the reception of an emergency
alert message. The precise meaning of the wake-up field, as defined in [7], is as follows.

- 00: No active emergency message.
- 01, 10, and 11: Rotating through these values will inform the receiver that there is

either a new emergency message or that there is new and substantial information
being added to an existing message.

The channel bandwidth of payloads within ATSC 3.0 systems typically occupies
6 MHz. However, the bootstrap symbols exhibit a fixed bandwidth of 4.5 MHz, centered
within the RF channel. The system operates at a sampling frequency of 6.144 Msamples/s,
employing an FFT size of 2048. This configuration results in a subcarrier spacing of 3 kHz,
as illustrated in Figure 3 and Table 2.
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Table 2. Fixed OFDM parameters for bootstrap.

Parameters Value

Sampling rate ( fs) 6.144 Msamples/s
Bandwidth (BW) 4.5 MHz
FFT size ( NFFT) 2048

Subcarrier spacing ( f∆) 3 kHz
OFDM symbol duration ( Tsymbol

)
500 µs

In the UHD broadcasting signal transmission, bootstrap symbols are firstly transmitted.
In the time domain, the received bootstrap signal can be written as follows:

yn = h × sn + wn (1)

where h is the channel impulse response which captures the distortion and delay in-
troduced by the transmission channel. The delay is determined by the number of taps
in the filter with length (L), and finally h is defined as [h(0) h(1) · · · h(L − 1)]. sn =
[sn(0) sn(1) · · · sn(3071)] is n-th bootstrap symbol where sn(k) is k-th sample of n-th boot-
strap symbol; finally, wn represents additive white Gaussian noise (AWGN) and has the
same dimensions as yn and sn. It has the constant power spectral density (PSD) across all
frequencies and the noise samples are independent of yn and sn.

3. Proposed Method

The process of the proposed deep learning-based emergency alert wake-up signal
detection method is described in Algorithm 1, and the detailed method is described
in subsection.

Algorithm 1 Emergency alert wake-up signal detection method

Input: The received 3072 complex samples
Output: Wake-up 2 bits (00, 01, 10, and 11)
1: if bootstrap detection is False:
2: go back to step 1 using next received 3072 complex samples
3: else:
4: symbol time offset estimation and compensation
5. acquisition of time-synchronized 2nd and 3rd bootstrap symbols
6: demodulation emergency wake-up bits
7: if any wake-up bit is 1:
8: occur emergency disaster situations
9: wake-up any connected device
10: go back to step 6 and demodulation the next bootstrap symbols
11: else:
12: go back to step 6 and demodulation the next bootstrap symbols
13: end if
14: end if
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3.1. Bootstrap Detection Method Based on Deep Learning Structure

For the bootstrap detection based on deep learning technology, 3072 samples are
extracted and inserted to the bootstrap detector. These received samples are the baseband
signal obtained by receiving RF and down-converting it. During the extraction process, the
received first bootstrap symbol with time offset can be written as follows:

y0 = h ∗ s′0 + w0 (2)

where s′0 is the 1st bootstrap symbol with time offset as follows:

s′0 = [d(1) d(2) · · · d(T) s0(0) · · · s0(3071 − T)] (3)

where T is time offset value and d denotes payloads signal of the previous subframe.
Figure 4 illustrates the extraction process of the 1st bootstrap symbol s′0 with T time offset.
As depicted in Figure 4 and expressed in (3), during the bootstrap detection, s′0 is extracted
with a length of 3072 samples. The extracted bootstrap symbol is subsequently inserted
into the proposed deep learning-based bootstrap detector.
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Figure 5 describes the proposed deep learning-based bootstrap detector, comprising a
signal separation, a DNN, and a detection part. The extracted bootstrap symbol is inherently
in complex signal format and not suitable for direct integration into the DNN-based deep
learning system. Therefore, in the separation part, the received complex bootstrap samples
are separated to real and imaginary parts. During this separation, the complex signal is
sequentially separated by considering their correlation. The real part, denoted as Re[t],
and the imaginary part, denoted as Im[t], represent the real and imaginary components,
respectively, of the t-th time-domain sample. The length of the separated bootstrap signal
is 6144 samples, comprising 3072 real samples and 3072 imaginary samples. The separated
data set is inserted to the DNN part. In the DNN, four FC layers operate with the Rectified
Linear Unit (ReLU) activation function.

The final FC layer produces a K + 2 dimensional vector, which is subsequently linked
to the input of the detection part. The softmax function is applied to calculate the final
output in the detection part, representing the value of the time offset estimation. Detailed
parameters are listed in Table 3. The estimated time offset value is determined by the
maximum value within the softmax output. If the estimated value is K + 1, it indicates the
absence of the 1st bootstrap symbol in the received signal. Conversely, when detecting for
any other value, it implies the detection of a bootstrap signal with K samples delayed.
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Table 3. Parameters of the DNN-based bootstrap detector.

Layer Size Activation

Input layer 6144 -
FC layer 1 6144 ReLU
FC layer 2 3072 ReLU
FC layer 3 1536 ReLU
FC layer 4 1002 None

Detection
1002

: decision process is as
Equation (4)

Softmax

The decision process according to the detected result value k can be written as follows:

k =


0, detection without time offset
1 ≤ k ≤ K, detection with time offset k
K + 1, no bootstrap.

(4)

In this paper, K is set to 1000 as defined in Table 3. Therefore, the proposed method can
detect the bootstrap symbol with up to 1000 samples of time offset. If the time offset value
is greater than 1000 or if the payload portion is received, the value of k is determined to
be 1001, indicating that there is no first bootstrap symbol. Consequently, the proposed
DNN-based bootstrap detector is capable of detecting both the bootstrap symbol and the
corresponding time-offset value.

3.2. Emergency Wake-Up Signal Demodulator Based on Deep Learning

After bootstrap detection and time-offset estimation, the 2nd and 3rd bootstrap sym-
bols (denoted as BS_1 and BS_2) received without any time-offset are chosen for the
demodulation of the emergency wake-up bits. Initially, these selected bootstrap symbols
are separated to the real and imaginary parts. In this process, the hardware structure can
be simplified by utilizing the same bootstrap symbol detector process. The rearranged
symbols, following separation, are organized into a square two-dimensional (2-D) format
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to conform to the constraints by the proposed CNN structure as described in Figure 6. The
matrix (x, y) for re-arranged signal is computed as follows:

x, y =
⌊√

3072 × 2 × 2
⌋
= 110 (5)

where, the numerical value 3072 denotes the number of the single bootstrap and the initial
‘2’ corresponds to the separation process of real and imaginary parts. The subsequent ‘2’
represents the representation of the 2nd to 3rd bootstrap symbols. In accordance with (5),
a total of 188 samples are required to be discarded during the converting from 1-D to 2-D
representation, and the conversion is performed by removing the front part of the signal
after I, Q separation. Figure 7 shows the CNN structure for the proposed wake-up signal
demodulation.
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The proposed CNN architecture is comprised of two distinct layers of convolution
and pooling, ultimately linked by an FC layer. The configuration of these layers enhances
the network’s ability to extract hierarchical features from input bootstrap symbols. Unlike
the bootstrap symbol detector based on DNN, the reason for using the CNN structure is to
process a lot of input signal at once and accurately demodulate the emergency wake-up
signal. ReLU is used as the activation function in each convolutional layer, with a fixed
filter size of 11 × 11. The max pooling operation is performed in the pooling layer for
activation. Detailed parameters of the CNN-based wake-up detector is summarized in
Table 4.
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Table 4. Parameters of the CNN-based wake-up bit detector.

Layer Size Filter Size Activation

Input layer 110 × 110 - -
Conv. 1 32@110 × 110 11 × 11 ReLU
Pool. 1 32@55 × 55 2 × 2 Max
Conv. 2 64@55 × 55 11 × 11 ReLU
Pool. 2 64@28 × 28 2 × 2 Max

FC layer 50,176 - None
Detection 4 - Softmax

After passing through the FC layer and undergoing the softmax classifier and one-hot
encoding processes, the resulting vector with a fixed length of 4 is output from the detec-
tion layer. This vector represents the demodulation result of the emergency wake-up bits.
Section 2 details the utilization of two bits for the emergency wake-up function, resulting
in four distinct statuses: 0 (00), 1 (01), 2 (10), and 3 (11). The output vector is then matched
to these four statuses of the emergency wake-up bits, facilitating efficient signal detection
in emergency scenarios. We introduce both DNN and CNN structures considered for
bootstrap detection and emergency wake-up signal detection. The parameters utilized in
the DNN architecture are detailed in Table 3. Specifically, the DNN structure incorporates
four FC layers. ReLU serves as the activation function for the first three FC layers and the
final output size is 1002 as mentioned in Section 3. Consequently, the DNN-based boot-
strap detector is capable of estimating time-offset values ranging from 0 to 1000 samples,
enhancing its utility in signal detection and synchronization tasks. The detailed parameter
configuration and architecture design of the CNN-based bootstrap detector is depicted
in Table 4. The CNN structure comprises two CNN layers accompanied by two pooling
layers. In the filtering process of CNN layers, an 11 × 11 size filter with a stride of 1
and no padding is considered. Similarly, the pooling layers utilize a 2 × 2 size filter with
a stride of 1 and no padding. The utilization of a stride of 1 in filtering allows for the
seamless processing of multiple data points. At the detection layer, the output consists of
four values corresponding to the wake-up signal in four different states, enabling precise
signal detection and classification.

4. Simulation Results and Discussions

This paper employs the digital terrestrial television broadcasting channel model for
experiments with computer simulations, as cited in [13,20]. This channel named RC20
represents a scenario where the signal is exclusively received through the Rician fading
with 20 reflected paths where it guarantees a stable direct path from a main transmitter.
The channel model is defined as follows: the profile of the RC20 channel is depicted in
Table 5, and the received signal in the time domain through the channel is expressed by
(6). The proposed deep learning-based method demonstrates the detection of the wake-up
signal without compensating for these channels.

y[t] =
ρ0x[t] + ∑N

i=1 ρie−jθi x[t − τi]√
∑N

i=0 ρ2
i

(6)

where x[t] is the input signal and N denotes the number of echoes, which is set to 20.
Additionally, ρi, τi and θi represent the attenuation, relative delay and phase shift from
scattering of the i-th path as listed in Table 5, respectively. The Rician factor K, defined as
the ratio of the power of the direct path (line-of-sight ray) to that of the reflected paths, is
expressed as follows:

K =
ρ2

0

∑N
i=1 ρ2

i
. (7)
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When the Rician factor K is set to 10 dB, the attenuation for this case is as follows:

ρ0 =

√√√√10 ·
N

∑
i=1

ρ2
i . (8)

Table 5. Channel profile for RC20 channel.

i ρi τi [µs] θi [rad]

1 0.95346 0 0
2 0.01618 1.003019 4.855121
3 0.04963 5.442091 3.419109
4 0.11430 0.518650 5.864470
5 0.08522 2.751772 2.215894
6 0.07264 0.602895 3.758058
7 0.01735 1.016585 5.430202
8 0.04220 0.143556 3.952093
9 0.01446 0.153832 1.093586
10 0.05195 3.324866 5.775198
11 0.11265 1.935570 0.154459
12 0.08301 0.429948 5.928282
13 0.09848 3.228872 3.053023
14 0.07380 0.848831 0.628578
15 0.06341 0.073883 2.128544
16 0.04800 0.203952 1.099463
17 0.04203 0.194450 3.462951
18 0.06741 0.924450 3.664773
19 0.03272 1.381320 2.833799
20 0.06208 0.640512 3.334290
21 0.07291 1.368671 0.393889

In this simulation, the following ATSC 3.0 system parameters [9] are considered for the
14 bits excluding the emergency alert wake up field used when generating the bootstrap
symbols.

- The minimum time interval to the next frame: 100 ms.
- System bandwidth: 6 MHz.
- Sample rate of post-bootstrap: 6.912 MHz.

According to the aforementioned system parameters, the bootstrap signal and ATSC
3.0 payload signal is generated for performance evaluation. The generated signal is received
through the fading channel and AWGN as shown in (1). Subsequently, the received signal
is fed into the deep learning-based bootstrap detector. The proposed method is entirely
conducted on the time domain without utilizing FFT.

For the training process, the following SNR environments are considered for the
proposed deep learning-based emergency alert wake-up signal detection method:

- Bootstrap signal detection: SNR = [−19, −16, −13 dB].
- Wake-up signal detection: SNR = [−22, −19, −16 dB].

In our test, if any training SNR with near BER = 10−2 is chosen, the learning process
of all considered deep learning architectures can give a rational performance. In addition,
training data augmentation is performed by oversampling at four times the symbol rate
and shift decimation. This approach provides a more diverse set of examples, helping the
model generalize better to unseen instances and enabling it to learn more representative
features, thereby leading to improved performance on real-world data. Finally, each DNN
and CNN model is trained using 100,000 datasets with a learning rate of 0.005 considered
at epoch 30 and a batch size of 100. Figure 8 illustrates the bootstrap detection perfor-
mance of the proposed method. To benchmark its performance, we compare it with the
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performance of an existing bootstrap detection technique as referenced in [10]. The re-
sults indicate a significant improvement in performance compared to the existing iterative
algorithm-based detection technique [10]. Notably, the proposed method demonstrates
robust detection of the bootstrap signal across all SNR ranges. Moreover, it is capable of
detecting both the bootstrap signal and the time-offset value simultaneously. Figure 9 illus-
trates the detection error rate performance of the wake-up bits, where the detection error
rate signifies the errors encountered when missing all two wake-up bits. For performance
evaluation, we compare our proposed method with an existing algorithm-based wake-up
bit detection method as outlined in [4]. In low SNR, the performance of our proposed
method exhibits a slight decrease compared to the existing method. However, in a high
SNR case, our proposed method surpasses the performance of [4]. Notably, our proposed
method demonstrates approximately a 1 dB enhancement in performance compared to
the algorithm-based method when the detection error rate reaches 10−4. We confirm that
learning through various SNR and oversampled datasets yields a good wake-up signal
detection. Additionally, through this performance evaluation, we can further verify that the
time offset obtained from the previous bootstrap detection was well compensated. Lastly,
the proposed technology applying deep learning has several advantages over existing
signal processing technologies:

- It effectively models intricate nonlinear relationships, including channel characteristics,
interference, noise, and other factors.

- It learns the interactions between system components, leading to more efficient opti-
mization and improved overall system performance.
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Next, this paper conducts additional experiments utilizing the ATSC 3.0-based RF
signal and a commercial Software-Defined Radio (SDR) platform to assess the effectiveness
of the proposed deep learning-based method in a real environment. The receiver structure
of experiments in Figure 10 were designed to validate the performance of our proposed
method under realistic conditions. The DekTec DTU-315 device is used as the transmitter
for generating the ATSC 3.0 RF signal. The transmitted signals were received using a
commercial SDR platform named the Nooelec 820T2. This platform provides functions
such as analog-to-digital conversion (ADC), down-conversion, and digital filtering. The
experiments parameters are set as follows:
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- Center frequency: 768 MHz.
- Channel bandwidth: 6 MHz.
- ADC sampling rate: 1.536 MHz.
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In this setup, the Nooelec 820T2 device supports a maximum sampling rate of
2560 kHz. Therefore, we used a sampling rate of 1.536 MHz, which is one-quarter of
the ATSC 3.0 sampling clock rate of 6.144 MHz. The laboratory test environment applying
the above parameters is shown in Figures 11 and 12 which shows the wake-up signal
detection performance of the proposed deep learning-based method in a real environ-
ment. Through this performance validation, we have demonstrated that the proposed
deep learning-based technique effectively detects the 2 bits wake-up signal in real environ-
ment disaster scenarios. However, compared to the simulated performance in Figure 9,
a performance gap of approximately 12 dB is observed. This is attributed to a loss of
approximately 6.02 dB due to the ADC sampling rate and additional loss incurred by
hardware implementation.
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Finally, Table 6 shows a comparison between conventional and proposed methods.
The conventional correlation-based method receives input in sample units and performs
synchronization using all four bootstrap signals. In contrast, the proposed method con-
ducts bootstrap detection utilizing only the first bootstrap symbol of length 3072 as input
for the DNN. The proposed method implements bootstrap demodulation in the time do-
main without employing channel compensation. By omitting the FFT step, this approach
simplifies the procedure. Additionally, it applies CNN instead of the conventional max-
imum likelihood (ML) decision based on absolute cyclic shift. However, the proposed
method has the limitation of acquiring the 2 bits wake-up signal, not the entire bootstrap
demodulation signal.
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Table 6. Comparison of conventional and proposed methods.

Item Conventional Method Proposed Method

Bootstrap
Synchronization

input unit a sample block
(=3072 samples)

range 4 bootstrap symbols 1st bootstrap symbol
scheme correlation DNN

Channel
compensation O X

Bootstrap information
demodulation

demodulation
range 24 bits 2 bits

(only wake-up bits)

scheme ML decision
of the absolute cyclic shift CNN

domain frequency time

5. Conclusions

In this paper, a deep learning-based emergency alert wake-up signal detection method
is proposed for the ATSC 3.0 UHD TV system. The wake-up bits, transmitted via the
bootstrap signal, serve to notify the public of emergency alert situations. Consequently,
the accurate and rapid detection of these wake-up bits holds significant importance for
safeguarding lives and property. The proposed method exhibits enhanced performance
in detecting the bootstrap symbol and demodulating the wake-up bits. After the training
process, the simplicity of the proposed method’s operations enables fast detection of
emergency alert situations. Furthermore, the designed deep learning-based detector can
identify and demodulate the emergency alert wake-up signal without requiring an ATSC 3.0
demodulator. In conclusion, the proposed method presents a novel approach to wake-up
signal detection in ATSC 3.0 emergency alert systems, leveraging deep learning techniques.
By employing DNN and CNN, we effectively extract complex patterns and relationships
from the received signal. Our approach addresses limitations of traditional methods by
operating directly in the time domain, eliminating the need for full demodulation and
enabling efficient detection on resource-constrained devices. Furthermore, our proposed
method opens up new possibilities for wake-up signal decoding, offering receivers greater
flexibility in selecting decoding mechanisms. The proposed method can be implemented
in set-top boxes or dedicated disaster receivers. It can also be applied to affordable SDR
platforms, allowing for integration with other devices. This flexibility contributes to
improved system performance and improves quick recognition of disaster situations.
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