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Abstract: Personal identification systems based on electroencephalographic (EEG) signals have their
own strengths and limitations. The stability of EEG signals strongly affects such systems. The human
emotional state is one of the important factors that affects EEG signals’ stability. Stress is a major
emotional state that affects individuals’ capability to perform day-to-day tasks. The main objective of
this work is to study the effect of mental and emotional stress on such systems. Two experiments
have been performed. In the first, we used hand-crafted features (time domain, frequency domain,
and non-linear features), followed by a machine learning classifier. In the second, raw EEG signals
were used as an input for the deep learning approaches. Different types of mental and emotional
stress have been examined using two datasets, SAM 40 and DEAP. The proposed experiments proved
that performing enrollment in a relaxed or calm state and identification in a stressed state have a
negative effect on the identification system’s performance. The best achieved accuracy for the DEAP
dataset was 99.67% in the calm state and 96.67% in the stressed state. For the SAM 40 dataset, the best
accuracy was 99.67%, 93.33%, 92.5%, and 91.67% for the relaxed state and stress caused by identifying
mirror images, the Stroop color-word test, and solving arithmetic operations, respectively.

Keywords: electroencephalogram (EEG); biometric systems; human affective state; stress

1. Introduction

In recent years, growing interest has been devoted to studying the strength of using
brain waves as a biometric modality. Brain waves offer a high degree of uniqueness,
permanence, and universality and are very difficult to spoof. Existing EEG-based personal
identification systems either use features extracted from EEG signals followed by a machine
learning classifier or use raw EEG signals as the input to deep learning models.

A biometrics authentication system comprises verification and identification processes.
Verification is the process of answering the following question: “Is this person who he
claims he is?”. In the verification process, the system receives the biometric data from a
participant along with his/her claimed identity. The system compares the biometric data to
the data of only that participant in the database. The verification system is a 1:1 matching
system [1,2]. When evaluating the performance of the verification system, the equal error
rate (EER) is one of the most commonly used metrics. The EER is the location on a receiver
operating characteristic curve (ROC) where the false acceptance rate and false rejection rate
are equal. The lower the EER value, the higher the accuracy of the verification system is.

Identification (recognition) is the process of answering the following question: “Who is
this person?”. The term identification and the term recognition have the same meaning and
are used interchangeably. In the identification process, the system receives the biometric
data from an unknown participant and compares them to the data of all the participants
in the database. The identification system is a 1:N matching system, where N is the total
number of participants in the system database [1,2]. The identification process takes longer

Sensors 2024, 24, 4167. https://doi.org/10.3390/s24134167 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s24134167
https://doi.org/10.3390/s24134167
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0002-8335-2882
https://orcid.org/0000-0002-3931-458x
https://doi.org/10.3390/s24134167
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s24134167?type=check_update&version=1


Sensors 2024, 24, 4167 2 of 13

than the verification process, as the system compares the reference data against all subjects
to find a match. The correct recognition rate (CRR) is one of the most commonly used
metrics for evaluating the identification system’s performance. Throughout this work, the
terms CRR, identification accuracy, and recognition accuracy are used interchangeably.

In personal identification systems based on feature extraction, the feature selection step
simplifies the model, prevents over-fitting, and reduces the training time. Selected features
can either be in the time domain, frequency domain, or time–frequency domain. Then, the
feature vector is fed into a machine learning classifier such as a support vector machine
(SVM), k-nearest neighbors (KNN), Linear Discriminant Analysis (LDA), or random forest
(RF). In [3], Bak and Jeong proposed an EEG motor imagery (MI) methodology for user
identification. They extracted four features related to MI and compared the accuracy for
recognizing users using Gaussian Naïve Bayes (GNB) and support vector machine (SVM).
They achieved a user identification accuracy of 97.47% and 98.97% using GNB and the
SVM, respectively. Wijayanto et al. in [4] proposed a biometric identification system
based on EEG signals, and they used the Hjorth Descriptor; the highest achieved accuracy
was 100%. In [5], Thomas and Vinod used the Mahalanobis distance as a classifier in
performing person authentication based on EEG signals during the resting state with both
eyes open (EO) and eyes closed (EC) using power spectral density and sample entropy;
their system achieved a genuine accept rate (GAR) of 99.7% and 98.6% for EO and EC,
respectively. Piciucco et al. [6] introduced a personal identification system based on steady-
state visually evoked potentials (SSVEPs). EEG responses to SSVEP stimuli were recorded.
Autoregressive (AR) and Mel frequency cepstral coefficients (MFCCs) were used as features
and the Manhattan distance as a classifier. The best accuracies they achieved were 96% and
94.53% for MFCCs and AR, respectively. Monsy in [7] examined personal authentication
from EEG signals in the resting state using frequency-weighted power (FWP) and achieved
an equal error rate (EER) of 0.0039 from the EC resting state. In [8], Abdelghaffar et al.
offered a personal authentication and cryptographic key-generation system based on EEG
signals. In the proposed system, they used EEG signals to generate different cryptographic
keys with different lengths. They represented multichannel EEG signals as points on a
Riemannian manifold and used the Reed–Solomon (RS) coder for error correction. The
system was tested using three datasets, AMIGOS, DEAP, and SEED, achieving an accuracy
of 96.23%, 98.85%, and 99.89%, respectively. In [9], Tatar used statistical methods to generate
15 features from 64 channel EEG signals of 96 subjects. The selected feature vector was fed
as an input to the DNN model and traditional ML classifiers. His best average achieved
accuracy was 100% using both random forest and DNN classifiers.

In personal identification systems based on deep learning models, the DL models
automatically learn complex features from raw EEG data without using hand-crafted
features. Lai et al. in [10] used resting state eyes open (REO) and resting state eyes closed
(REC) EEG signals. They achieved a validation accuracy and test accuracy of 83.21% and
79.08%, respectively. They arranged the raw EEG signals in the form of a matrix and used
it as an input to a five-layer CNN. In [11], Chu et al. used single-channel resting state
EEG data from healthy control (HC) subjects, characteristics of individuals with high risk
(CHR), and patients with schizophrenia (FES). They proposed a modified deep learning
architecture to automatically extract individual’s unique features. There proposed system
achieved a classification accuracy of 81.6% for CHR individuals, 96.7% for clinically stable
FES, and 99.2% for HC subjects. In [12], Das et al. proposed an unsupervised autoencoder
CNN model for learning sparse EEG features. Their system was tested on motor imagery
EEG (MI-EEG) signals from 109 subjects. The highest recognition rate they achieved for
task-based identification was 87.60% and 99.89% for the resting state. In [13], Mao et al.
used raw EEG signals from 100 subjects collected from a driving fatigue experiment to train
a CNN model. They concluded that deep learning solutions are applicable to real-life EEG-
based biometric identification, achieving a 97% accuracy. Chen et al. in [14] fed raw EEG
signals into a new CNN with a global spatial and local temporal filter (GSLT-CNN). Their
system achieved 96% recognition accuracy on a dataset containing 157 subjects performing
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different tasks. Fidas et al. and Biradar et al. in [15,16] offered an extensive survey on the
use of EEG signals for building biometric authentication systems.

Mental stress is a major problem that affects the individual’s capability to perform day-
to-day life tasks. Stress has a direct effect leading to several diseases including depression,
cardiovascular disease, stroke, and cognitive problems [17]. Also, stress is considered as a
contributing factor to several health problems including eating habits, sleeping problems,
and skin conditions [18]. Mental stress assessment is a challenging problem as each person
experiences stress differently [19]. The accuracy of detecting mental stress depends on
the stress assessment method. Self-reported questionnaires are the most popular stress
assessment methods [20]. However, this method is subjective and suffers from inaccurate
self-report stress ratings. Another stress assessment method is to use physiological mea-
sures such as electrodermal activity (EDA), electroencephalograph (EEG), electromyogram
(EMG), pupil diameter, and blood pressure [21].

EEG signals contain rich information about mental and emotional states [22–25]. Using
EEG signals in stress detection has been extensively studied. Patel et al. in [26] used time
and frequency domain features to train DL algorithms to identify emotional stress. They
examined different DL models and found that CONVlD + BiLSTM provided the highest
detection accuracy. In [27], Wen and Mohd Aris detected mental stress at various levels
with 98% accuracy by using a hybrid approach for classification using k-means clustering
and SVM. In [28], Fu et al. captured invariant and discriminative features from raw EEG
signals using a deep neural network that combines a convolutional neural network (CNN)
and symmetric deep convolutional adversarial network (SDCAN). Their proposed network
achieved accuracies of 87.62% and 81.45% on the classification of four and five stress stages,
respectively. In [29], Roy et al. applied an automatic feature extraction and classification
model to 14-channel EEG signals, in order to efficiently detect psychological stress. First,
they used Discrete wavelet transform (DWT) to decompose the EEG signals into different
frequency bands. A CNN was deployed for automatic feature extraction, then bidirectional
long short-term memory (BiLSTM) and two layers of a gated recurrent unit (GRU) were
used for stress level classification. Katmah et al. in [30] offered a complete review on mental
stress assessment methods using EEG signals.

Most of the existing studies focus on developing feature extraction and classification
algorithms for either using EEG as a biometric modality or detecting and classifying
different stages of stress. Biometric systems based on EEG signals are proven to be strong,
but such systems suffer from some common limitations. The stability of EEG signals
strongly affects such systems. Several factors affect EEG signals including performing
different mental tasks, variation in emotional states, and recording in temporally spaced
sessions. Few studies have addressed the impact of emotions on the performance of
EEG-based biometric systems. In [31], Arnau et al. studied the influence of different
levels of valance and arousal (high and low) on a human identification system. They used
seven different machine learning classifiers to classify a feature vector that consisted of
three different features (power spectral density (PSD), Mel frequency cepstral coefficients
(MFCCs), and autoregression reflection coefficient (ARRC)). They concluded that the system
performance is much higher when the valance and arousal level in training and testing
match, compared to when they differ. Nguyena et al. in [32] verified the influences of
negative and positive emotions on an EEG-based cryptographic key-generation system.
The EEG data were labeled as high valance, low valance, high arousal, and low arousal.
The cryptographic key was generated from EEG data by first extracting features using
a parametric spectral estimation technique, then error correction was performed using a
quantization technique. They decided that different levels of valance and arousal have
impacts on the performance of the system.

The main objective of this work is to examine the stability of the EEG signal as a
biometric modality under stress in a personal identification system. In the proposed
study, the user enrollment stage is performed in the relaxed or calm state, while user
identification is performed in the stressed state. Four types of stress were examined: stress
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caused by performing a mental arithmetic task, stress caused by performing a mirror image
recognition task, stress caused by performing the Stroop color-word test, and emotional
stress caused by watching video clips. To the best of our knowledge, this is the first work
to study the effect of different types of stress on a human identification system based on
EEG signals.

The rest of the paper is organized as follows; Section 2 gives an overview of the
datasets used in our study. In Section 3, we introduce our experiment. In Section 4, we
discuss and summarize our results. In Section 5, we conclude our work.

2. Datasets

The proposed study was performed using two publicly available datasets, SAM 40 [33]
and DEAP [34]. Table 1 gives an overview of the two datasets, and their electrode position-
ing is shown in Figure 1.

Table 1. An overview of the SAM 40 and DEAP datasets.

Item SAM 40 DEAP

Recording Device Emotiv Epoc Flex gel kit Biosemi ActiveII

# of Subjects 40 32

Subjects’
Description 26 males, 14 females 16 males, 16 females

# of Electrodes 32 32

Sampling Rate 128 Hz Originally 512 Hz, down-sampled to
128 Hz

Stimuli

Stroop color-word test, solving
arithmetic questions, identification
of symmetric mirror images, and a
state of relaxation.

Different emotions caused by watching
musical videos.

Trial Duration 25 s 63 s

Labels Relaxed and three types of stress. Continuous 9-point scale for arousal,
valance, dominance, and liking.

(a) (b)
Figure 1. Electrode positioning: (a) SAM 40 dataset with 32 electrodes. (b) DEAP dataset with
32 electrodes.

2.1. SAM 40 Dataset

In the SAM 40 dataset [33], the EEG data were recorded from 40 subjects (26 male and
14 female, mean age 21.5 years). All 40 subjects were included in our study. The EEG data
were acquired with a 32-channel Emotiv Epoc Flex gel kit t (Emotiv Inc., San Francisco, CA,
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USA) and sampled at 128 samples per second. The EEG signals were recorded from the
subjects while performing various tasks such as solving arithmetic problems, the Stroop
color-word test, the identification of symmetric mirror images, and a state of relaxation.
Each individual task was carried out for 25 s. Three trials were recorded for each task.
The EEG data were processed to remove artifacts. Each subject provided feedback on a
scale of 1–10 depending on the stress levels he/she experienced during a particular task in
a trial.

2.2. DEAP Dataset

In the DEAP dataset [34], the EEG and other physiological signals of 32 partici-
pants (16 male and 16 female, aged 19–37) were recorded while each of them watched
40 one-minute musical videos. The EEG signals were recorded using 32 electrodes placed
according to the 10–20 international positioning system at a sampling rate of 512 Hz. The
DEAP dataset has a pre-processed version in which, the electrooculography (EOG) artifacts
were removed and the signals were down-sampled to 128 Hz and filtered from 4 to 45 Hz.
Each observation (trial) was 63 s, in which the first 3 s were baseline signals. In this work
we used the pre-processed version of the DEAP dataset, and the first 3 s were removed.

The DEAP dataset offers a quantitative description of the emotion state. Each partic-
ipant was asked to offer a self-assessment of arousal, valance, dominance, and liking on
a continuous 9-point scale after each trial. The calm and stress emotions were identified
using valance and arousal scores using Equations (1) and (2) derived from [35–37]. By
applying the rules for selecting the calm and stressed states from each participant trial, the
results of 25 participants met the rules, but only 14 of them had a balanced number of calm
and stress trials. Therefore, in our study, the rest of the DEAP analysis continued with the
data of 14 participants (with the following participants IDs: 2, 4, 10, 11, 12, 13, 15, 16, 20, 21,
22, 25, 31, 32).

Calm = (arousal < 4) ∩ (4 < valance < 6) (1)

Stress = (arousal > 5) ∩ (valance < 3) (2)

3. Experiment

In this work, we study the effect of stress on using EEG signals as a biometric trait
in a personal identification system. Two different datasets were used for this purpose. In
the DEAP dataset, participants offered a self-assessment of arousal, valance, dominance,
and liking on a continuous 1–9-point scale. Calm and stress were identified using valance
and arousal scores (see Equations (1) and (2)). Participants in the SAM 40 dataset labeled
each trial as either relaxed or stressed, and three types of stress existed. To perform our
experiments, for the DEAP dataset, enrollment was performed in the calm state, and
identification was performed once in the calm state and again in the stressed state; for
the SAM 40 dataset, enrollment was performed in the relaxed state, and identification
was performed in the relaxed state, under stress caused by solving arithmetic problems,
under stress caused by the Stroop color-word test, and under stress caused by identifying
mirror images.

We performed two experiments. In the first, different sets of features (time domain,
frequency domain, and non-linear features) were extracted from the EEG signals, and
the classification was performed using the support vector machine (SVM) classifier. The
SVM was chosen as the ML classifier as it offers good performance when the dataset is
small, and it has been used in various EEG-based identification systems in the literature
[3,9]. In the second experiment, raw EEG signals were used as the input to different deep
learning (DL) models. The SAM 40 and DEAP datasets have a limited number of subjects,
consisting of only 40 and 14 individuals, respectively. Also, each subject in those datasets
has a limited number of trials. This limited amount of data poses a challenge, specially for
deep learning techniques. In this work, we addressed this problem by dividing each trial
into 5 s segments. Segments from the same trial shared the same label.
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3.1. Feature Extraction

Features from different domains were extracted seeking better signal presentation,
which could provide better personal identification performance. We used three types of
features: frequency domain features using band power (FD-BP), time domain features using
Hjorth parameters (TD-HPs), and non-linear features using Higuchi’s fractal dimension
(NL-HFD). Classification was performed using the SVM.

Band power (BP) is a frequency domain feature in which we calculate the power in
different frequency bands (theta (4–8 Hz), alpha (8–12 Hz), beta (15–30 Hz), and gamma
(30–45 Hz)). The delta frequency band (0–4 Hz) was excluded as the pre-processed version
of the DEAP dataset is filtered from 4–45 Hz. The BP feature vector for each user in each
5 s segment consisted of 128 values (4 BP values X 32 electrodes). Figure 2 is a t-SNE
figure that shows the BP feature for the 14 individuals in the DEAP dataset in the calm and
stressed states.

(a) (b)
Figure 2. Band power feature for the 14 participants in the DEAP dataset. (a) Calm state. (b) Stress
state. Visualization obtained through the t−SNE method using the Euclidean distance.

The Hjorth parameters (HPs) are time domain features based on the variance of the
derivatives of the EEG signal. The most commonly used HPs are activity, mobility, and
complexity [38,39]. Activity represents the signal power, computed by calculating the
variance of the signal. Mobility is the standard deviation of the first derivative of the
EEG signal, divided by the standard deviation of the primary signal. Complexity gives an
estimate of the bandwidth of the signal, and it is defined as the ratio of the mobility of the
first derivative of the signal to the mobility of the signal (Equation (3)). The HP feature
vector for each user in each 5 s segment consists of 96 values (3 HP values X 32 electrodes).

Activity = var(x(t)),

Mobility =

√
var( dx(t)

dt )

var(x(t))
,

Complexity =
Mobility( dx(t)

dt )

Mobility(x(t))

(3)

where x(t) is the EEG signal recorded from a single electrode and var(x(t)) is the variance
of the signal x(t).

To detect the hidden information contained in the EEG signals, the fractal dimension
(FD) [40] is used. There are many methods that can be used to calculate the FD such as
Katz’s, Higuchi’s, and Petrosian’s methods [41]. Higuchi’s method has proven to be the
most accurate estimate of the FD [42–44]. Higuchi’s fractal dimension originated from
chaos theory, and it can detect hidden information contained in biological time series
regardless of the nature of the analyzed signal (deterministic or stochastic, stationary or
non-stationary) [45]. In this work, we used the HFD to form a quantitative measure of the
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signal dynamics. The HFD feature vector for each user in each 5 s segment consisted of
32 values.

3.2. Raw EEG Signals

Deep learning approaches are capable of automatically learning complex features from
raw EEG data without using hand-crafted features. Several CNN models using raw EEG
signals as inputs have been proposed [46–50]. In this work, three well-known EEG-based
CNNs, Shallow ConvNet, EEGNet, and Deep ConvNet, were used. For the three networks,
the softmax method is used in the classification layer, and the number of epochs was 300.
Figure 3 shows the basic architecture of EEGNet, Shallow ConvNet, and Deep ConvNet.

Figure 3. Network architectures. (a) Shallow CNN. (b) EEGNet. (c) Deep ConvNet.
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The original Shallow ConvNet introduced in [46] used temporal convolutions of length
(1, 25), a pool size of (1, 75), and strides of (1, 13) for EEG with a 250 Hz sampling frequency.
Since the two datasets we used in our study (DEAP and SAM 40) have a 128 Hz sampling
frequency, we halved all those values, and we used temporal convolutions of length (1, 13),
a pool size of (1, 35), and strides of (1, 7).

EEGNet is one of the most commonly used networks for BCI applications [51]. It was
originally introduced by Lawhern et al. in [47]. They introduced a compact CNN, which
consists of two convolutional pooling blocks followed by a classification layer. In our study,
we used EEGNet 8-2 with the following parameters: Kernel length 64, 8 temporal filters,
and 2 spatial filters.

Deep ConvNet was first introduced in [46]. Its architecture consists of four convolu-
tional pooling blocks followed by a dense classification layer. Deep ConvNet has the same
initial architecture as Shallow ConvNet followed by three identical convolution blocks. In
our work, we used Deep ConvNet with temporal convolutions of length (1, 5), a pool size
of (1, 2), and strides of (1, 2).

4. Results and Discussion

The objective of our work is not to build an advanced personal identification system,
but rather, to determine weather mental stress has an impact on the personal identification
system’s performance. To achieve this goal, we performed two experiments. In the first,
three types of features were extracted from raw EEG signals: frequency domain (BP), time
domain (HP), and non-linear features (HFD). Then, classification was performed using
the SVM classifier. Using the train–test split method in the sklearn library, the data were
divided into 70% for training and 30% for testing. In the second, raw EEG signals (from
32 electrodes) were used as the inputs to three widely used EEG-based CNNs: Shallow
ConvNet, Deep ConvNet, and EEGNet. In both experiments, 10-fold cross-validation
was performed. The performance was evaluated using the accuracy and F-score metrics
(Equation (4)). Accuracy here represents the correct recognition rate (CRR) metric in
personal identification systems.

Accuracy =
TP + TN

TP + FP + FN + TN

Precision =
TP

TP + FP

Recall =
TP

TP + FN

F-Score =
2 × (Recall × Precision)

Recall + Precision

(4)

where we have true positives as TP, true negatives as TN, false positives as FP, and false
negatives as FN.

Subject enrollment was performed in the calm or relaxed state, and identification was
performed in the stressed state. Our study is not focused on building a more advanced EEG-
based identification system; it is focused on using different emotions for the identification
process. Yet, the achieved results are comparable to other existing systems. Examples
of existing EEG-based personal identification systems in the literature are illustrated in
Table 2. DEAP’s results are shown in Table 3, and SAM 40’s results are shown in Table 4.
From these results we can see that the following:

• In both experiments, subject identification in the stressed state caused a reduction in
the biometric system’s performance. The difference in identification system accuracy
when enrollment was performed in the calm or relaxed state and identification was
performed in the stressed state is clarified in Figures 4 and 5.

• The identification system based on feature extraction showed the best results in the
calm state, where the best accuracy was achieved by using time domain feature (Hjorth
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parameters (HPs)), while in the stressed state, non-linear features (Higuchi’s fractal
dimension (HFD)) gave the best performance.

• The deep learning approaches were capable of learning features from raw EEG signals.
The performances of Shallow ConvNet and EEGNet were very close to each other,
while Deep ConvNet gave the worst performance. The biometric system based on the
DL techniques was less affected by the change in human emotional states (relaxed or
stressed) than the system based on hand-crafted features and the ML classifier.

• In the SAM 40 dataset, when testing different types of stress, it is clear that stress
caused by identifying mirror images showed the least effect on biometric system
performance. Stress caused by solving arithmetic operations and the Stroop color-
word test showed the highest impact on system performance (the Stroop color-word
test’s performance was slightly better than solving arithmetic operations).

Table 2. Examples of existing EEG-based personal identification systems in the literature.

Ref. S, C Dataset Features Classifier Performance (CRR%)

[3] 52, 64 BMI CSP, ERD/S, SVM up to: 98.97
FFT, AR GNB up to: 97.47

[4] 5, 4 SCD HPs NNT up to: 100(photo stimuli)

[5] 109, 64 PhysioNet PSD and SE Mahalanobis EO: 99.7
distance EC: 98.6

[6] 25, 19 SCD MFCCs, AR Manhattan MFCCs: 95.87–96.0
(SSVEPs) distance AR: 91.47–94.53

[9] 96, 64 PhysioNet 15 features DNN, SVM, DT: 98.63, RF: 100, KNN: 99.96,
DT, RF SVM: 99.91, DNN:100

[10] 109, 64 PhysioNet Raw EEG signals CNN 83.21

[11] 120, 64 SCD (rest state) Raw EEG signals DNN HC: 99.2, FES: 96.7, CHR: 81.6HC, CHR, FES

[12] 109, 64 PhysioNet Raw EEG signals CNN task: 87.60,
non-task: 99.89

[13] 100,46 BCIT Raw EEG signals CNN 97

[14] 157, 64 X2 RSVP, XB Driving, Raw EEG signals CNN 96DEAP, CT2WS RSVP

Note: S: subjects; C: channels; SCD: self-collected data; CSP: common spatial pattern; ERD/S: event-related
(de)synchronization; FFT: Fourier transform; AR: autoregressive; SVM: support vector machine; GNB: Gaussian
Naïve Bayes; SSVEPs: steady-state visually evoked potentials; MFCCs: Mel frequency cepstral coefficients; HPs:
Hjorth parameters; EO: eyes open; EC: eyes closed; PSD: power spectral density; SE: sample entropy; DNN: deep
feature neural network; DT: decision tree; KNN: k-nearest neighbor; RF: random forest; HC: healthy controls;
CHR: characteristics of individuals with high risk; FES: stable schizophrenia.

Table 3. DEAP results. The enrollment stage was performed in the calm state, while the identification
stage was performed once in the calm state and another time in the stressed state (the best accuracies
in the calm and stressed states are in bold).

Selected Features Classifier
Calm Stress

Acc. F-Score Acc. F-Score

TD-HP SVM 99.67 99 96.32 97

FD-BP SVM 99.4 98 95.04 95

NL-HFD SVM 99.61 98 96.63 96
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Table 3. Cont.

Selected Features Classifier
Calm Stress

Acc. F-Score Acc. F-Score

Raw EEG

EEGNet 95.24 95 94 94

Shallow ConvNet 99.41 99 96.67 97

Deep ConvNet 98.41 97 92.88 92

Table 4. SAM 40 results. The enrollment stage was performed in the relaxed state, while the
identification stage was performed in four different states: relaxed state (Relax), identifying mirror
images (MI−Stress), Stroop color-word test (ST−Stress), and solving arithmetic problems (AR−Stress)
(The best accuracies in the calm and stress states are in bold).

Selected Relax MI-Stress ST-Stress AR-Stress

Features Classifier Acc. F-Score Acc. F-Score Acc. F-Score Acc. F-Score

TD-HP SVM 99.67 99 88.5 88 87.667 87 84.17 84

FD-BP SVM 98.17 96 88.17 88 86.5 86 84.83 84

NL-HFD SVM 92.67 91 91.5 91 89.83 90 86.67 86

Raw EEG

EEGNet 96.67 95 93.33 93 92.5 92 91.67 91

Shallow ConvNet 94.5 94 92.5 93 90.44 89 89.72 89

Deep ConvNet 86.67 85 82.1 82 75.75 75 75.56 74

Figure 4. DEAP dataset difference in identification system accuracy in the calm and stressed states.

Figure 5. SAM 40 difference in identification system accuracy in the calm and stressed states. Relaxed
state (R), solving arithmetic problems (AR), Stroop color-word test (ST), and identifying mirror image
(MI) state.
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5. Conclusions

In this article, we studied the effect of stress on an EEG-based human identification
system. Four types of stress were examined: emotional stress caused by watching videos,
stress caused by solving arithmetic problems, stress caused by the Stroop color-word test,
and stress caused by identifying mirror images. Two experiments were performed. In the
first experiment, we used hand-crafted features followed by an ML classifier; in the second
experiment, the DL approaches were used. Performing enrollment in the relaxed or calm
state and identification in the stress state affected the biometric system performance. The
best achieved accuracy for the DEAP dataset was 99.67% in the calm state and 96.67% in
the stressed state. For the SAM 40 dataset, the best achieved accuracy was 99.67%, 93.33%,
92.5%, and 91.67% for the relaxed state, stress caused by the identifying mirror images
test, stress caused by the Stroop color-word test, and stress caused by solving arithmetic
operations, respectively.

The identification system based on feature extraction showed the best results in the
calm state, where the best accuracy was achieved by using the time domain feature, while in
the stress state, non-linear features gave the best performance. The biometric system based
on deep learning techniques was less affected by the change in human emotional states
(relaxed or stressed) than the system based on hand-crafted features and the ML classifier.
In the SAM 40 dataset, when testing different types of stress, it is clear that stress caused
by identifying mirror images showed the least effect on biometric system performance.
Stress caused by solving arithmetic operations and the Stroop color-word test showed
the highest impact on system performance (the Stroop color-word test’s performance was
slightly better than solving arithmetic operations).
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