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Abstract: Although the field of geomatics has seen multiple technological advances in recent years
which enabled new applications and simplified the consolidated ones, some tasks remain challenging,
inefficient, and time- and cost-consuming. This is the case of accurate tridimensional surveys of
narrow spaces. Static laser scanning is an accurate and reliable approach but impractical for extensive
tunnel environments; on the other hand, portable laser scanning is time-effective and efficient but not
very reliable without ground control constraints. This paper describes the development process of a
novel image-based multi-camera system meant to solve this specific problem: delivering accurate,
reliable, and efficient results. The development is illustrated from the system conceptualization and
initial investigations to the design choices and requirements for accuracy. The resulting working
prototype has been put to the test to verify the effectiveness of the proposed approach.
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1. Introduction

The field of geomatics has been constantly changing and expanding due to numerous
technological advances. The traditional and most consolidated surveying techniques relied
primarily on the punctual recording of discrete and precise measurements requiring skilled
operators and precise instruments such as levels, theodolites, tacheometers, classical aerial
photogrammetry, and GNSS (Global Navigation Satellite System). In recent years the
field has flourished with newer instruments and methods aimed at quickly recording
a complete 3D representation, producing a dense point-wise geometric description of
the object surfaces, also known as the point cloud, as is the case with terrestrial laser
scanners (TLSs), portable laser scanners, airborne LiDAR (Light Detection And Ranging),
and Structure from Motion (SfM) and image dense matching. These 3D dense geometric
recordings of reality have enabled many new applications and are now widely adopted in
fields such as land mapping, construction, cultural heritage, archaeology, and infrastructure.
Moreover, software development and advancements in algorithmic processes have opened
the door to non-specialized instruments as well to be used for geomatics applications with
great success further expanding the field. A noticeable example is the democratization of
photogrammetry thanks to modern image-based modelling software and the support for
low-cost consumer-grade hardware such as DSLR (Digital Single Lens Reflex) cameras,
smartphone cameras, and UAVs (Unmanned Aerial Vehicles). However, despite the many
advances achieved so far, such as laser scanning and SfM photogrammetry efficiency,
there are applications where these techniques cannot effectively be used due to several
limitations in manoeuvrability, acquisition range, execution time, and error propagation.
For example, narrow spaces, tunnels, and caves remain a challenge when accurate dense
mapping is required.
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Hand-carriable and backpack-mounted mobile mapping systems (MMSs) such as
many commercial solutions nowadays available on the market, Geoslam Zeb Horizon [1],
Leica Geosystems BLK2GO [2], Gexcel s.r.l. Heron [3], NavVis VLX [4], etc., are ideal in-
struments for indoor 3D mapping thanks to their manoeuvrability and speed-effectiveness
of the survey operations. However, when employed in extensive or meandering narrow
spaces and tunnel-like environments, the global accuracy attainable from these devices is
hampered by drift error propagation [5] thus leaving the problem of efficiently digitizing
narrow spaces unsolved. As an example, performing the geometric 3D survey of narrow
tunnels or spiral staircases [6–9] are challenging tasks: employing a TLS is a burdensome
and impractical process, even employing the newest more productive TLS solution that
allows for data pre-registration on the field, such as the Leica RTC360 [2]; the field acquisi-
tion is optimized with a portable MMS; nonetheless, the unpredictable drift of the sensor’s
estimated trajectory forces the practitioners to integrate the efficient MMS survey with
traditional burdensome ground control measurements.

Among portable range-based MMSs, those that are practically employable in narrow
spaces, such as the Geoslam Zeb Horizon [1] and other commercial instruments [10–12]
or similar devices from the research community [13–16], cannot rely on GNSS modules,
and can only house compact low-grade IMU (Inertial Measurement Unit). Thus, a refined
estimate of the device’s position, movement, and trajectory is computed from algorithmic
processes, i.e., SLAM (Simultaneous Localization and Mapping) algorithms [17]. SLAM
methods compute the device movements in unknown environments by exploiting the 3D
geometry acquired by the LiDAR mapping sensors. They are prone to failure when am-
biguous or featureless geometry is supplied. Even when suitable 3D geometry is available,
SLAM is prone to drift error in long acquisitions, and this error is contained if loop closures
are provided during the data acquisition. However, loop closures are usually inherently
denied in tunnel-like environments. Indeed, the very scenarios in which hand-carriable
MMSs would be most useful are the same scenarios that tend to hamper the possibility of
performing loops (tunnels, corridors). The same is true for visual SLAM methods, using
image data instead of LiDAR acquisition to compute movements [18]. The visual SLAM
approach works for ambiguous and featureless geometries while failing for poor image
radiometric texture. The visual approach is more promising for the survey of narrow spaces
and tunnel-like environments since these tend to be geometrically monotonous but rich
in radiometric texture. Refs. [6–8,19–26] hinted that the image-based approach might be
the most promising solution for the effective survey of narrow spaces, providing good
robustness to drift error and good global accuracy.

1.1. Background

The importance of effectively computing the complete 3D survey of narrow spaces
is testified by the many literature records investigating or proposing new methods to
tackle this problem. Many scholars tested novel image-based techniques and novel tools
alternative to the TLS in search of more time-effective and practical solutions. Among
the investigated methods, there are off-line SfM and on-line visual SLAM. Promising
approaches of interest specifically to tackle narrow spaces are photogrammetry employ-
ing fisheye lenses [6–9,27,28], action cameras [27,29–31], or 360◦ cameras [19,32–42], and
custom-assembled stereo- and multi-camera prototypes [43–46], most recently coupled with
on-line visual SLAM processes [20,21,47–49]. Fisheye photogrammetry gained attention
thanks to the inclusion of fisheye’s mapping functions support in commercial SfM software,
and researchers started employing it for the survey on narrow spaces, complex areas, and
rapid mapping, exploiting the wide field of view to significantly reduce the number of
images required.

Regarding DSLR fisheye photogrammetry, utilizing high-end cameras and professional
lenses, there are fewer literature accounts: Ref. [9] proposed the use of DSLR fisheye
photogrammetry to connect different image-blocks acquired for different portions of a
building (inside/outside) and to survey narrow spaces, presenting the example of a spiral
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staircase reconstruction generated acquiring just three images per step. Ref. [8] listed the
survey of spiral narrow staircases among those digitalization tasks that are challenging
for TLSs and more efficient for image-based techniques, showcasing DSLR fisheye and
ultra-wide lenses photogrammetry. Ref. [6] tested DSLR fisheye and ultra-wide lenses
in the survey of a narrow spiral staircase acquiring five images per step employing the
same image network geometry repeatedly. Ref. [27] showcased the capability of fisheye
photogrammetry coupled with the commercial software Pix4D (version 1.2) by testing
multiple digital cameras equipped with fisheye and ultra-wide lenses; this case study is
the survey of the exterior walls and surroundings of a castle building that shows how,
thanks to the wide field of view (FOV), fisheye photogrammetry can also be used as an
on-the-move mapping technique potentially completing a large survey in a short time
by acquiring images of a walking path. Ref. [7] presented a method to survey a narrow
hypogea environment using a DSLR equipped with a 16 mm fisheye lens: the method
consists of navigating the underground tunnels and acquiring a video sequence with the
camera pointing forward. The camera calibration is accomplished beforehand while, in
post-processing, 3 frames per second are extracted for an SfM off-line processing. The
authors report promising results in terms of acquisition time and ease of operations. The
accuracy is estimated in the range of a few metres (<10 m) for a tunnel length of around
1 km and the author highlights the high-tie-points multiplicity due to the high image
overlap. Ref. [28] applied the same methodology to the survey of an underground cave
with narrow passages and estimated an accumulated error drift during the survey path of
<5 cm.

Other researchers investigated fisheye photogrammetry employing cost-effective
action cameras such as the GoPro cameras, made popular for image-based modelling by the
manufacturers of early UAV systems that employed them before developing custom camera
systems, and that proved promising for expeditious surveying as well: Ref. [29] proposed
a method to use the action camera GoPro Hero 3 for photogrammetric application, and
their methods rely on obtaining an accurate calibration of the fisheye lens to then generate
distortion-free perspective images prior to the SfM processing. Ref. [30] investigated
different calibration procedures and checked the achievable accuracy of the action camera
GoPro Hero 4 for the target scenario of the UAV survey. The rolling shutter is highlighted
as the main issue for moving acquisitions; the author suggests pre-correcting the fisheye
distortion and performing a camera pre-calibration of the rendered perspective images
for more robust results. Ref. [31] employed the GoPro Hero 3 for the survey of a narrow
corridor and the generation of orthomosaics of the side walls, and they reported centimetric-
level error of Check Points (CPs) (around 3 cm). After testing both the processing of fisheye
images directly with the fisheye camera model and the processing of the pre-corrected ones
with the regular perspective camera model, they state that better results are achieved with
the former method. Ref. [27] included a GoPro Hero 3 camera in their comparative test of
fisheye photogrammetry highlighting the prominent rolling shutter effect as a limitation to
accuracy and faster acquisition speed.

The majority of the literature accounts propose approaches that use panoramic 360◦

cameras, either ready off-the-shelf [19,32,33,36–42] or assembled by rigidly mounting in-
expensive action cameras [34,35]: Ref. [34] proposed a method to rapidly survey indoor
environments using a 360◦ assembly of GoPro cameras. The author investigated interior
orientation calibration and the relative orientation between the action cameras and tested
both still images and a video recording capturing method. Limitations were found in the
synchronization of the cameras especially evident for the on-the-move video acquisition, as
the author noted that post-acquisition synchronization accuracy of the video recordings
is limited to the camera’s frame rate. Similarly, Ref. [35] investigated the capabilities of a
360◦ assembly of GoPro cameras stressing the importance of proper sensor calibration in
achieving accurate 3D reconstruction. Ref. [33] tested the use of a 360◦ camera composed
of 36 sensors (Panono 360◦) in the framework of spherical photogrammetry and reported
no reduction in accuracy from the traditional method of using a panoramic head while sig-
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nificantly speeding up the acquisition. Refs. [36,37] tested the performance of inexpensive
360◦ cameras, proposing a methodology for improving the quality of the equirectangular
stitching. The authors highlighted the speed advantage of 360◦ photogrammetry stating
that the method can be effective up to the representation scale of 1:100. Ref. [38] tested
different 360◦ cameras evaluating the accuracy on control points and compared the dense
image-matching result against a reference TLS point cloud, arriving at the same conclusion
that the 360◦ camera approach is time-effective and suitable for up to a 1:100 representation
scale. The authors suggested that higher metric accuracy can be achieved by investigating
the distortion introduced by the sensors and the stitching algorithm. Ref. [40] tested a low-
cost approach to digitizing cultural heritage using an inexpensive 360◦ camera acquiring
pre-stitched equirectangular images. The authors concluded that even if the spherical pho-
togrammetry can be employed successfully for immersive panoramic tours, the accuracy
and noise of the resulting reconstruction were not suited for cultural heritage recording,
attributing the low accuracy to the unreliable equirectangular stitching algorithm. Ref. [39]
investigated the performance of two 360◦ cameras in the challenging task of surveying the
indoor narrow spaces of a bell tower comparing the processing of single fisheye images
with the processing of the stitched equirectangular images. The authors conclude that
better results are achieved by processing the individual images which produced a 3D
reconstruction suitable for a 1:200 representation scale with a deviation of several centime-
tres (around 10 cm) from the ground truth in areas not constrained by Ground Control
Points (GCPs). On the other hand, they state that processing the equirectangular images
resulted in higher point cloud completeness. Similarly, Ref. [19] proposed a methodology
to survey underground burial chambers that uses a 360◦ camera fixed on a tripod. The
authors compared the performance of different equirectangular stitching methods and
of single fisheye images reporting better results for the latter approach yet finding the
stitching method based on depth maps, estimated from the cameras’ overlapping regions,
performing closely. Ref. [41] tested spherical photogrammetry for the extensive survey of
the narrow street of an urban city centre performed by carrying the camera while walking.
The authors state that initial estimates for the external orientation (EO) parameter were
mandatory to orient the complete image block and that reliable GCPs cannot be avoided in
extensive acquisition. Ref. [42] illustrated a sensor integration approach for the high-detail
survey of a cloister, and 360◦ cameras were used to quickly acquire the narrowest areas of
the cloister connecting them to a UAV image block.

Other authors, while recognizing the FOV, speed, and manoeuvrability advantages of
fisheye photogrammetry and especially action cameras, instead of testing panoramic 360◦

configurations, investigated stereo- and multi-camera arrangements with significant base-
lines between the cameras. Ref. [43] experimented with a multi-camera assembly of GoPro
cameras installed on a rigid bar to be mounted on a car roof to dynamically survey street
tunnels, roundabouts, and roads. The authors compared different configurations of four
cameras and compared the dense image-matching results with TLS point clouds reporting
centimetric-level deviations (3–10 cm) with the use of GCPS along the surveyed test path.
The authors do not mention the effect of rolling shutter yet stressed the importance of GCPs.
Ref. [44] designed a multi-camera mapping system composed of multiple stereo pairs
meant for the dynamic 3D survey of indoor spaces. They proposed a low-cost prototype
based on the GitUp Git2 fisheye action cameras conceptualizing different configurations
for a mobile imaging system considering both the possibility of mounting the camera closer
together, allowing for a potential 360◦ stitching, or further apart, improving triangulation
accuracy. The authors report errors in indoor (small rooms) test reconstruction of around
3 cm from the reference highlighting the main limitation of the system being the rolling
shutter sensors and low-level cameras’ synchronization. Ref. [45] tested an image-based
approach for railways’ tunnel inspection, proposing a multi-camera assembly comprising
GoPro cameras and LED lights and reporting satisfactory results for the task at hand at
a fraction of the hardware cost of a TLS approach. Ref. [46] proposed a multi-camera
imaging device meant for the accurate survey of tunnels. The device, “Tunnel-CAM”, is
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composed of seven high-resolution DSLRs equipped with ultra-wide FOV lenses mounted
on a pole in a compact and almost panoramic configuration together with powerful LED
lights. The system has the advantage of recording the narrow environment at a higher
resolution than most other approaches and the disadvantages of being bigger and more
difficult to manoeuvre. Authors report a global error of around 20 cm on reference points
in the survey of a test tunnel 300 m long. Ref. [20] proposed a novel stereo camera system
meant to simplify data capture for 3D point cloud generation in urban design and historic
documentation comprising two industrial cameras mounted in stereo configuration inside
a compact and lightweight device to be used handheld by a single operator. The authors
state that the system has the advantage of simplifying data capture since it does not require
advanced knowledge about photography and photogrammetry since the acquisition is
continuous and performed automatically, exploiting visual SLAM. On the other hand, the
system does not mount fisheye optics and has therefore a limited field of view that can limit
its applicability or ease of operations in narrow spaces. Similarly, Ref. [21] proposes a stereo
camera system using industrial cameras to be used handheld for 3D point cloud generation
exploiting automatic processes and visual SLAM to simplify image-based modelling for
non-expert users. The authors propose a modular system where cameras and optics can
change to fit specific applications such as narrow space surveys with fisheye optics [47,48].

In conclusion, the literature is rich in promising tests, prototypes, and methods to
achieve the rapid survey of narrow spaces using image-based modelling. Fisheye optics are
investigated as the obvious choice to contain the number of images of the photogrammetric
network and to simply the capturing geometry with respect to the higher image count
required using rectilinear lenses. DSLR-based fisheye photogrammetry proved effective
yet requires expertise by the operator in performing the complex image capture and,
moreover, because of that, still requires care and time during field operations. On the
other hand, 360◦ photogrammetry simplifies the capturing phase further by comprising
multiple viewing angles into one multi-camera, and yet the equirectangular stitching is
usually unreliable, hampering the achievable accuracy; moreover, successful approaches
usually require a static tripod mount. Action cameras, low-cost custom rigs, and multi-
camera assembly based on action cameras perform similarly to 360◦ photogrammetry but
are usually employed dynamically. These approaches also simplify the acquisition for
non-expert users but usually at the expense of accuracy due to the camera’s instability
(rolling shutter and poor synchronization). The most advanced systems take the custom
multi-camera approach further, overcoming the drawbacks of the camera’s instability with
more specialized hardware. Moreover, visual SLAM and other automatic processes can be
included to empower the non-expert user. However, not all applications require the same
hardware choices: the stereo systems proposed by [20,21] are not optimized for extensive
narrow space surveys due to limited field of view and rig geometry.

1.2. Research and Paper Objectives

As mentioned, the most consolidated geomatics techniques are not effective for the sur-
vey of narrow spaces: both terrestrial laser scanning and DSLR close-range photogrammetry
are regarded as reliable and accurate techniques; yet, in elongated tunnel-like environments,
they both require acquiring a large number of data (scans or images) that usually make the
job impractical; portable MMSs widely available on the market suit the task but are not
regarded as reliable due to the drift error that accumulates in long unconstrained acquisi-
tions [5]. They are accurate locally but fail in general accuracy if they are not supported by
control measurements.

Complex confined areas are not uncommon, and, nowadays, acquiring these kinds of
places can be necessary for many fields that would benefit from a complete 3D digitization
process and extensive photographic documentation useful for restoration, inspection,
and monitoring. In cultural heritage, there are narrow passages, stairways, and utility
rooms; in archaeology, there are catacombs and underground burial chambers; in land
surveying, there are natural formations such as caves; and in infrastructure, there are
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tunnels, aqueducts and sewers, or even mining. In all these types of spaces, there is a growing
need to record 3D geometry, often quickly and recursively, safely, and cost-effectively.

The study described in this paper aims to provide a trustworthy and effective survey
methodology for small, tunnel-like areas. Building on a prior study conducted by [6],
the primary goal of this research is to leverage the robustness of SfM and comprehend
drift behaviour while streamlining the process of capturing large amounts of images in a
repetitive tunnel-like environment. The objective was to develop a multi-camera system
equipped with fisheye lenses that can collect data quickly, intuitively, and even in the most
complex and challenging spaces, producing results that are accurate and reliable enough to
meet the requirements of the scale of architectural representation (2–3 cm error).

The key goals to achieve were as follows:

• Cost-effectiveness: To be competitive for low-budget applications and for the survey
of secondary spaces for which laser scanning cannot be justified, such as geology and
archaeology.

• Speed-effectiveness: Like the other MMSs, it must speed up the acquisition process
regardless of the complexity of the space to be surveyed (narrow and meandering
spaces).

• Reliability: The time saved on site must not be spent during data elaboration due to
unreliable processes. This is probably the most important flaw of today’s MMSs, and
it is also a problem encountered in the early tests with fisheye photogrammetry.

Therefore, the objective was to develop a multi-camera device that is compact,
lightweight, and transportable by hand and houses multiple cameras to cover the en-
tire environment in which the device is immersed except for the operator. The cameras
should be equipped with fisheye lenses to maximize the field of view and minimize the
number of images to be acquired to complete the survey. The compact structure should
accommodate the cameras by ensuring a robust fixed baseline between all cameras in the
system. The constrained fix design will then allow for automatic scaling of the resulting
three-dimensional reconstructions, introducing the relative orientation constraints between
cameras and reducing the degrees of freedom of the photogrammetric network.

This paper describes the research that led to the design of a working prototype of a
novel instrument, a fisheye multi-camera called Ant3D that resulted in a patent application
in 2020 and that has already been tested and compared multiple times in the field against
other approaches [5,22–25,49,50].

1.3. The Beginning of the Research—The FINE Benchmark Experience

At the beginning of the research interest in fisheye photogrammetry and fisheye multi-
camera applications, in 2019, an access-free benchmark dataset was designed to provide
a set of data to evaluate the performances of different image-based processing methods
when surveying complex spaces, specifically the performance of low-cost multi-camera
rigs: the FINE benchmark (Fisheye/Indoor/Narrow spaces/Evaluation). Participants from
academia and research institutes were invited to use the benchmark data and demonstrate
their tools, codes, and processing methods in elaborating two image datasets for the 3D
reconstruction of narrow spaces (Figure 1). The benchmark dataset was first presented
during the 3D-ARCH 2019 conferences held in Bergamo, where a special session was held
specifically for the presentation dealing with the benchmark.
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Figure 1. Some images of the San Vigilio Castle’s tower (top) and tunnel (centre); and the dimensions
of the tunnel (bottom). The image refers to the FINE benchmark dataset.

The benchmark data were acquired in the internal spaces of the Castagneta Tower of
San Vigilio Castle, located at the very top of Città Alta (Bergamo, Italy). The case study has
been chosen because of the co-existence of challenging conditions that can be exploited
to stress the techniques and processing strategies. All the indoor spaces of the castle are
poorly illuminated, and the two main environments of the tower include some narrow
passages in the range of 70–80 cm wide. They differ in the surface features: artificial, refined
flat surfaces for one area and rough natural rock surfaces for the other.

The benchmark was composed of two datasets referring to the two connected
environments:

• Tunnel: a dark underground tunnel (around 80 m long) excavated in the rock, with a
muddy floor and humid walls. In some areas, the ceiling is lower than 1.5 m.

• Tower: an artificial passage composed of two rooms with a circular/semi-spherical
shape that are connected by an interior path, starting from the tower’s ground floor
and leading to the castle’s upper part, constituting staircases, planar surfaces, sharp
edges, walls with squared rock blocks, and relatively uniform texture.

The FINE benchmark provided several data including the image datasets and a laser
scanner ground truth point cloud. For the acquisition of the low-cost multi-camera datasets,
an array of action cameras was used to perform a rapid video acquisition of both the tunnel
and tower areas. The rig consists of six GoPro cameras mounted rigidly on a rectangular
aluminium structure (Figure 2). Continuous light is provided by two LED illuminators
mounted on the back.
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Figure 2. The GoPro array scheme (top) and an example of the 6 views inside the underground
tunnel (bottom). The image refers to the FINE benchmark dataset.

The rig was designed to have a sufficient base distance between the six cameras in
relation to the width of the narrow passages. The design was thought to reconstruct the
object geometry at every single position of the rig. Two cameras were mounted on the top
(G6) and the bottom (G5) of the structure, tilted roughly 45◦ degrees downwards and up-
wards. Four cameras were mounted on the rig’s sides, two of them (G1, G2) in a convergent
manner oriented horizontally, and two in a divergent way (G3, G4) oriented vertically.

The FINE benchmark provided the basis for an in-depth test of the low-cost multi-
camera approach. Our own investigations comprise the synchronization of the individual
video sequences of the six GoPro cameras using the audio tracks available and the subse-
quent extraction of timestamped keyframes to form the image datasets to be used for SfM.
The obtained images were then processed using a pipeline implemented with the com-
mercial software Agisoft Metashape (version 1.7) that accounts for rigid constraints of the
known baselines between the cameras. Different keyframe extraction densities were tested,
namely 1 fps, 2 fps, and 4 fps. The evaluation of the resulting 3D reconstruction of the
processed datasets was performed in two ways: (i) by checking the error on CPs available
along the narrow environments and extracted from the ground truth laser scanner point
cloud, and (ii) by checking the cloud-to-cloud deviation of the obtained sparse point cloud
from the reference ground truth. For both evaluations, the multi-camera reconstructions
were oriented with the reference point cloud using a few GCPs at the tunnel start in order
to check the maximum drift at the opposite end. Table 1 shows the error on the checkpoints
resulting from the 3D reconstruction of the tunnel environments for the 1, 2, and 4 fps
datasets. Figure 3 shows their relative cloud-to-cloud deviation from the laser scanner
ground truth point cloud. For all results reported, the baselines between the cameras were
rigidly constrained in the bundle adjustments exploiting the scalebar function available in
Metashape. Overall, the error obtained exceeded the target accuracy, and the processing
presented a great degree of unreliability.
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Table 1. An evaluation of the different tests. The table reports the residuals on the CPs (black points)
with the three reconstructions oriented over the GCPs (white points). The table refers to the FINE
benchmark dataset.

1 fps 2 fps 4 fps CPs Scheme

n◦ tie points [M] 3.1 6.8 15.3
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The FINE benchmark’s experience revealed several problems with the multi-camera
implementation based on a commercial action camera. Nevertheless, the results confirmed
the potential of the image-based multi-camera approach, allowing for the complete ac-
quisition in a short time despite the complexity of the environment. However, reaching
architectural accuracy (2–3 cm) was impossible without using the coordinates of known
points measured with the total station to optimize the three-dimensional reconstruction.

The main limitations were as follows:

• The geometry of the multi-camera. The used configuration, consisting of six GoPro
cameras oriented mainly in the frontal direction combined with the surface roughness
of the rock walls, has resulted in an insufficient number of tie points to connect
the images acquired in the forward direction with those obtained in the backward
direction.

• The rolling shutter of the sensors used. The introduction of distortions due to the
acquisition in motion and the use of rolling shutter sensors has led to not being able to
accurately calculate the camera’s internal orientation parameters and not being able to
impose constraints on the relative orientation of the cameras without high uncertainty.
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Nevertheless, the constraints on the distances between the cameras were effective in
reducing the drift error compared to non-constrained processing.

The FINE benchmark experience highlighted how, in order to achieve the aforemen-
tioned goals, a custom system was necessary to overcome the low-cost hardware limitation.
The chapters below describe the hardware and design choices that led to the definition of
the current system.

2. Materials and Methods

In designing the multi-camera system, the analysis considered together both the fish-
eye mapping function characteristics specific to the hardware in use and the environmental
characteristics of the targeted applications for the system. The proposed multi-camera
design was optimized for the following target environments, which is thought to be a good
approximation of common narrow spaces: a tunnel measuring 1 m width by 2 m height.
The main topics tackled are (i) the multi-camera stability with movements, (ii) the multi-
camera calibration of both interior orientations and relative orientations of the cameras,
and (iii) the design of the multi-camera arrangements, i.e., the optimal rig geometry for the
multi-camera-system derived through a study on the GSD (Ground Sampling Distance)
distribution in object space accomplished through simulation.

2.1. Materials

The hardware used throughout the investigation and for the proposed prototype is
composed of 5 industrial-grade RGB cameras: the FLIR BlackFly S U3-50S5-C that uses a
global shutter 5-megapixel 2/3′′ colour sensor with a pixel pitch of 3.45 µm. Each camera
is equipped with a 190◦ circular fisheye lens SUNEX PN DSL315, an equidistant fisheye
with a focal length of 2.7 mm, and an FOV of 190◦ in an image circle of 7.2 mm. The lens
was chosen so that the image circle would fit the sensor, keeping almost the entirety of
the field of view. As highlighted from the FINE benchmark experience, the global shutter
sensors and the possibility of accurately triggering the shots were needed to guarantee
multi-camera stability in the presence of movement. The 5-megapixel resolution was
chosen based on the narrow nature of the target environment, not requiring high-resolution
images to grant acceptable GSD, and based on the need to contain computation effort in
processing a high number of images.

2.2. Multi-Camera Stability with Movements

In designing the improved multi-camera rig, the first problem addressed was the lack
of frame synchronization experienced in the previous tests with the action cameras. The
problem has been tackled by defining a maximum threshold for the displacement error of
a given object point in image space due to the synchronization error and the presence of
relative motion between the object and the camera rig. This threshold has been set to the
size of 1 pixel so that it would not be detectable in the images. Then, also considering the
effect of the fisheye mapping function, the maximum synchronization error that would
generate a displacement of 1 pixel in image space in the operational conditions (movement
speed: 1 m/s, camera-to-point minimum distance: 1 m) is derived.

Then, the actual synch error of the multi-camera system was measured with the
aid of a synchronometer that can measure synch error up to 10 µs. The device works
by emitting intermittent light pulses precisely spaced; by acquiring a sequence of multi-
images of the device, it is possible to read out eventual delays in the camera captures. The
synchronization test is passed if the multi-camera asynchrony is lower than the computed
maximum synchronization error.

The same framework also applies to the computation of the minimum exposure time
for the cameras so that no motion blur can be detected in the presence of relative movements
between the subject and the rig. As for the maximum synchronization error, the minimum
exposure time is the exposure time that causes a displacement of scene points in image
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space to the threshold value of 1 pixel in the target operational condition, and it also
considers the effect of the fisheye mapping function.

Section 3.1 provides a framework for computing the maximum synch error and
minimum exposure time considering the fisheye mapping function, together with the
results of the synchronization error measurement.

2.3. Multi-Camera IO and RO Calibration Method

The stability of the global shutter sensors, together with accurate frame synchro-
nization, allows for the accurate and reliable computation of the interior orientation (IO)
parameters for each camera and the relative orientations of the secondary cameras with
respect to the primary.

The IO calibration will be performed for each camera composing the rig. To achieve
a reliable calibration, two different calibration test fields were compared with the aim of
defining the ideal one: the first one is a texture-less semi-sphere covered in coded targets
(Figure 4—left) as used by [30], while the second one is a corner-shaped highly textured test
field (Figure 4—right). For both the test fields, reference 3D coordinates of some markers
were measured by conducting a monocular photogrammetric acquisition with a DSLR
scaled using reference invar bars. The monocular photogrammetric processing yielded
the reference coordinates for both test field markers to an accuracy of around 0.2 mm
(accuracy of the reference bars). Later, these coordinates were used to scale the calibration
acquisitions performed with the fisheye cameras and control the result. For the comparison
of the two test fields, a calibration was performed for just one camera before conducting
the calibration for all cameras with the best-performing method. The fisheye calibration
acquisition was performed by rotating the camera around the test field and by rotating
it in all different directions. For the semi-spherical test field, the camera was roughly
positioned along the imaginary other half of the semi-sphere pointing to the test field with
the optical axis pointed to the centre of the sphere; during the acquisition, the camera was
also rotated around its optical axis (roll). Roughly the same approach was followed for the
corner-shaped test field by moving the camera over an imaginary semi-sphere.
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Other than the internal orientation parameters, the camera’s relative orientations can
also be calibrated and used as constraints during the system deployment to reduce the
degree of freedom of the photogrammetric network. The relative orientation relation-
ship between the cameras allows us to constrain the baselines between them as well as
their rotations.

The RO calibration process is performed using Agisoft Metashape in a pipeline like
the one already described for the single cameras’ calibrations. That is, by performing a
photogrammetric acquisition with the assembled multi-camera system of a known test field
that is preferably a small “room” of similar dimensions as the size of the environment, the
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system is intended to be used (Figure 5). The multi-camera acquisition is then processed
to the best possible orientation of the image network. From the estimated coordinates
of the oriented cameras, the calibrated RO is computed through Metashape. Reference
coordinates for the targets are used half as a constraint to scale the reconstruction and half
as a check.
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2.4. Designing the Multi-Camera Arrangement

The study to define the multi-camera rig geometry that is improved from the rig
geometry used in the FINE benchmark is firstly based on some practical considerations
and lessons learned. Subsequently, pre-defined geometries that have been considered
reasonable are compared based on their GSD performance, considering, therefore, the
relationship between the camera’s angles and environment geometry for which the multi-
camera is intended. In this test, the environment is defined as a synthetic dataset of
points equally spaced on the surface of a tunnel-shaped parallelepiped of cross-section
w: 1 m × h: 2 m. The synthetic dataset of 3D points is used to simulate the projection of
each point onto the image plane of one or more simulated cameras. The simulated cameras
can be modified both in their internal properties, e.g., principal distance and mapping
function, and in their external orientation.

Initial considerations to define the reasonable arrangements to compare were (i) the rig
dimensions and (ii) the choice of avoiding framing the operator and the light sources within
the FOV of the cameras. On the lesson-learned side, the FINE benchmark highlighted the
importance of connecting the outward acquisition with the return acquisition, and this
requires planning the incidence angle of the camera’s optical axis to the surface walls. It is
important that the images from the two directions of acquisition framing the same area on
the walls of the tunnel are not too different, especially in the scenario of rough surfaces.

These initial thoughts led to the definition of the reasonable multi-camera configura-
tions represented in Figure 6. These arrangements depict only four cameras since it has
already been decided that one camera will point straight ahead in the final assembly. This
choice depends mainly on the idea of exploiting the central front-facing camera in the
future to run real-time processing of the data using only this camera and on the idea of
using this camera for virtual inspection purposes. Therefore, only the arrangements of the
remaining four cameras remain to be defined.
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Figure 6. The figure reports the four families that were considered for arrangements. For each
category, different orientations of the cameras were simulated and compared. All schemes depict the
configuration in the vertical plane of the tunnel cross-section except for the horizontal rig, which is
shown in plan view.

The reasonable arrangements are the following:

• Square: It consists of four cameras organized in two horizontal couples on top of each
other. The cameras can be rotated at different angles along their vertical axis. The distance
between the cameras is 20 cm, both on the horizontal and on the vertical direction.

• Cross: The cross geometry consists of a vertical pair of cameras and a horizontal pair
of cameras. The cameras can converge or diverge towards the centre at different angles.
As in the previous configuration, the distance between the cameras is 20 cm in both
horizontal and vertical directions.

• Vertical: This geometry consists of the first pair of cameras in the vertical direction
with a long baseline (40 cm) converging toward the centre at different angles and a
second couple in the horizontal direction with a short baseline (10 cm) diverging and
pointing toward the sides.

• Horizontal: The horizontal configuration consists of a couple of frontal cameras and
a couple of rear cameras. The cameras within the two couples are close together
(10 cm apart), while the front and rear cameras are positioned 20 cm apart. The longest
baseline is, therefore, oriented along the tunnel extension.

As mentioned before, a fifth camera is always positioned in the centre, pointing
forward for all the arrangements.

The pre-defined arrangements were then tested by simulating virtual cameras inside
the synthetic dataset of the tunnel mentioned above. For each point in the synthetic dataset,
a projection in image space can be simulated for each camera of the tested rigs, and different
mapping functions can also be used. The GSD can be computed for each point in the 3D
virtual scene for each camera so that each synthetic point holds a reference to the computed
values from all cameras in which it is visible. From this, a GSD distribution analysis
is performed considering the average GSD obtained for each point in the scene. This
analysis allows us to draw some consideration on the tested configuration and, therefore,
can help to decide which one would be the best performing in general or according to
specific objectives.

The multi-camera rig geometry and the relationship between fisheye projection and
incidence angle with the collimated points were considered to simulate the GSD behaviour.
The GSD is therefore computed according to Equation (1) and is expressed as a function of
(i) the principal distance, (ii) the distance between the camera and its normal plane passing
through the point, (iii) the detector pitch, and (iv) the lens mapping function.

GSD = h·[tan( f (c, r2))− tan( f (c, r1))] (1)

The notation refers to Figure 7. For each point projected onto the image plane, the
radius r1 is known, and the radius r2 depends on the detector pitch, with

r2 = r1 + pixel size.
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f (c, ri) = θi is the inverse of the lens mapping function r = f (c, θ).
Equation (1) is used to compute the GSD for each point projected onto the simulated

images, the value is then stored back inside the 3D point entity. At this point two metrics
are computed for all 3D points: (i) the first one is GSDp, referring to the average of GSD
values, according to Equation (1), calculated from all cameras in which the point is visible;
(ii) the second one is GSDpW , where the average of the individual GSD values calculated
for each insisting camera is weighted based on the angle between the image normal and the
point normal. The weights are calculated as Wi = f (τ), where τ = cos−1(n̂ i·n̂p

)
, and the

angle between the image and the point unit normal vectors are n̂ i and n̂p. The image unit
normal vector n̂ i points opposite the viewing direction, in the direction from the optical
centre to the image projection (the negative). It follows that when the camera is oriented
along the point normal, looking at the point, the angle τ is 0◦; conversely, when the camera
is looking away from the point, the angle τ is 180◦ (Figure 8). Wi maps the angle between
the vectors from the range [0◦, 150◦] to the interval [1, 10] linearly, and for angles greater
than 150◦, the GSD value is discarded. The Wi is the attempt to consider the visibility of the
point as a factor in the metric; if a point lies on a surface almost occluded, that is, looking
away from the camera viewing direction, it is assumed that the accuracy of point detection
would be lower than the accuracy for a second point that lies on a surface that is looking
towards the camera viewing direction, even if the two points forms an identical angle with
the optical axis (Figure 8). The mapping of the angles to the arbitrary range [1, 10] has the
effect of maintaining the GSD value unaltered in the best condition and worsening it up to
ten times in the worst condition. All analyses based on this second metric have the objective
of discriminating between the different camera arrangements to help decide the best ones
based also on the assumption that a greater angle between the image and point normal
vectors corresponds to a worse measurement quality during actual system deployment.

To find the best-performing configurations within each category/family (Figure 6),
different camera orientation angles were simulated, and the results, in terms of the two
metrics defined above, were compared within the same category/family. Out of each
of the four considered categories, one specific best-performing configuration is therefore
defined. Finally, the best-performing arrangements of each category are compared among
themselves, and results are drawn from them.



Sensors 2024, 24, 4177 15 of 31Sensors 2024, 24, x FOR PEER REVIEW 15 of 31 
 

 

 
Figure 8. The figure illustrates the framing of two points, P1 and P2, at the same distance, h, from 
the camera and forming the same angle θ with the optical axis. It follows that the GSD for the two 
points is the same. However, the 𝐺𝑆𝐷௣ௐ is different, and the weighted metric is worse for point P1 
based on the greater angle between the point normal (green arrow) and the image normal (red ar-
row). 

To find the best-performing configurations within each category/family (Figure 6), 
different camera orientation angles were simulated, and the results, in terms of the two 
metrics defined above, were compared within the same category/family. Out of each of 
the four considered categories, one specific best-performing configuration is therefore de-
fined. Finally, the best-performing arrangements of each category are compared among 
themselves, and results are drawn from them. 

3. Results 
3.1. A Framework for Computing Displacement Error with Movements in Fisheye Cameras 

Equations (2) and (3) give the point displacement in image space ∆𝑠ᇱ considering a 
general mapping function: 𝑟 = 𝑓(𝑐, 𝜃) (Figure 7). Different mapping functions will pro-
duce different displacement errors in image space from the same amount of relative mo-
tion. The mapping functions 𝑟 = 𝑓(𝑐, 𝜃) of the most common fisheye projections can be 
found at [51]. 𝜃௧ଵ = 𝜃௧଴ + 𝑎𝑟𝑐𝑡𝑎𝑛 ∆𝑆𝐷  (2)

∆𝑠ᇱ = 𝑓(𝑐, 𝜃௧ଵ ) − 𝑓(𝑐, 𝜃௧଴ ) (3)

With a regular slow walking speed of 1 m/s and a distance (D) of 1 m (taking into 
consideration the main application for the developed system), the estimated maximum 
acceptable synch error is ~1 ms to meet the condition ∆𝑠ᇱ௘௤௨௜ௗ௜௦௧௔௡௧ ௙௜௦௛௘௬௘ ≤ 𝑝𝑖𝑥𝑒𝑙 𝑠𝑖𝑧𝑒 
(Figure 9). Firstly, a software synchronization between the cameras was tested, resulting 
in a measured synch error of ~30 ms, vastly surpassing the maximum level of accepted 
synch error. Because of that, hardware synchronization between the cameras was manda-
tory to meet and surpass the requirements with ~200 µs of max delay (Figure 10). 

Figure 8. The figure illustrates the framing of two points, P1 and P2, at the same distance, h, from the
camera and forming the same angle θ with the optical axis. It follows that the GSD for the two points
is the same. However, the GSDpW is different, and the weighted metric is worse for point P1 based
on the greater angle between the point normal (green arrow) and the image normal (red arrow).

3. Results
3.1. A Framework for Computing Displacement Error with Movements in Fisheye Cameras

Equations (2) and (3) give the point displacement in image space ∆s′ considering a
general mapping function: r = f (c, θ) (Figure 7). Different mapping functions will produce
different displacement errors in image space from the same amount of relative motion.
The mapping functions r = f (c, θ) of the most common fisheye projections can be found
at [51].

θt1 = θt0 + arctan
∆S
D

(2)

∆s′ = f (c, θt1 )− f (c, θt0 ) (3)

With a regular slow walking speed of 1 m/s and a distance (D) of 1 m (taking into
consideration the main application for the developed system), the estimated maximum
acceptable synch error is ~1 ms to meet the condition ∆s′equidistant f isheye ≤ pixel size
(Figure 9). Firstly, a software synchronization between the cameras was tested, resulting in
a measured synch error of ~30 ms, vastly surpassing the maximum level of accepted synch
error. Because of that, hardware synchronization between the cameras was mandatory to
meet and surpass the requirements with ~200 µs of max delay (Figure 10).
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3.2. Multi-Camera IO and RO Calibration Results

Regarding the IO calibration comparison test, a visual inspection of the marker repro-
jection favoured the corner-shaped approach. For the semi-sphere dataset, displacements
can be observed in the corners area. Only little differences could be observed in the
evaluation of the reprojection error of control points in image space.

Based on the result of the comparison between the two test fields, the textured corner-
shaped test field was used to obtain the calibration of all the cameras of the multi-camera
rig. Overall, the calibrations present similar results. The correlation matrices, as expected,
show a strong correlation between the radial distortion parameters and between x0 and p1
and y0 and p2. Moreover, on average, the RMSE on the markers, where all markers are
used as CPs, is below 0.3 mm, comparable with the accuracy of the reference coordinates of
0.2 mm; the RMSE in image space is instead, on average, below 0.2 pixels.

Regarding the RO calibration, considering the current implementation of the proto-
types and the stability of the current system, it is preferred to repeat the RO calibration
process often, ideally for every deployment of the system, similarly to a self-calibration
of the internal orientations. During SfM processing, the estimated RO parameters are
imposed in Metashape using the multi-camera function. In previous deployments of the
system, only the baselines would be estimated from calibration; in that case, the Metashape
scalebar function would be used to impose the constraint, relying on a Python script that
implements all baselines automatically from an input source file.

3.3. The Geometric Configuration of the Multi-Camera

The simulation of the GSD distribution is performed in image space for each camera
in the rigs, computing the GSD according to Equation (1) for each synthetic point projected
onto the simulated image. Then, the analysis is transposed in object space by computing
the two metrics described in Section 2.4. Figure 11 illustrates the object space synthetic
data geometry that is considered during the test. The origin of the multi-camera rig is
positioned at the centre of the grey cross-section plane and pointing straight ahead along
the tunnel extension.
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Figure 11. The geometry of the simulated synthetic 3D environment used during the tests; the
multi-camera rigs are positioned in 0 in the centre and pointing forward.

Figures 12 and 13 show the plots computed for all configurations showcasing the
“horizontal” configuration with camera angles set at 30◦ for the front cameras and 60◦ for
the rear cameras. First, the GSD distribution simulated in image space for all the cameras
composing the rig is shown; second, the object space average of these contributions is
shown. In Figure 12, the image projections are cropped at 150◦ of the angle of incidence θ

to discard the worst areas of the GSD behaviour.
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Figure 12. GSD distributions simulated in image space for the “horizontal” configuration with front
cameras at 30◦ and rear cameras at 60◦ left and right from the front-facing direction.

Figure 13 illustrates how, from the GSD distribution in object space, a single curve
is computed to represent the GSD variation on the YZ plane of the simulated tunnel (the
side surface). This curve (Figure 13, top right) is computed as the column-wise mean of the
plot below (Figure 13, centre right), which is the 2D representation of the GSD distribution
on the side wall of the tunnel. This same procedure is repeated for both the GSDp and
the GSDpW metric. Moreover, it is also repeated for the XY plane of the tunnel, obtaining
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a similar curve for the two metrics representing the GSD distribution variation on the
horizontal planes of the tunnel (ground or ceiling).
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Figure 13. GSD distribution in object space (GSDp metric). The 3D plots on the left show the metric
(top left) and the view multiplicity for each point (bottom left). On the right (centre right and
bottom right), the same information is shown in 2D on the YZ plane of the side wall of the simulated
environment. Finally, the plot at the top right shows the mean computed column-wise value of the
GSD distribution on the YZ plane (centre right), and the curve represents how the GSD is distributed
on the side wall of the tunnel. The images refer to the same “horizontal” configuration of Figure 12.

Figure 14 illustrates the final comparison between the best-performing arrangements
for each of the different rig families (Figure 6), each selected by choosing the best performing
of all variations with different camera rotations within each family. For this plot, three
consecutive poses of the multi-camera rigs are considered at positions 0, 1, and 2 m along the
simulated environment (Figure 11). This is performed with the purpose of also evaluating
the interaction of different poses during acquisition. Discontinuities in the GSD distribution,
as it is visible for the “square flat” configuration, show inhomogeneity in the resolution at
which the surfaces of the tunnel are framed.

In Figure 14, the graphs on top and in the centre show the results with the two metrics:
it can be noticed (i) how the square geometry with all the cameras oriented forward (black
line) covers significantly less area at the beginning of the tunnel; (ii) a clear separation
of the tested geometries in two groups, square with horizontal and cross with vertical,
with the former group performing the best on the side walls (continuous lines in the
graphs) and much worse on the horizontal surfaces (dashed lines), and the latter group
presents more balanced performances; and finally (iii), as anticipated above, the rig with
the cameras pointing forward shows high peaks at each pose due to the decaying resolution
on the edges of the frame, suggesting that a shorter baseline between the poses should
be considered. Again, in Figure 14, two more graphs are reported at the bottom; they
represent the GSD-weighted behaviour computed for different tunnel cross-sections: (i) a
50 cm × 50 cm tunnel (bottom left) and (ii) a 4 m × 4 m tunnel (bottom right). These bottom
graphs highlight how a wider tunnel diameter results in a more even average resolution
along the 3 m length and in amplified differences among the compared rigs.
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Figure 14. The graphs report the comparison of the selected configurations. The x-axis represents
the length of the tunnel along its extension; the continuous and dashed lines describe the GSD
distribution on the vertical and horizontal plane of the tunnel, respectively. Three consecutive poses
of the multi-camera rig are considered at positions 0, 1, and 2 m. The top and centre graphs are
considered virtual tunnels of 1 m × 2 m, while the bottom-left and bottom-right graphs are considered
square tunnels of 0.5 m and 4 m, respectively.

The results allow for a distinction of different rigs in different categories that can be
employed according to the specific needs of each application, such as the required resolution
and the relevance of the horizontal or vertical surfaces. The “horizontal” configuration,
the red line in Figure 14, performed the best on the side surfaces and entails some crucial
advantages like its reduced section size compared to the length, which is ideal for inspecting
small niches. Moreover, the field of view of the cameras is ideal to avoid framing the rest of
the structure as much as possible.

4. Proposed Multi-Camera System—Ant3D
4.1. Description and Main Features

The study of improving the hardware of the initial multi-camera system led to the
design of a working prototype of a multi-camera photogrammetric system designed for
the survey of complex and narrow areas called Ant3D. The proposed device aims to be
an alternative to modern dynamic 3D surveying systems on the market, offering high
measurement accuracy combined with the acquisition of high-resolution images, optimal
characteristics for digitization, and detailed inspection of surfaces and meandering spaces.

The device allows for a drift error reduction in long acquisitions. This is due to the
combined exploitation of (i) the fisheye lens angle of view, (ii) the five cameras arranged
in such a way that the whole scene except the operator is always captured in its entirety,
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(iii) the accurate synchronization of the captured images, (iv) the accurate calibration of the
multi-camera IO and RO, and (v) the data processing through Structure from Motion and
potentially through V-SLAM.

The multi-camera system is composed of two parts: a hand-held structure or probe
and a small backpack connected by data transmission cables (Figure 15). The mechanical
structure houses five cameras, a touch screen, and three LED illuminators (2000 lumens
each). The geometry of the multi-camera is composed as follows: five cameras are config-
ured in such a way that with respect to a horizontal plane and a front aiming direction, the
first frontal camera is placed at 0◦ angle with respect to the aiming direction and at around
10◦ up with respect to the horizontal plane; the second and third front right and left cameras
are placed at an angle of +45◦ and −45◦, respectively, in relation to the aiming direction;
and the fourth and fifth rear right and left cameras are placed at an angle of +60◦ and −60◦,
respectively, in relation to the aiming direction. There are about 15 cm between the right and
left front cameras, and about 20 cm between the front and rear cameras. This arrangement
is motivated by the study described in Section 3.3, where the horizontal configuration was
the best compromise between performance and practical considerations. This configuration
is designed for tunnel-shaped environments with a cross-section varying from about 1 m
to about 4 m. However, the structure can also be used in narrower environments, such as
niches from about 30 cm wide or even larger environments, provided that it is possible to
illuminate these environments with different solutions aside from the lights mounted on
the structure and accept a lower accuracy. The relative arrangement between the cameras,
and particularly the presence of a significant distance between their centres, especially
along the forward/walking direction, allows for an accurate triangulation of homologous
points and scaling of the resulting three-dimensional reconstruction. The LED illuminators
are mounted both on the side and on the front of the system and are as large as the compact
dimension of the prototype allows for (around 10 × 15 cm). The current configuration
has been designed to maximize the illuminator’s surface area in order to contain hard
shadows and inhomogeneous illumination that is inherent in the single-point light source
configuration. Figure 15 shows a scheme of the proposed system and Figure 16 displays a
picture of the second prototype build based on this scheme.
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Figure 15. A scheme of the proposed multi-camera system. The figure reports the actual angles
between the cameras used in the implementation of the prototypes and also includes a range of
adjustments that could be implemented for future builds to adapt the device for different target
environments. Additional sensors, such as IMUs, are not yet implemented but could be included in
future iterations.

The five cameras composing the system are the same type with identical fisheye lenses
as detailed in Section 2.1. The 190◦ FOV optics allow us to reduce the number of images
needed for the 360◦ 3D reconstruction allowing us to obtain complete coverage of the
framed scene, except for the operator, using only five cameras. In addition, the wide
angle of view of the multi-camera allows for obtaining a great redundancy of constraints
(homologous points connecting successive positions of the rig) while allowing for a large
ratio between base distance and capturing distance, i.e., the ratio between the distance of the
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centres of gravity of two consecutive positions of the rig and the distance between the centre
of gravity of the rig and the photographed surface, is equal to 1:1, while instead, using
rectilinear projection optics, this ratio must be lower (about 1:2), significantly increasing the
number of images required. Finally, the short focal length favours a wide depth of field that
allows for one to simultaneously obtain very close and distant objects in focus, improving
the result of the subsequent processing.
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Figure 16. A picture of the second version of the prototyped instrument. The picture shows the probe
in the front, the backpack that houses the PC, and the battery on the back on the left.

The device allows us to obtain a reconstruction directly to scale without the need for
additional support measurements by exploiting the rigid, calibrated relative position of the
cameras and the synchronization of the cameras.

This characteristic allows for the detection of a large number of key points in each
direction around the multi-camera and a large number of image constraints (homologous
points) between cameras within the structure itself and between consecutive positions of
the structure during movement. The wide viewing angle means that the same key points
can be recognized and used as constraints for many consecutive positions of the rig before
they no longer fall within the cameras’ field of view. The redundancy of these constraints
reduces drift error in prolonged acquisitions.

The instrument is designed to be held and used by a single operator walking indepen-
dently through the environment/tunnel to be detected at normal walking speed and allow
for a complete acquisition in a very short time. The acquisition proceeds in a completely
autonomous way and can therefore be completed even by mounting the structure on a
vehicle or other mode of movement without the need for the presence of the operator.

The key elements of the system are as follows:

• Global shutter cameras: The use of global shutter sensors allows for the reliable
exploitation of the calibrated internal orientations.

• Circular fisheye lenses, with a field of view of 190◦, arranged in a semicircle, allow
for a hemispherical shot of the framed scene, excluding the operator, allowing for
omnidirectional tie-point extraction. In addition, they provide a wide depth of field,
allowing for the use of fixed focus while still covering close to faraway subjects.

• Rig geometry: The relative arrangement between the cameras favours determining
the device’s position at the moment of acquisition and allows for omnidirectional
constraint points that make the final reconstruction more robust.

• Calibrated RO: The constrained, rigid, and calibrated position between the cameras
allows for automatic and accurate scaling, even in very large environments. The
accurate hardware synchronization of the cameras guarantees consistent results.

The most notable advantages of the developed system are as follows:
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• Contained drift error in prolonged acquisitions as evaluated on the field through
challenging case studies [5,22–24,50].

• Reduced number of images required for 360◦ 3D reconstruction thanks to the wide
viewing angle of the fisheye optics.

• Scaled reconstructions without additional support measures, thanks to the relative
position of the calibrated cameras and their accurate synchronization.

• Speed and reliability of the acquisition, feasible even for non-photogrammetric experts.

4.2. Acquisition and Processing

The images are acquired with a time-based synchronized trigger that can be set at
different frame rates. For most cases, during testing, a frame rate of 1 fps has been used.
The image set acquired is stored in five subfolders, dividing the images according to the
camera that acquired them. For the test performed so far, the processing step is performed
using the Agisoft Metashape software (versions 1.7–2.0). Each camera is loaded with a
reliable pre-calibration of the internal and relative orientation parameters. At this point,
the image set can be oriented using the SfM implementation of Metashape.

Within the testing phase, it was observed that to achieve optimal results in challenging
scenarios, such as complex and extensive interconnected tunnel environments, adjustments
such as (i) “manual refinements” and (ii) “tie-points filtering” were necessary.

• Manual refinements: During the many tests performed, misalignments have been
found multiple times. In the presence of misalignment, the approach used is that of
a manual intervention to correct the mistakes. This is carried out by identifying the
incorrectly oriented images, resetting them, and trying to re-align them. Trying to
re-align a few images is usually successful since the software overwrites the valid
and invalid matches selection which usually improves when most images are already
oriented correctly. These operations have been implemented in the software Metashape
using scripting so that by just selecting one of the images of the multi-camera pose,
the re-alignment procedure is performed for all images of that multi-camera. With
the experience gathered during the testing phase, the misalignment is progressively
reduced to the point of mostly never needing to intervene in the initial orientation. The
key to the improvements was that of increasing the redundancy in extremely complex
areas by slowing down the walking speed. Complex areas include those characterized
by a complex geometry, by poor texture, or by extreme contrast of illumination.

• Tie-point filtering: The removal of poor tie points is performed by exploiting the
“gradual selection” tool available in the software Metashape that offers few metrics to
select tie points to be removed. Through the investigation, the metrics “reprojection
error” and the “reconstruction uncertainty” were used to remove up to around the
10% worst-performing tie points.

Ultimately, the adjustments slowed down the processing phase by requiring manual
steps to be added to the process. The source of the misalignments can be identified in a
too-complex image network, together with the lack of any effective strategy to pre-select
the matching image pairs in large datasets. The problem can be solved by providing initial
values for the exterior orientation of all images in the set, and this can be obtained through
(i) a low-resolution pre-processing (still potentially requiring manual intervention) or
(ii) real-time processing of the images during acquisition using visual SLAM algorithms [21];
the first experiments of the visual SLAM integration with Ant3D have been investigated
in [49].

Figure 17 shows a synthesis scheme of the processing phase. At the current imple-
mentation, the only output of the acquisition is the image dataset. However, in a future
implementation, it is planned to integrate a real-time processing phase during acquisition
that would also output the system trajectory based on the estimated image’s coordinates in
object space.
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4.3. Case Studies and Discussion

One of the case studies identified to test the instrument performance is the Castle of
San Vigilio, the same subject of the acquisition of the FINE benchmark. The acquisition of
this area allows us to verify the improvements made to the multi-camera system from its
first definitions to that of the working prototype. The ground truth point cloud obtained
with the laser scanner for the benchmark dataset was used as a reference survey. The best
results obtained from the FINE benchmark data processing reported an error of more than
10 cm at the ends of the reconstruction up to errors of more than one metre for the worst
reconstructions. In general, the processing of the first multi-camera acquisitions, although
they have demonstrated the potential of the approach, has also highlighted the poor
reliability and repeatability of the results caused by the limited hardware characteristics of
the first iterations of the instrument.

Two major limitations were highlighted in the use of the GoPro action camera rolling
shutter sensors and in the geometry of the system. The latter is characterized by cameras
oriented mainly in the direction of the walk, which limits the possibility of tying the
acquired photos in the forward direction with those acquired in the return direction.
Carrying out this test allows us to assess the improvements to the new design.

A single acquisition was performed with the proposed device to acquire the whole
area in a short time. The acquisition starts from the level of the tunnel, immediately below
the access manhole. It proceeds along the underground tunnel, reaches the end, and returns
to the starting point. Here, it continues up the manhole by means of a ladder and proceeds
along the vaulted room with a central plan at the base of the tower. It then continues up
the connecting stairs to the second level, surveys the vaulted room, and continues to the
top with the last stretch of stairs. Outside, the acquisition runs along the external structure
of the last stairwell and proceeds to acquire the external top of the tower. From here, it
retraces its steps and retraces the path in the opposite direction back to the circular room on
the ground floor; it then proceeds outside, surveying the outer surface of the tower. Finally,
the acquisition returns to the circular room, which ends after a reinforcement connection
through the access manhole to the tunnel. This time, the acquisition is carried out without
the presence of the ladder.

The steps performed during data processing are the ones described in Section 4.2;
however, in this case, it was not required to perform any manual adjustment over the
SfM output, and contrary to what was observed with the multi-camera data of the FINE
benchmark, all the images were oriented correctly. In addition, it was observed that, thanks
to the field of view of the circular fisheye optics used and the angle of the cameras with
respect to the walking direction (directed more towards the walls of the tunnel), many
more points of connection between the images taken from the outward and return path
were detected. Figure 18 shows the acquisition phase of both the on-site calibration test
field and the actual tower environments; Figure 19 shows the sparse point cloud.
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For the final evaluation of the reconstruction, it was not possible to compare based
on checkpoints as previously completed for the FINE benchmark acquisitions since the
reference targets were removed. A direct comparison with the ground truth scanner point
cloud was then carried out.

The reference point cloud and the multi-camera reconstruction cloud were oriented by
performing a best-fit registration on the surface of the circular access room to the tower. The
two clouds were segmented and oriented using the Cloud Compare software (version 2.10).
The point cloud transformation matrix, obtained from the best fit, was then applied to the
complete point cloud of the multi-camera reconstruction, and the comparison between
the two was made. Figure 20 shows some zoomed-in details of the overlapped point
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clouds (reference in blue, Ant in red). The comparison shows that the photogrammetric
reconstruction is complete in all its parts and matches the laser scanner. The maximum
deviation between the clouds, measured by performing sections in correspondence of the
most extreme areas, was 4 cm at maximum, certifying the survey as suitable for the scale of
architectural representation of 1:100. Figure 21 shows the survey trajectory followed during
the acquisition.
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After the initial evaluation, the system was thoroughly put to the test further in similar
scenarios to the one just presented, i.e., the main target application for the multi-camera,
as well as for other types of applications not originally considered. Among the tests
performed in the target application, most notably, Ant3D was used to complete the survey
of the network of narrow spaces and staircases of Milan’s Cathedral (Figure 22), partially
presented in [22]. Among the tests performed in other scenarios, there is (i) the acquisition
of a mountain trail path [5], (ii) the acquisition of large [23] and narrow [24] mining tunnels
(Figure 23), and (iii) the survey of a historical garden [50].
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Figure 22. The elevation view of the point cloud generated from the Ant3D survey of Milan’s
Cathedral façade’s narrow spaces and corridors. The image was extracted from a prior publication;
additional details on the processing can be found at [22].
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5. Conclusions and Future Works

This investigation aimed to develop an image-based measurement system capable
of completing the three-dimensional digitization of complex and narrow spaces while
acquiring high-resolution photographic documentation.

After an initial experimentation phase based on the use of low-cost hardware cul-
minated in the FINE benchmark, numerous limitations were highlighted, such as (i) the
suboptimal multi-camera acquisition geometry; (ii) the use of low-cost rolling shutter type
sensors, not suitable for moving acquisitions; and (iii) the poor acquisition synchronization
between the component cameras of the system, which limited the stability of the rigid
distances between the cameras and thus the effectiveness of them as a constraint during
the processing phase.

At this point, the objective was to overcome these limitations to arrive at the definition
of the working prototype of the proposed multi-camera system. This phase saw the
overcoming of the low-cost hardware used previously, favouring specialized sensors that
could produce more accurate results, and removing the uncertainty introduced by the lack
of synchronization between the cameras and rolling shutter sensors.

It has been verified that the hardware specifications of the working prototype (global
shutter sensors and synchronization error lower than 200 microseconds) do not introduce
measurable distortions in the conditions of intended use. In addition, an optimal acquisition
geometry for the survey of confined indoor spaces has been defined using an approach
based on the simulation of camera resolution as a function of the environment. The
numerous tests carried out in the field [5,22–24,50] have demonstrated the effectiveness of
the proposed solution that has allowed us to achieve the following objectives: to simplify
and speed up the data acquisition phase and ensure an accuracy consistent with the
architectural representation. All the selected case studies present a high level of difficulty
and have different characteristics, covering a wide sample of possible real applications:
from cultural heritage to archaeology and industry, from natural to artificial environments,
and from extremely narrow spaces to larger tunnels and outdoor areas.

Moreover, the instrumental drift entity was controlled for all the case studies. The
initial part of the executed path has been constrained. The error has been verified at the
opposite end without the use of support measurements along the path’s extension. The
results highlight the proposed solution’s robustness compared to existing alternatives on
the market, such as portable, lightweight mobile range-based mobile mapping systems.
The evaluation test presented confirmed the previous findings regarding the drift error
robustness of the system. Constraining the survey only at the starting point, we measured
an end drift error in the unconstrained survey path of 4 cm for a tunnel length of 80 m
resulting in an estimated drift error for the proposed system of 5 cm per 100 m of uncon-
strained path. The results obtained are comparable to previous tests performed with the
same system in more challenging scenarios: in [22], Ant3D was tested for the survey of
meandering narrow passages in cultural heritage resulting in a drift error of around 5 cm
per 100 m; in [23], for the survey of a 2 km long mining tunnel, the resulting drift error was
around 9 cm per 100 m; and in [5], for the survey of a 3.5 km long mountain footpath, the
resulting drift error was around 2 cm per 100 m. In the latter test, the drift error registered
from a compared range-based MMSs was 20 cm per 100 m.

The current limitations of the system are (i) the limited range of the quality data
generated around the system by multi-view stereo matching, (ii) the inhomogeneous or
insufficient illumination of dark indoor areas, and (iii) the lack of real-time visual SLAM
processing and acquisition feedback to the user. Regarding point (i), the point cloud
derived from full resolution processing of the Ant3D images results in dense, complete, and
accurate results in the limited range of around 5 m from the sensor which is suitable for the
survey of narrow spaces yet limits the application of the system in outdoor environments
as reported in [5,50] (Figure 24 extracted from [5]). Regarding point (ii), the illumination
of narrow environments is limited by the goal of portability and manoeuvrability of the
multi-camera that can only illuminate the environment from a single point. This results
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in inhomogeneous illumination the more the tunnel environments are narrow and the
surfaces rough. So far, solutions have been explored in the post-processing phase by editing
the images or output model texture (Figure 25 extracted by [24]). Moreover, the resolution
of the cameras currently employed is limited: optimal to contain processing time, but
also limited for high-resolution image documentation and lower than most 360◦ recording
approaches. Regarding point (iii), for all case studies so far, Ant3D was always operated by
an expert user who could perform a proper acquisition even without real-time processing
feedback. Tests in the integration of visual SLAM processing are ongoing to both improve
the usability for non-experts as well as the high-resolution post-processing of the data with
initial EO estimates [49].
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For future works, we envisage the integration of visual SLAM real-time processing as
well as the integration of additional sensors such as multi-beam LiDAR and high-resolution
rolling shutter cameras to be included just from model texturing and image documentation.

6. Patents

The work reported in this manuscript resulted in the patent proposal n◦ 102021000000812
for the ANT3D system, a novel multi-camera measuring device for surveying tunnels,
mines, and generally narrow and complex spaces. The patent was licensed on 24 Jan-
uary 2023.
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L.P.; writing—original draft preparation, L.P.; writing—review and editing, L.P., F.F. and G.V.; super-
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