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Abstract: The exploiting of hybrid beamforming (HBF) in massive multiple-input multiple-output
(MIMO) systems can enhance the system’s sum rate while reducing power consumption and hardware
costs. However, designing an effective hybrid beamformer is challenging, and interference between
multiple users can negatively impact system performance. In this paper, we develop a scheme
called Subset Optimization Algorithm-Hybrid Beamforming (SOA-HBF) that is based on the subset
optimization algorithm (SOA), which effectively reduces inter-user interference by dividing the users
set into subsets while optimizing the hybrid beamformer to maximize system capacity. To validate the
proposed scheme, we constructed a system model that incorporates an intelligent reflecting surface
(IRS) to address obstacles between the base station (BS) and the users set, enabling efficient wireless
communication. Simulation results indicate that the proposed scheme outperforms the baseline by
approximately 8.1% to 59.1% under identical system settings. Furthermore, the proposed scheme
was applied to a classical BS–users set link without obstacles; the results show its effectiveness in
both mmWave massive MIMO and IRS-assisted fully connected hybrid beamforming systems.

Keywords: hybrid beamforming; intelligent reflecting surfaces; massive MIMO; channel models;
regularized zero forcing; subset optimization

1. Introduction

Convenient mobile communication in the Beyond 5th Generation (B5G) era provides
a powerful impetus for the development of society, which also means that society has
put forward higher requirements and expectations for mobile communication. With the
access of wireless devices in the billions, mobile data traffic has produced an exponential
explosion of rapid growth, and Ericsson’s official report shows that global mobile data
traffic is expected to be as high as 136 EB (ExaBytes) per month in 2024 [1]. The advent of
the B5G era demonstrates that mobile communication is no longer centered on the device
alone, but rather on the user and the device at the same time. Unprecedentedly high
transmission rates do not fully satisfy people’s needs, and richer spectrum resources, more
diverse user experiences, and more flexible and free business requirements are the brand
new challenges for the B5G era [2,3].

Massive multiple-input multiple-output (MIMO) allows tens to hundreds of antennas
to be deployed at the base station (BS) end to serve a certain number of users, which can
directly lead to significant sum-rate gains [4]. Massive MIMO technology also has two
core advantages: One is that it can reduce inter-user interference through spatial diversity,
and the other is that it reduces the system’s overhead by using very low transmit power
compared to traditional MIMO techniques. Therefore, it is widely recognized in both
academia and industry that massive MIMO is one of the key feasible technologies for
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B5G [5,6]. However, a problem that cannot be ignored is that a large number of antennas
will undoubtedly bring high hardware cost as well as energy overhead.

As a traditional antenna technique, beamforming is an important part of our discussion
of large-scale antenna arrays. The beamforming technique is a weighted combination
of signals transmitted by multiple antennas with the user thereby forming the desired
signals [7]. It can be categorized into analog beamforming (ABF) and digital beamforming
(DBF), which have some differences in signal processing. Digital beamforming adjusts the
signal phase and amplitude dynamically by digital means, the advantage is high flexibility
and good signal adjustment, the disadvantage is that the energy overhead is large. Analog
beamforming is generally through the phase shifter to adjust the signal phase, the advantage
is that the realization has lower costs, the disadvantage is the flexibility of the signal
adjustment effect is poor. To address this problem, Heath et al. proposed a technique called
hybrid beamforming (HBF) [8]. The hybrid analog/digital architecture undoubtedly takes
full advantage of both methods, reducing the number of expensive components such as RF
chains and power amplifiers (PAs) far below the number of antennas, while also reducing
the energy overhead of power-consuming devices such as analog to digital converters
(ADCs) and digital to analog converters (DACs) as well as the processing of concurrent
streams compared to the all-digital approach. This makes the HBF technique an effective
solution to the high hardware cost and energy overhead of massive MIMO systems [9–11].
As a non-negligible signal processing process in the downlink transmission of the system,
precoding utilizes the channel state information (CSI) at the transmitter to improve the
system performance. Precoding has become a necessary functional component of the BS
due to its strong interference suppression capability, which provides a considerable gains in
the system’s sum rate [12]. Due to the difficulty of deployment and standardization, linear
precoding is still more common than nonlinear precoding, although nonlinear precoding
is generally superior to linear precoding. The two famous methods in linear precoding
are zero forcing (ZF) and minimum mean square error (MMSE). The performance of these
two methods varies in different channel conditions, and the appropriate method is usually
chosen by weighing various factors. Regularized zero forcing (RZF) strikes a clever balance
between the two methods by introducing a regularization term that takes into account both
system’s capacity and interference suppression, which has attracted a lot of attention [13].

The current application environment of mobile communications is complex and varied.
In previous studies, scholars have proposed numerous beamforming schemes for various
channel environments: A. K. Hassan et al. analyzed the performance gains of beamforming
performed in an MU-MIMO system under Rayleigh fading in the presence of co-channel
interference [14]; S. Yan et al. proposed a location-based beamforming scheme (LBB)
for Rician fading [15]; Y. Ding et al. proposed a low-complexity packet optimization
algorithm for the mmWave channel [10]; Z. Lin et al. explored secrecy–energy efficient
hybrid beamforming schemes for satellite–terrestrial networks [16]; and N. T. Nguyen et al.
investigated two HBF schemes under cell-free (CF) mmWave massive MIMO systems [17].

As an emerging technology, the intelligent reflecting surface (IRS) is considered as
a revolutionary technology for B5G due to its great advantages of good flexibility, pro-
grammability, low hardware cost, and low energy overhead while improving system
performance. Hybrid beamforming assisted by IRS has also become a popular research
direction: B. Di et al. designed an iterative HBF algorithm to perform digital beamforming
and analog beamforming separately on BS and IRS [18]; L. Dai et al. proposed an inductive
IRS structure to achieve CSI capture during beamforming [19] and Z. Lin et al. gave a
joint beamforming optimization for IRS-aided hybrid satellite-terrestrial relay networks to
minimize total transmit power while ensuring user rate requirements [20]. Although the
traditional passive reflective surface is widely used and mature, its fixed signal reflection
angle based on the fixed phase shifter in the work cannot be adapted to the complex and
changing application environment of mobile communication. In recent years, the great
success of RF microelectromechanical systems (MEMSs) and smart hypersurface materi-
als have supported the vision of the automatic adjustment of signal reflection in mobile
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communication applications. The controller component of IRS automatically adjusts the
passive programmable elements mounted on the reflective surface in real time in order to
accomplish a variety of signal reflections with different amplitudes and phases. The re-
flected signals can be tuned to coherently phase with signals from other sources to improve
the signal-to-noise ratio (SNR) at the target receiving end, or conversely, to perform de-
structive phase cancellation at the non-target receiving end to suppress interference, and
thus, achieve the goal of securing the transmission in the IRS-assisted system [21,22].

Inspired by the aforementioned background and leveraging the methodologies de-
scribed in [10,18], this paper proposes a subset optimization algorithm (SOA) for imple-
menting adaptive hybrid beamforming in massive MIMO systems. Our motivation is to
demonstrate the efficacy of the proposed scheme in enhancing communication quality
while maintaining strong adaptability across different communication scenarios. To thor-
oughly validate the proposed scheme, we have implemented it in two distinct and common
system models: a mmWave massive MIMO communication system without obstacles and
an IRS-assisted massive MIMO system with obstacles. The former model evaluates the
performance in a straightforward communication environment, while the latter assesses
the scheme’s effectiveness in a more complex environment, where direct links are blocked
and IRS is utilized to mitigate this issue. The specific contributions can be summarized as
the following three points:

• Firstly, we propose a subset optimization algorithm-based hybrid beamforming (SOA-
HBF) scheme for implementing adaptive HBF in massive MIMO systems. The SOA-
HBF effectively reduces inter-user interference and improves system sum rate by
dividing the users set into subsets based on inter-user correlation. Analog beamform-
ers are pre-selected from the codebook for each subset, and the corresponding digital
beamformer is computed using the RZF precoding algorithm. This method balances
computational complexity and performance by sequentially removing selected vectors
from the codebook, ensuring optimized analog precoding.

• Secondly, to demonstrate the effectiveness and adaptability of the proposed scheme,
we evaluate it in a typical mmWave massive MIMO system without obstacles. This
scenario assesses the performance in a straightforward communication environment,
highlighting the proposed scheme’s capability. To further illustrate the adaptability of
the scheme, we introduce an IRS-assisted massive MIMO system for scenarios with
obstacles. The IRS is employed to mitigate the impact of obstacles and reconfigure the
wireless propagation environment. Specifically, the IRS-assisted system is modeled
using the traditional Rician channel to simulate the links between the BS, IRS, and the
users set. This dual evaluation not only shows the performance of SOA-HBF in an
ideal mmWave environment but also demonstrates the scheme’s capability to adapt to
and enhance communication quality in more complex, obstacle-laden environments.

• Finally, extensive simulation experiments are conducted to validate the proposed
scheme. By varying SNR and controlling other variables, we analyze the system’s
performance across different scenarios. The results show that the SOA-HBF scheme sig-
nificantly outperforms some existing HBF schemes, demonstrating strong adaptability
and effectiveness in both obstacle-free and IRS-assisted communication environments.
This confirms the scheme’s capability to enhance system’s capacity and reliability.

The rest of this paper is organized as follows. Section 2 outlines the hybrid beamform-
ing system architecture and precoding algorithm employed in this paper. It introduces
an IRS-assisted communication system with obstacles, while also discussing the problem
formulation. Section 3 gives the concrete implementation of the proposed HBF scheme
SOA-HBF based on the subset optimization algorithm SOA. Section 4 shows the results of
the simulation experiments and the corresponding analysis. Section 5 draws conclusions
and provides an outlook for future related work.
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Notation: In the mathematical notation used in this article, bold uppercase represents
matrices, bold lowercase represents vectors, and regular letters represent scalars. For a
generic matrix S, SH , ST , S−1, Sm,n corresponds to the Hermitian transpose, transpose,
inverse operation, and the element of the mth row and nth column, respectively. In addition,
| · | denotes the absolute value, E(·) denotes the expectation, ∥ · ∥ denotes the ℓ2-paradigm,
Ω(·) denotes the number of elements in the set, and ⊗ denotes the Kronecker product.
Finally, IK is a K × K unit matrix, 1 is an all-1 matrix, and 0 is an all-0 matrix.

2. System Model and Problem Formulation

In this section, we first establish a downlink system with fully connected hybrid
beamforming architecture for narrowband communication of multiple users, and then,
the channel model and precoding algorithm that will be used in the established system
model are introduced, and finally, we provide the problem formulation based on the above
analysis. In addition, considering the existence of inter-user interference and the system
energy efficiency, we normalize the system transmit power, i.e., Pt = 1.

2.1. System Model

We consider a multiple-users massive MIMO fully connected hybrid beamforming
architecture for the downlink; since channel estimation is not the main focus of this paper,
we assume perfect CSI for a given system. For the massive MIMO system as shown in
Figure 1, it is assumed that the BS uses a uniform linear array (ULA) equipped with Nt
antennas, and the BS transmits the Ns data streams by multiplexing to the users set at the
receiving end, which has a total of K single-antenna users. For the hybrid beamforming
matrix at the BS, we have F = FRFFBB, where the low-dimensional digital beamforming
matrix is FBB ∈ CNRF×Ns , and the high-dimensional analog beamforming matrix is FRF ∈
CNt×NRF . Combined with the feature that ABF is based on phase shifter implementation,
the RF chains at the transmitter are connected to the transmitter antenna through phase
shifters, and their number NRF satisfies Ns ≤ NRF ≪ Nt. In addition, the subsequent
appearance of (FRFFBB)k represents FRF,k multiplied by FBB,k. Meanwhile, in this paper
we set Ns = NRF = K. According to [23], the symbol vector s ∈ CNs×1 emitted by the BS
satisfies the normalized emitted power E

{
ssH} = 1

Ns
INs ; the expression for the hybrid

beamformer output signal vector x ∈ CNt×1 is

x = FRFFBBs =
K

∑
k
(FRFFBB)ksk. (1)

Figure 1. Fully connected hybrid architecture for multiple-users massive MIMO system.
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The channel model h ∈ CNt×1 used in the system is tasked with conveying the signal
x from the transmitter of the system to the receiver, and the signals received by the user k,
(k = 1, 2, · · · , K) in the users set can be expressed as

rk = hH
k x + n, (2)

where n ∈ CNt×1 is additive white Gaussian noise (AWGN), n ∼ CN
(
0, σ2), and σ2

corresponds to noise power. Furthermore, combining Equations (1) and (2), we can further
represent the received signals as

rk = hH
k (FRFFBB)ksk + hH

k ∑
ℓ ̸=k

(FRFFBB)ℓsℓ + n. (3)

With the increasing demand for quality of communication, to highlight the effec-
tiveness of the proposed scheme in important and complex scenarios in the following
simulation experiments, we utilize the popular IRS to establish a common communication
system. In the practical application of IRS, it is found that IRS significantly improves the
communication quality and sum rate in many complex applications such as an indoor
scenario with some obstacles and a large number of users, an outdoor scenario where BSs
are difficult to cover the users at the edge, a scenario where vehicle communication is in
high-speed mobility, and a scenario where a large number of devices form a huge Internet
of Things (IoT). Therefore, we simulate a multiple-users massive MIMO system with a
certain obstacle, and thus, ignore the direct BS–users set link, focusing on the application
scenario of the IRS communication link, which is highlighted by the brief composition of
the established system in Figure 2.

Figure 2. IRS-assisted multiple-users massive MIMO system.

In Figure 2, we can see the main hardware structure of the IRS, which consists of a three-
layer composite panel and an IRS controller. The composite panel has the advantage of
being corrosion-resistant, durable, and easy to penetrate, as well as having a low hardware
cost. The first layer of the board is a dielectric matrix board with M × M reflective elements,
meta atoms with specific shapes and sizes embedded in specific orientations, which can be
digitally encoded to adjust the incident signals in real time. The second layer of the board
is the control circuit board, which can intelligently adjust the amplitude/phase of each
IRS element after receiving the command from the controller, thus achieving the powerful
function of wireless signal multipath transmission. The third layer of the board is often
made of brass or other metal materials, mainly to avoid signal energy overflow during IRS
operation, resulting in reflective effect deviation. In reality, a field programmable gate array
(FPGA) is often deployed as the IRS controller to intelligently control the IRS through the
wireless signals while receiving or feeding back information to the massive MIMO BS as
well as the users set at a relatively low sum rate, which means that the entire IRS-assisted
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system has an almost negligible operational overhead [24]. Since the research in this paper
focuses on the later HBF scheme SOA-HBF, based on the subset optimization algorithm
SOA, in order to simplify the system model we assume that there is no coupling effect
between the IRS elements, the reflected signals received by the users set are the cumulative
radiation effect of the elements, and at the same time, the positional parameters such as the
deployment angle and distance of the IRS are not introduced in this paper [25].

Next, we need to simulate the channel model of the IRS-assisted system. The Rayleigh
fading channel, as the most classical and basic flat fading channel, is still of great im-
portance for research in B5G. The Rayleigh channel model has the following three main
characteristics: Firstly, the Rayleigh channel is mainly used to simulate urban and indoor
propagation environments containing a large number of buildings and other obstacles,
and its signal power spectrum obeys the Rayleigh distribution in the frequency domain.
Secondly, the transmission path in the Rayleigh channel contains a lot of scattering, by-
passing, and reflections other than the direct paths at the transmitter and receiver, and the
scattering phenomenon of these signals will cause multipath effects, and thus, lead to
fast fading of the channel. Thirdly, it is difficult to obtain a direct mathematical model of
the Rayleigh channel in order to simulate the random signal fading in multipath channels,
so the complex Gaussian stochastic process is commonly used to model it in the simulation
process, and the real and imaginary parts represent the amplitude and phase of the signal,
respectively [14,26]. We can use the random complex Gaussian channel to simulate the
Rayleigh fading channel.

Compared with the Rayleigh fading channel, the Rician fading channel is more favored
by industry because it can more accurately reflect the real-world wireless communication
environment. There are two main characteristics of the Rician channel model: Firstly,
the Rician channel is essentially a special kind of Rayleigh channel, the special feature is
that it adds an LoS propagation path in the signal propagation process which is full of
scattering, and the signals received by the receiver obey the Rician distribution. Therefore,
the Rician channel is commonly used in application scenarios where there is a significant
LoS component, such as satellite communications and outdoor communications. Secondly,
the parameter Rician factor is introduced. Since the Rician channel contains a multipath
component consisting of an LoS part and an NLoS part with different powers, the Rician
factor is defined as the ratio of the powers of the two signal components. The Rician
factor can reflect the channel quality more accurately and measure the fading degree of the
channel in the time, space, and frequency domains, which is important for improving the
transmission quality and stability of the system [27,28]. The expression for the Rician factor
κ is

κ =
p1

2p2
, (4)

where the above LoS and NLoS belong to two different application scenarios in the specific
signaling process: the power of the LoS component is p1 and the power of the NLoS
component is p2. Combining the mathematical properties of the Rician channel and the
Rayleigh channel, we can see that the Rician channel degenerates to the Rayleigh channel
when p1 = 0, i.e., κ = 0. And the mathematical expression for the Rician channel matrix
can be expressed as

HRic =

√
κ

1 + κ
H̃LoS +

√
1

1 + κ
H̃NLoS. (5)

Synthesizing the advantages and disadvantages of the two channel models discussed
earlier as well as the applicable scenarios, the Rician channel has stable performance and
rich application scenarios, being an enhanced version of the Rayleigh channel, and the
Rician channel can also be used to model mmWave channel [29]. The key is that the
signal transmitted by the BS–IRS and IRS–users set link all contain a large amount of
scattering, and at the same time there exists direct radiation from the BS to a specific IRS
element, and then, to a specific user when necessary, so we model the BS–IRS link and
IRS–users set link as a Rician channel, and experimentally determine the Rician factor
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κ = 10. The simulated channel matrix G ∈ CM2×Nt and Hr,k ∈ CK×M2
can be obtained

by Equation (5). H̃LoS = ḢLoS ∈ CM2×Nt denotes a direct signal between the BS and IRS,
and H̃NLoS = ḢNLoS ∈ CM2×Nt denotes the scattered signals in the BS–IRS link. Similarly,
H̃LoS = ḦLoS ∈ CK×M2

denotes a direct signal between the BS and a user of the users
set, and H̃NLoS = ḦNLoS ∈ CK×M2

denotes the scattered signals in the BS–users set link
which can correspond well to each users subsets. It is worth mentioning that the LoS and
NLoS components used above are random complex matrices of corresponding dimensions,
and the elements ξ within the matrices all obey a complex Gaussian distribution with mean
zero and variance one, i.e., they satisfy ξ ∼ CN (0, 1).

Each element in the IRS phase shift matrix Θ ∈ CM2×M2
corresponds to an element on

the IRS, and by changing the phases of these elements, the IRS can realize precise control
of the reflected signals, thus achieving the purposes of beamforming, signal focusing,
and suppressing the interference, etc. [30]. This system selects the random-phase algorithm
used by Q. Wu et al. in [21]. It is implemented by generating a random array ρ with the
length of the number of IRS elements and mapping the elements therein between [0, 2π).
Then, diagonal matrices Θ with complex exponentials for the diagonal elements are created,
and the real part of these complex numbers is 1 and the imaginary part is the random phase
at the corresponding position in ρ. This algorithm maps the random phases corresponding
to the number of IRS elements onto the complex plane, thus creating a complex matrix that
is a better fit to the Rician channel used for the IRS–users set link.

After determining the IRS phase-shift matrix as well as the BS–IRS link and the IRS–
users set link, we can denote the channel matrix of the IRS-assisted system HIRS ∈ CNt×K

as follows:
HIRS = GHΘHr,k, (6)

where the IRS phase-shift matrix Θ ∈ CM2×M2
. Finally, we declare that for convenience,

in the subsequent description of the proposed scheme, as the two systems are not dis-
tinguished, we use H ∈ CNt×K to uniformly represent the two systems, including the
direct BS–users set link and the cascaded channel of the IRS-assisted system. We define
H ∈ CNt×K as the above two established systems’ channel matrix.

2.2. Problem Formulation

For the convenience of problem formulation, we use a famous linear precoding algo-
rithm to obtain the digital beamformer. Considering that teh digital beamformer preprocess-
ing of baseband signals is an important factor to improve the system’s sum rate and ensure
the quality of signal transmission, we use a promising linear precoding algorithm RZF as
the criterion for designing the digital beamformer FBB, respectively [13]. In Equation (3),
the first term of the expansion is the signal that the receiver expects to receive, while the
second term represents the multi-user interference (MUI), and the third term is the noise
term. The receiver is not expecting to receive the second and third terms, which will affect
the signal transmission quality. The goal of the linear precoding algorithm is to minimize
the MUI as well as the AWGN to maximize the first term of the desired received signal for
a given power. Note that in this paper, perfect CSI is assumed to be perfectly known at
the BS.

The regularized zero-forcing algorithm combines the advantages of the ZF algorithm
and the MMSE algorithm and mitigates the effects of their shortcomings, so the RZF al-
gorithm has a strong attraction for researchers and is also widely deployed in real-world
application scenarios. The ZF algorithm is one of the most classical precoding algorithms,
which can achieve excellent system performance with low computational complexity, but ig-
nores the problem of noise. Thus, while ZF eliminates the inter-user interference, the energy
of the received signal is expected to be reduced at the receiver side, thus leading to the
amplification of the noise. The MMSE algorithm complements the ZF algorithm and is
no less important than the ZF algorithm. Unlike the ZF algorithm, which is forced to
zero out the noise amplification problem caused by interference, the MMSE algorithm
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effectively mitigates this problem. The MMSE algorithm integrates the effects of noise
variance and inter-user interference and optimizes the transmission performance of the
system by minimizing the mean square error of the received signals. Even in scenarios
with poor SNR, this solution can bring considerable gains to the system, but it brings high
computational complexity that is difficult to ignore. The RZF algorithm introduces a vari-
able regularization parameter ϱ on the basis of the ZF algorithm. The digital beamformer
FBB is obtained according to the RZF precoding algorithm as

FBB = Ĥ
(

ĤHĤ + ϱIK

)−1
, (7)

where Ĥ = FH
RFH ∈ CNRF×K and the value of ϱ ranges from zero to one. The RZF algorithm

degrades to the ZF algorithm when the regularization parameter ϱ = 0, and the RZF
algorithm degrades to the MMSE algorithm when the regularization parameter ϱ = 1.
As an optimization parameter that weighs the performance and computational complexity
of the precoder, the determination of this regularization parameter should often take into
account a variety of factors, such as the deployment scale, the application environment,
the user’s needs, the hardware facilities, and it needs to be accompanied by a large number
of experiments to verify it [31–33].

In conjunction with the precoding algorithm we discussed earlier, FBB can be obtained
by associating H with FRF, which allows the HBF matrix design to be transformed into the
ABF matrix design. In this part, we present the optimization problem aiming to obtain the
optimized analog beamformer F∗

RF under certain constraints and with the objective of the
system’s sum-rate maximization [34]. The system’s sum rate can be expressed as

R =
K

∑
k=1

log2(1 + Ψ(FRF, FBB)k). (8)

where Ψ(FRF, FBB)k corresponds to the signal-to-interference-noise ratio (SINR) of the user
k, and SINR can be calculated as

Ψ((FRF, FBB)k) =

∣∣hH
k (FRFFBB)k

∣∣2
∑ℓ ̸=k

∣∣hH
k (FRFFBB)k

∣∣2 + σ2
. (9)

Then, we use the commonly used DFT codebook F to represent a set of feasible ABF
solutions [35], which can be expressed as

F =

{
a(φi) |[sin φ1, sin φ2, · · · , sin φNt ] =

[0,− 2
Nt

, · · · ,−Nt

Nt
,−Nt + 2

Nt
+ 2, · · · ,−2(Nt − 1)

Nt
+ 2]

}
.

(10)

where the computation of the ULA antenna array response vectors at(φ) can be expressed as

at(φi) =

√
1

Nt

[
1, e−j2π d

λ sin φi
, . . . , e−j2π d

λ (Nt−1) sin φi
]T

, (11)

where λ is the carrier wavelength and the distance between neighboring antenna elements
in the ULA at BS is equal to half of the carrier wavelength, i.e., d = 0.5λ.

In the codebook F , if a coordinate system is established for a massive MIMO BS
perpendicular to the ground and BS is the X-axis, the codebook can cover [0, 180◦] in the
direction of the antenna transmitting signals (corresponding to sin φi ∈ [−1, 1]), with a
minimum signal interval of sin 2

Nt
. This provides a sufficient set of beamforming vectors for
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us to find the optimized analog beamformer, so the corresponding optimization problem in
this paper can be written as

max
F∗

RF

K

∑
k=1

log2

(
1 +

∣∣hH
k (FRFFBB)k

∣∣2
∑ℓ ̸=k

∣∣hH
k (FRFFBB)k

∣∣2 + σ2

)
,

s.t. (FRF)k ∈ F.

(12)

The optimization problem Equation (12) is a convex optimization problem, and we use
the proposed SOA algorithm-based HBF scheme SOA-HBF in the next section to solve it.

3. An HBF Scheme Based on Subset Optimization Algorithm

In this section, inspired by the algorithms proposed in [36,37], we develop an HBF
scheme based on the proposed subset optimization algorithm SOA, which can effectively
reduce the inter-user interference, and thus, improve the system’s sum rate. The imple-
mentation of the SOA algorithm consists of two stages: In the first stage, according to
the channel correlation, the users are separated into different numbers of users subsets
with similar correlations. In the second stage, the optimization problem Equation (12)
is combined to traverse the beamforming vectors in the codebook in terms of different
subsets. An exhaustive traversal of the set of vectors in terms of users in the second stage
of SOA may lead to extremely high computational complexity, and it is foreseeable that
a different codebook will greatly affect the performance of the system when using this
algorithm. Therefore, in our proposed algorithm the selected vectors are removed from the
codebook after the selection is performed sequentially on a user subset basis. Although it
still generates some computational complexity, considering that massive MIMO is charac-
terized by a much lower number of users than antennas, each subset of users separated
from the users set will not be too large and the number of users in the subset will be small,
so the computational complexity brought about by it is tolerable, and at the same time,
this method can partially eliminate the impact of the codebook on the performance of
the system.

3.1. First Stage of SOA

We know that the existence of inter-user interference will have a large impact on
the transmission performance of the system; in the case of large interference, the users
should work together to select the uniform beamforming vector to avoid exacerbating the
interference, and thus, further affecting the system performance. Inter-user correlation
indicates the degree of correlations between users, and interference is positively correlated
with inter-user correlation. When the correlation between two users is high, they will
have similar transmission characteristics and signal waveforms, which is the reason for
the existence of inter-user interference. Therefore, we believe that dividing different users
subsets in the users set by correlation and collaboratively selecting the analog beamforming
vectors with the largest system’s sum rate in the codebook F in terms of the subsets is very
reliable for effectively controlling and minimizing user interference. It is worth mentioning
that the spatial correlations between users is also a factor affecting the interference, and the
spatial distance between users is inversely correlated with the interference, but the spatial
distance and other parameters are not the focus of this paper, and we assume here that the
K users in the users set keep equal spatial distances from each other, and the assumptions
are kept unchanged after the set is divided into subsets.

The inter-user correlation can be calculated by the channel correlation; we use a matrix
Ξ ∈ RK×K to correspond one by one the correlations between the user k̇ (k̇ = 1, 2, · · · , K)
and the user k̇, (k̈ = 1, 2, · · · , K), and the elements of the diagonal of the matrix, i.e., the
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correlations between the same users, shall be one; where the correlations matrix can be
written as

Ξk̇,k̈ =

{ ∣∣∣HH
k̇

Hk̈

∣∣∣2 k̇ ̸= k̈,

1 k̇ = k̈.
(13)

The property of the matrix determines that there will be Ξk̇,k̈ = Ξk̈,k̇, and in order
to avoid errors in subsequent calculations arising from two perfectly equal inter-user
correlations, we will retain the value of the lower triangular element of the Ξ matrix and
make the rest of the elements zero, resulting in a new matrix of ΞD. Next, the user pair k1
and k2, corresponding to the maximum value found using the correlations matrix, can be
written as

(k1, k2) = arg max
k̇,k̈

(ΞD)k̇,k̈. (14)

We use Û to refer to the users subsets, and divide the above two users within the
subset, i.e., Û = {k1, k2}, assuming that the number of users within a particular subset after
completing the subset division once is greater than two, i.e., Û = {k1, k2, · · · , ki}; here it
is i ∈ Z. The following is the detailed process of deciding to divide ki into a subset after
dividing users k1, k2 into the subset. We consider a parameter T as a threshold for whether
or not to divide a user into the candidate set; Ti is obtained by taking the average of the
correlations of user ki and the rest of the K − 1 users, which can be expressed as

Ti =
∑K

kî=1 ΞD
ki ,kî

K
. (15)

Using the threshold T , we further divide the remaining K − i users in the users set U
by filtering the users kî whose correlations with user ki are greater than the threshold Ti
and placing them into the candidate set ∆i first, which can be written as

∆i =
{

kî | ΞD
ki ,kî

> Ti, kî ∈ U
}

. (16)

In order to make the correlation between the newly added user and all the users in
the subset Û greater than the corresponding threshold, the total set of candidates is the
intersection of the candidate subsets, i.e., Γ = {∆1 ∩ ∆2 ∩ · · ·∆i}. Then, we decide whether
to divide the i + 1th user from U into Û based on the number of elements in the total set
of candidates Γ. If Ω(Γ) = 0, it means that the subset has been divided and contains i
users. If Ω(Γi) = 1, the users in Γ can be directly divided into the subset, which then
contains i + 1 users. If Ω(Γ) > 1, we can assume that the candidate set contains i elements,
i.e., Γ =

{
k1, k2, · · · , ki

}
. We then calculate the sum of correlations between user k and user

k in the subset using the following equation:

Υk,k =
i

∑
i=1

ΞD
ki ,k

, k ∈ Γ. (17)

Then, find the index at Υk,k that corresponds to the maximum value as the i + 1th user
of the subset:

ki+1 = arg max
k̄

Υk,k̄. (18)

The two cases in Ω(Γ) ̸= 0 indicate that this subset division is not finished, and we
need to consider the i + 2th user of the subset. First, a new candidate set ∆i+1 is obtained
using Ti+1 computed by Equation (15), and then, the total set of candidates ∆i+1 of the
i + 2th user of the subset is updated by Γ = {Γ ∩ ∆i+1}. Finally, we repeat the above steps
until Ω(Γ) = 0 to end this subset division.

Since the main purpose of dividing subsets in the first stage is to eliminate inter-user
interference, we effectively initialize the correlations matrix ΞD after each completed subset
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division. Taking a subset Û1 = {k1, k2} that contains two users and has been divided as
an example, we set all the elements in row one, row two, column one, and column two
of order ΞD to be zero. In addition to this, before the next subset division starts formally,
intermediate sets such as the total set of candidates Γ should be reduced to the empty set.
Finally, the above steps are repeated until ΞD = 0, which means that all the users have
been fully divided and can start the second stage of SOA for beamforming vector selection.

3.2. Second Stage of SOA

After the previous stage of user division, the original set containing K users has been
optimized into u subsets. Next, we perform simulated beamforming vector selection in the
codebook F in each subset. We assume in turn that subset Û1 contains U1 users, subset Û2
contains U2 users · · · and subset Ûu contains Uu users; it can be shown that U1 +U2 + · · ·+
Uu = K. Starting from subset Û1, considering the requirement of maximizing the system’s
sum rate in the optimization problem Equation (12) we first compute the beamforming
gains w to be used as the basis for selecting analog beamforming vectors from F , which
can be written as

wu =

∣∣∣hu
HWhu

∣∣∣
N2

t
, (19)

where W ∈ CNt×Nt represents a beamforming matrix obtained from the codebook F .
The expression hu

Nt
denotes the average channel gains within the users subset. Subsequently,

employing a stable algorithm merge sort, the vectors from the corresponding codebook are
sorted in ascending order based on the magnitude of w. The subsequent step involves se-
lecting the last U1 beamforming vectors and placing them into the subcodebook F1. Finally,
by utilizing indices, a dedicated beamforming matrix W̃1 ∈ CNt×Nt is constructed from
W, extracting individual rows and columns as pertaining to the subset Û1. Except for the
newly introduced elements, the remaining elements in W̃1 are set to zero. Simultaneously,
the elements at corresponding positions in W are set to zero, reducing the computational
complexity for the subsequent subset’s selection of beamforming vectors from the codebook.
The time and space complexities of the merge sort employed here are both O(U1 log U1).

Next, we compute
∣∣∣hj

HW̃1hj

∣∣∣ within the subset by using the corresponding user
channel and beamforming matrix, with the corresponding j = 1, 2, · · · , U1. The computed
gains coefficients are used to match the users in the subset with the vectors in F1 based on
the principle of maximizing the system’s sum rate, and the computational complexity of this
step is O(U2

1). As the traversal of the subset Û1 is completed to obtain the corresponding
optimized analog beamforming vector w1 ∈ CNt×U1 , one can start repeating the above
steps for the following u − 1 subsets.

Finally, after all subsets have completed vector selection, we obtain the optimized
analog beamformer required for the optimization problem Equation (12):

F∗
RF = [w1, w2, · · · , wu], (20)

where wu = [a(φ1), a(φ2), · · · , a(φUu)], and a(φ) ∈ CNt×1, a(φUu) ∈ Fu.

3.3. SOA-Based HBF Scheme SOA-HBF

In conjunction with the above subset optimization-based algorithm SOA (Algorithms 1
and 2), we first give here the complete runtime pseudo-code corresponding to the two
stages of user division and vector selection.

And after the SOA algorithm has been run entirely, according to the RZF precoding
algorithm, we can use Equations (7) and (20) to calculate the optimized digital beamformer
F∗

BB. Furthermore, Ĥ = FH
RFH̃ ∈ CK×K, while for H̃ ∈ CNt×K compared to the channel

matrix H the only difference is the order of the elements, which we obtained based on
the new user correspondences in the optimized users subset. In addition, we set the
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regularization factor ϱ to 0.05, which was determined after experimental verification and is
presented in the simulation results of the next section.

Algorithm 1 First Stage of SOA Algorithm

Require: hk̇, hk̈ and K, (k̇, k̈ = 1, 2, · · · , K).
Ensure: User Subsets (Û1, Û2, · · · , Ûu).

1: Calculate Equation (13) for Ξ;
2: Preserve the elements of down triangular matrix for ΞD;
3: repeat
4: Initialize intermediate sets Γ and ∆;
5: Calculate Equation (14) to divide i users in Û;
6: Calculate Equation (15) for T and utilize Equation (16) to determine which users

from remaining K − i users can be divided in candidate subsets ∆;
7: Update candidate sets by Γ = {∆1 ∩ ∆2 ∩ · · ·∆i};
8: if Ω(Γ) > 1 then
9: Calculate Equation (17) for Υ and utilize Equation (18) to find the (i + 1)-th user

in Û;
10: else if Ω(Γ) = 1 then
11: Directly divide this user in Û;
12: else
13: break;
14: end if
15: while Ω(Γ) ̸= 0 do
16: Go to Step 6;
17: end while
18: until ΞD = 0
19: return Û1, Û2, · · · , Ûu.

Algorithm 2 Second Stage of SOA Algorithm

Require: Nt, W from F , (Û1, Û2, · · · , Ûu) and corresponding (h1, h2, · · · , hu).
Ensure: Optimized Analog Beamformer F∗

RF.
1: for i = 1, 2, . . . , u do
2: Calculate Equation (19) for w;
3: Using w to sort corresponding beamforming vectors in F by Merge-sort;
4: Select and place the last Ui beamforming vectors into the subcodebook Fi;
5: Place all elements of the corresponding row and column in W into the same position

in a all zero matrix W̃i of the same dimension;
6: Set the corresponding row and column elements of W to 0;
7: for j = 1, 2, . . . , Ui do
8: Calculate

∣∣∣hj
HW̃ihj

∣∣∣ to match users in Ûi with beamforming vectors in Fi ac-
cording to the principle of maximizing system capacity;

9: end for
10: end for
11: return [w1, w2, · · · , wu] = F∗

RF.

The optimized hybrid beamformer F∗ obtained by our proposed SOA-based HBF
scheme SOA-HBF satisfies the system’s sum-rate maximization requirements

F∗ = F∗
RFF∗

BB = arg max
F∗

RF,F∗
BB

K

∑
k=1

log2(1 + Ψ(F∗
RF, F∗

BB)k). (21)

After deploying the optimized beamformer F∗ obtained from the proposed SOA-HBF
scheme in the BS, it improves the performance and reliability of the wireless communication
system by optimizing the directionality, anti-interference, and multipath suppression of the
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transmitted signal. This is crucial for improving the capacity and quality of communication
systems and we prove this viewpoint in the following simulation experiments.

4. Simulation Results

In this section, we first give the simulation results related to the regularization factor
of the RZF precoding algorithm determined in the previously proposed HBF scheme. Then,
the performance of the proposed HBF scheme based on the subset optimization algorithm
SOA is verified by simulation experiments from four perspectives of SNR: number of users,
number of BS antennas, and number of IRS elements in terms of system’s sum rate in
the established IRS-assisted system. Finally, to verify the adaptability of the proposed
scheme, we deploy the proposed scheme in a direct-connected mmWave communication
system without obstacles, and carry out same the simulation experiments from three
perspectives of SNR: number of users, number of BS antennas, and in terms of system’s
sum rate. In addition, we also use classical HBF schemes including the OMP scheme [38],
MO scheme [39], Greedy scheme [40] and finite-resolution scheme [41] as baselines under
the same configuration of the system model in order to highlight the superior performance
of the proposed scheme. It is worth mentioning that the experiment also introduced a
full-digital beamforming scheme as the upper bound of the system’s sum rate.

In the default settings of the system model, Nt = 64, Ns = NRF = K = 8, SNR = 20 dB,
Ncl = 5, Nray = 10, κ = 10, ϱ = 0.05, and the IRS is embedded with 81 uniformly arranged
elements of 9 × 9. As for the subsequent mmWave channel model, except for the settings
mentioned above, they are consistent with the simulation experiment settings in [42]. All
simulation results in this section were obtained through simulation experiments using
MATLAB R2022b.

4.1. Determination of RZF Regularization Factors

Considering the range of values of the RZF regularization factor, we experimentally
verified the default setting in the HBF scheme SOA-HBF based on the SOA algorithm
by replacing the value of ϱ. The following results show the representative values of ϱ in
different ranges for comparison. The horizontal axis is taken as an SNR of [−20 dB,20 dB]
with a step size of 5 and the vertical axis is the sum rate in bps/Hz.

In Figure 3, we can intuitively feel that the proposed scheme consistently outperforms
the others with different regularization factors selected under the default settings. It is
worth mentioning that the simulation results fit well with the characteristics of the MMSE
and ZF precoding algorithms, where the sum rate using MMSE precoding outperforms that
of ZF precoding when the SNR is in a small range, while the ZF precoding approach shows
a large performance improvement when the SNR is in a large range. This corresponds
to the intersection of the ZF curve with the MMSE curve produced by the SNR around
−5 dB in the figure. We can also conclude that the RZF precoding algorithm is closer to
the MMSE precoding algorithm when the value of ϱ is closer to 1, and the RZF precoding
algorithm is closer to the ZF precoding algorithm when the value of ϱ is closer to 0. We
have found a balance point for the system model, i.e., when ϱ = 0.05, the RZF precoding
takes into account the reduction of the inter-user interference as well as noise with lower
computational complexity, and has a good performance in different SNR ranges.

In addition, we can find that the difference between the ZF and MMSE precoding
algorithms is not significant in the low SNR range. Usually, in the low SNR range, if the
users set range is small, it results in small user spacing, or the equipment size limitation
makes the different receiving antennas of the same user at the receiving end not have
enough distance from each other, which will cause the receiving antennas to generate very
strong channel correlations with each other and an ill-conditioned channel matrix will
appear. Then, the ZF inverse will have an intolerable noise amplification problem that
seriously affects the performance of the ZF precoding, whereas the noise amplification is
not so bad because we set the users as a single receiving antenna [43].
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Figure 3. System’s sum rate of different RZF regularization factors at different SNR.

4.2. The Impact of Four Perspectives on IRS-Assisted System’s Sum Rate

Shown in Figure 4 are the system’s sum-rate variation plots of the proposed HBF
scheme based on the SOA algorithm used in an IRS-assisted massive MIMO system with
different SNRs, and the other baseline schemes are also replaced with the same system
model settings to highlight the advantages of the algorithms. The proposed scheme
consistently outperforms the baseline HBF schemes in all SNR ranges. At the system default
setting, i.e., SNR = 20 dB, the proposed scheme achieves system’s sum-rate improvements
of about 24.1%, 25.3%, 32.4%, and 39.1% compared to the finite-resolution scheme, the MO
scheme, the Greedy scheme, and the OMP scheme.

Figure 4. IRS-assisted system’s sum rate at different SNRs.

Interestingly, we can see that the classical numerical schemes such as the OMP scheme
deployed in the IRS-assisted system model established in this paper have system gains of
18.46 bps/Hz after IRS is added to the system model, but the proposed scheme is as high
as 46.04 bps/Hz; we cannot think that this is all due to the difference in the methodology,
and it is partly because of the fact that it is difficult to emphasize all the advantages
of traditional numerical scheme under the new technology, while our proposed scheme
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undoubtedly has good adaptive characteristics and can bring good system gains in new
application scenarios.

As shown in Figure 5, the IRS-assisted system’s sum-rate variation curves are plot-
ted when the number of users K ∈ {2, 4, 6, 8}, the proposed scheme always outperforms
the baseline HBF schemes with the same system settings. As the number of users in-
crease, the system’s sum rate of the proposed scheme improves about 0.99–29.05 bps/Hz,
1.63–30.59 bps/Hz, 4.25–39.10 bps/Hz, 8.35–47.09 bps/Hz (all retained to two decimal
places) compared to those of the finite-resolution scheme, the MO scheme, the Greedy
scheme, and the OMP scheme. From the above differences, it can be seen that as the number
of users increases, the gap between the proposed scheme and other HBF schemes becomes
larger, so it can be predicted that, without loss of generality, the more the number of users,
the more significant is the performance gain brought by the proposed scheme.

Figure 5. IRS-assisted system’s sum rate at different number of users.

As shown in Figure 6, which is a graph of the IRS-assisted system’s sum-rate variation
when the number of BS antennas Nt ∈ {8, 16, 32, 64, 128}, the proposed scheme is always
superior to the baseline HBF scheme with the same system settings. Here, although the
proposed scheme does not increase the sum rate as much as the other schemes, especially
the Greedy scheme, when the number of antennas is increased, the amplitude of gains
is kept small when the number of antennas is increased from 64 to 128 at the end, and if
the number of antennas is increased further, it cannot exceed the system’s sum rate of the
proposed scheme.

As shown in Figure 7, we observe the system gain by varying the number of elements
on the IRS. The curve corresponding to 81 elements, which is our default setting, outper-
forms the other six curves with different element numbers. Intuitively, as the number of
elements increases, the system’s sum rate improves; however, the rate of improvement
diminishes. This trend is expected because our simulations do not take into account the mu-
tual coupling effect between the IRS elements, i.e., the interference between the elements is
ignored. In practice, mutual coupling is unavoidable and affects the results. Therefore, it is
meaningful for IRS to consider the factor of mutual coupling when optimizing deployment
plans in practical applications.
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Figure 6. IRS-assisted system’s sum rate at different number of antennas.

Figure 7. IRS-assisted system’s sum rate at different number of IRS-elements.

4.3. The Impact of Three Perspectives on Traditional Direct Link System’s Sum Rate

After completing the SOA-HBF-based simulation experiments on the established
IRS-assisted massive MIMO system with obstacles. The mmWave channel, operating
between 30 GHz and 300 GHz, offers abundant spectrum resources for increased user
access. Its high bandwidth ensures a fast transmission rate and low delay, making it vital
for B5G. Using a continuous and smaller beam reduces obstacles, interference, and bit
error rate, enhancing communication efficiency. However, its limited transmission distance
and susceptibility to environmental factors make it suitable for specific scenarios like
high-speed vehicle communication and densely populated urban areas [44]. We use a
popular mmWave channel model to represent direct connected systems when there are no
obstacles between communication systems, and continue to use the proposed SOA-HBF in
the following experiments.

Shown in Figure 8 are the system’s sum-rate variation plots of our proposed HBF
scheme based on the SOA algorithm are used in a massive MIMO system with direct
link in the mmWave channel with different SNRs. The proposed scheme consistently
outperforms the baseline HBF schemes in all SNR ranges. At the default settings of the
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system, i.e., SNR = 20 dB, the system’s sum rates of the proposed scheme are improved by
about 8.1%, 11.9%, 26.1%, and 59.1% (all retained to one decimal place) compared with the
finite-resolution scheme, the MO scheme, the OMP scheme, and the beam-control scheme.

Figure 8. Direct link system’s sum rate at different SNR.

As shown in Figure 9, which is a graph of the system’s sum-rate variation when
the number of users K ∈ {2, 4, 6, 8}, the proposed scheme always outperforms the base-
line HBF schemes. As the number of users increases, the system’s sum rate of the pro-
posed scheme improves by about 2.03–6.04 bps/Hz, 3.53–8.92 bps/Hz, 5.41–19.50 bps/Hz,
8.87–44.04 bps/Hz (all retained to two decimal places) as compared to that of the finite-
resolution scheme, the MO scheme, the OMP scheme, and the beam-control scheme.
From the above differences, it can be seen that as the number of users increases, the gap
between the proposed scheme and other HBF schemes becomes larger, so it can be predicted
that, without loss of generality, the more the number of users, the more significant the
performance gains brought by the proposed scheme.

Figure 9. Direct link system’s sum rate at different number of users.

As shown in Figure 10, when the number of BS antennas Nt ∈ {8, 16, 32, 64, 128},
the proposed scheme always outperforms the baseline HBF schemes. It should be noted
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that both our proposed HBF scheme based on the SOA algorithm and the baseline schemes
bring much smaller sum-rate gains compared to the previous one when the transmitting
antennas grow from 64 to 128, which is due to the inter-antenna interference and the
increase in power consumption.

Figure 10. Direct link system’s sum rate at different number of antennas.

In Figure 10, which is a graph of the IRS-assisted system’s sum-rate variation when the
number of BS antennas Nt ∈ {8, 16, 32, 64, 128}, the proposed scheme is always superior
to the baseline HBF scheme with the same system settings. Here, although the proposed
scheme does not increase the sum rate as much as the other schemes, especially the
Greedy scheme, when the number of antennas is increased, the amplitude of gains is kept
small when the number of antennas is increased from 64 to 128 at the end, and if the
number of antennas is increased further, it cannot exceed the system’s sum rate of the
proposed scheme.

5. Conclusions

In this paper, we proposed a hybrid beamforming scheme SOA-HBF based on the
subset optimization algorithm SOA, which reduced the inter-user interference by dividing
the users set into a certain number of users subsets to obtain certain gains in the system’s
sum rate. By establishing an IRS-assisted massive MIMO system with obstacles under
a fully connected hybrid beamforming architecture, which is a commonly used scenario
for real-world applications, and verifying the proposed scheme and its superior perfor-
mance and adaptability in different scenarios through simulation experiments from various
perspectives, it is believed that it can provide a valuable solution for the development of
hybrid beamforming technology.

Author Contributions: W.T. conceived and designed the idea. Z.H. performed the experiments and
analyzed the data. L.Y. and H.W. gave valuable suggestions on the structuring of the paper and
assisted in the revising and proofreading. All authors have read and agreed to the published version
of the manuscript.

Funding: This work was supported by the Guangzhou Basic Research Program Municipal School
(College) Joint Funding Project under Grant 2023A03J0111 and the Joint Funds of the National
Natural Science Foundation of China under Grant U23A20273. Sichuan Province Natural Science
Foundation Grant No. 2023NSFSC1967, the Sichuan Technology & Engineering Research Center for
Vanadium Titanium Materials under Grant No. 2023FTGC11, the Vanadium and Titanium Resource
Comprehensive Utilization Key Laboratory of Sichuan Province under Grant No. 2023FTSZ03, the
Scientific Research Foundation of the Key Laboratory of Interior Layout optimization and Security



Sensors 2024, 24, 4189 19 of 20

in Education Department of Sichuan Province under Grant No.2024SNKJ01, the Key Laboratories
of Sensing and Application of Intelligent Optoelectronic System in Sichuan Provincial Universities
under Grant No. ZNGD2311, and the Dazhou key Laboratory of Government data security under
Grant No. ZSAQ202305 and ZSAQ202306. Jiangxi Provincial Natural Science Foundation under
Grant 20224BAB202005.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data are contained within the article.

Acknowledgments: The authors would like to extend their gratitude to the anonymous reviewers
and the editors for their valuable and constructive comments, which have greatly improved the
quality of this paper.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Alsharif, M.H.; Kelechi, A.H.; Kim, J.; Kim, J.H. Energy efficiency and coverage trade-off in 5G for eco-friendly and sustainable

cellular networks. Symmetry 2019, 11, 408. [CrossRef]
2. Shafi, M.; Molisch, A.F.; Smith, P.J.; Haustein, T.; Zhu, P.; De Silva, P.; Tufvesson, F.; Benjebbour, A.; Wunder, G. 5G: A tutorial

overview of standards, trials, challenges, deployment, and practice. IEEE J. Sel. Areas Commun. 2017, 35, 1201–1221. [CrossRef]
3. Wu, Q.; Xu, J.; Zeng, Y.; Ng, D.W.K.; Al-Dhahir, N.; Schober, R.; Swindlehurst, A.L. A comprehensive overview on 5G-and-beyond

networks with UAVs: From communications to sensing and intelligence. IEEE J. Sel. Areas Commun. 2021, 39, 2912–2945.
[CrossRef]

4. Marzetta, T.L. Noncooperative cellular wireless with unlimited numbers of base station antennas. IEEE Trans. Wirel. Commun.
2010, 9, 3590–3600. [CrossRef]

5. Chataut, R.; Akl, R. Massive MIMO systems for 5G and beyond networks—Overview, recent trends, challenges, and future
research direction. Sensors 2020, 20, 2753. [CrossRef] [PubMed]

6. Molisch, A.F.; Ratnam, V.V.; Han, S.; Li, Z.; Nguyen, S.L.H.; Li, L.; Haneda, K. Hybrid beamforming for massive MIMO: A survey.
IEEE Commun. Mag. 2017, 55, 134–141. [CrossRef]

7. Pang, X.; Zhao, N.; Tang, J.; Wu, C.; Niyato, D.; Wong, K.K. IRS-assisted secure UAV transmission via joint trajectory and
beamforming design. IEEE Trans. Commun. 2021, 70, 1140–1152. [CrossRef]

8. El Ayach, O.; Rajagopal, S.; Abu-Surra, S.; Pi, Z.; Heath, R.W. Spatially sparse precoding in millimeter wave MIMO systems. IEEE
Trans. Wirel. Commun. 2014, 13, 1499–1513. [CrossRef]

9. Tan, W.; Xie, D.; Xia, J.; Tan, W.; Fan, L.; Jin, S. Spectral and energy efficiency of massive MIMO for hybrid architectures based on
phase shifters. IEEE Access 2018, 6, 11751–11759. [CrossRef]

10. Ding, Y.; Hu, A. Grouping optimization based hybrid beamforming for multiuser mmWave massive MIMO systems. In
Proceedings of the 2019 IEEE 2nd International Conference on Computer and Communication Engineering Technology (CCET),
Beijing, China, 16–18 August 2019; pp. 203–207.

11. Sheemar, C.K.; Thomas, C.K.; Slock, D. Practical hybrid beamforming for millimeter wave massive MIMO full duplex with
limited dynamic range. IEEE Open J. Commun. Soc. 2022, 3, 127–143. [CrossRef]

12. Fatema, N.; Hua, G.; Xiang, Y.; Peng, D.; Natgunanathan, I. Massive MIMO linear precoding: A survey. IEEE Syst. J. 2017,
12, 3920–3931. [CrossRef]

13. Interdonato, G.; Karlsson, M.; Björnson, E.; Larsson, E.G. Local partial zero-forcing precoding for cell-free massive MIMO. IEEE
Trans. Wirel. Commun. 2020, 19, 4758–4774. [CrossRef]

14. Hassan, A.K.; Moinuddin, M.; Al-Saggaf, U.M.; Al-Naffouri, T.Y. Performance analysis of beamforming in MU-MIMO systems
for Rayleigh fading channels. IEEE Access 2017, 5, 3709–3720. [CrossRef]

15. Yan, S.; Malaney, R. Location-based beamforming for enhancing secrecy in Rician wiretap channels. IEEE Trans. Wirel. Commun.
2015, 15, 2780–2791. [CrossRef]

16. Lin, Z.; Lin, M.; Champagne, B.; Zhu, W.P.; Al-Dhahir, N. Secrecy-Energy Efficient Hybrid Beamforming for Satellite-Terrestrial
Integrated Networks. IEEE Trans. Commun. 2021, 69, 6345–6360. [CrossRef]

17. Nguyen, N.T.; Lee, K.; Dai, H. Hybrid beamforming and adaptive RF chain activation for uplink cell-free millimeter-wave
massive MIMO systems. IEEE Trans. Veh. Technol. 2022, 71, 8739–8755. [CrossRef]

18. Di, B.; Zhang, H.; Song, L.; Li, Y.; Han, Z.; Poor, H.V. Hybrid beamforming for reconfigurable intelligent surface based multi-user
communications: Achievable rates with limited discrete phase shifts. IEEE J. Sel. Areas Commun. 2020, 38, 1809–1822. [CrossRef]

19. Zhu, J.; Liu, K.; Wan, Z.; Dai, L.; Cui, T.J.; Poor, H.V. Sensing RISs: Enabling dimension-independent CSI acquisition for
beamforming. IEEE Trans. Inf. Theory 2023, 69, 3795–3813. [CrossRef]

20. Lin, Z.; Niu, H.; An, K.; Wang, Y.; Zheng, G.; Chatzinotas, S.; Hu, Y. Refracting RIS-Aided Hybrid Satellite-Terrestrial Relay
Networks: Joint Beamforming Design and Optimization. IEEE Trans. Aerosp. Electron. Syst. 2022, 58, 3717–3724. [CrossRef]

http://doi.org/10.3390/sym11030408
http://dx.doi.org/10.1109/JSAC.2017.2692307
http://dx.doi.org/10.1109/JSAC.2021.3088681
http://dx.doi.org/10.1109/TWC.2010.092810.091092
http://dx.doi.org/10.3390/s20102753
http://www.ncbi.nlm.nih.gov/pubmed/32408531
http://dx.doi.org/10.1109/MCOM.2017.1600400
http://dx.doi.org/10.1109/TCOMM.2021.3136563
http://dx.doi.org/10.1109/TWC.2014.011714.130846
http://dx.doi.org/10.1109/ACCESS.2018.2796571
http://dx.doi.org/10.1109/OJCOMS.2022.3140422
http://dx.doi.org/10.1109/JSYST.2017.2776401
http://dx.doi.org/10.1109/TWC.2020.2987027
http://dx.doi.org/10.1109/ACCESS.2017.2682791
http://dx.doi.org/10.1109/TWC.2015.2510635
http://dx.doi.org/10.1109/TCOMM.2021.3088898
http://dx.doi.org/10.1109/TVT.2022.3176389
http://dx.doi.org/10.1109/JSAC.2020.3000813
http://dx.doi.org/10.1109/TIT.2023.3243836
http://dx.doi.org/10.1109/TAES.2022.3155711


Sensors 2024, 24, 4189 20 of 20

21. Wu, Q.; Zhang, R. Intelligent reflecting surface enhanced wireless network via joint active and passive beamforming. IEEE Trans.
Wirel. Commun. 2019, 18, 5394–5409. [CrossRef]

22. Kumar, V.; Zhang, R.; Di Renzo, M.; Tran, L.N. A novel SCA-based method for beamforming optimization in IRS/RIS-assisted
MU-MISO downlink. IEEE Wirel. Commun. Lett. 2022, 12, 297–301. [CrossRef]

23. Zhang, P.; Pan, L.; Laohapensaeng, T.; Chongcheawchamnan, M. Hybrid beamforming based on an unsupervised deep learning
network for downlink channels with imperfect CSI. IEEE Wirel. Commun. Lett. 2022, 11, 1543–1547. [CrossRef]

24. Zhu, Y.; Mao, B.; Kato, N. Intelligent Reflecting Surface in 6G Vehicular Communications: A Survey. IEEE Open J. Veh. Technol.
2022, 3, 266–277. [CrossRef]

25. Firyaguna, F.; John, J.; Khyam, M.O.; Pesch, D.; Armstrong, E.; Claussen, H.; Poor, H.V. Towards industry 5.0: Intelligent reflecting
surface (irs) in smart manufacturing. arXiv 2022, arXiv:2201.02214.

26. Caceres, F.M.; Sithamparanathan, K.; Sun, S. Theoretical analysis of hybrid SIC success probability under Rayleigh channel for
uplink CR-NOMA. IEEE Trans. Veh. Technol. 2022, 71, 10584–10599. [CrossRef]

27. Xiao, C.; Zheng, Y.R.; Beaulieu, N.C. Novel sum-of-sinusoids simulation models for Rayleigh and Rician fading channels. IEEE
Trans. Wirel. Commun. 2006, 5, 3667–3679. [CrossRef]

28. Boukhedimi, I.; Kammoun, A.; Alouini, M.S. Multi-cell MMSE combining over correlated Rician channels in massive MIMO
systems. IEEE Wirel. Commun. Lett. 2019, 9, 12–16. [CrossRef]

29. Zhang, Q.; Jin, S.; Wong, K.K.; Zhu, H.; Matthaiou, M. Power scaling of uplink massive MIMO systems with arbitrary-rank
channel means. IEEE J. Sel. Top. Signal Process. 2014, 8, 966–981. [CrossRef]

30. Abeywickrama, S.; Zhang, R.; Wu, Q.; Yuen, C. Intelligent reflecting surface: Practical phase shift model and beamforming
optimization. IEEE Trans. Commun. 2020, 68, 5849–5863. [CrossRef]

31. Papazafeiropoulos, A.; Krikidis, I.; Kourtessis, P. Impact of channel aging on reconfigurable intelligent surface aided massive
MIMO systems with statistical CSI. IEEE Trans. Veh. Technol. 2022, 72, 689–703. [CrossRef]

32. Skouroumounis, C.; Krikidis, I. Fluid antenna with linear MMSE channel estimation for large-scale cellular networks. IEEE Trans.
Commun. 2022, 71, 1112–1125. [CrossRef]

33. Krishnamoorthy, A.; Schober, R. Downlink Massive MU-MIMO With Successively-Regularized Zero Forcing Precoding. IEEE
Wirel. Commun. Lett. 2022, 12, 114–118. [CrossRef]

34. Bhagavatula, R.; Heath, R.W. Adaptive Limited Feedback for Sum-Rate Maximizing Beamforming in Cooperative Multicell
Systems. IEEE Trans. Signal Process. 2011, 59, 800–811. [CrossRef]

35. Kim, J.; Hosseinalipour, S.; Marcum, A.C.; Kim, T.; Love, D.J.; Brinton, C.G. Learning-based adaptive IRS control with limited
feedback codebooks. IEEE Trans. Wirel. Commun. 2022, 21, 9566–9581. [CrossRef]

36. Zhu, L.; Zhang, J.; Xiao, Z.; Cao, X.; Wu, D.O.; Xia, X.G. Millimeter-wave NOMA with user grouping, power allocation and
hybrid beamforming. IEEE Trans. Wirel. Commun. 2019, 18, 5065–5079. [CrossRef]

37. Ahmed, I.; Shahid, M.K.; Faisal, T. Deep Reinforcement learning based beam selection for hybrid beamforming and user grouping
in massive MIMO-NOMA system. IEEE Access 2022, 10, 89519–89533. [CrossRef]

38. Alkhateeb, A.; El Ayach, O.; Leus, G.; Heath, R.W. Channel estimation and hybrid precoding for millimeter wave cellular systems.
IEEE J. Sel. Top. Signal Process. 2014, 8, 831–846. [CrossRef]

39. Yu, X.; Shen, J.C.; Zhang, J.; Letaief, K.B. Alternating minimization algorithms for hybrid precoding in millimeter wave MIMO
systems. IEEE J. Sel. Top. Signal Process. 2016, 10, 485–500. [CrossRef]

40. Amadori, P.V.; Masouros, C. Low RF-complexity millimeter-wave beamspace-MIMO systems by beam selection. IEEE Trans.
Commun. 2015, 63, 2212–2223. [CrossRef]

41. Sohrabi, F.; Yu, W. Hybrid digital and analog beamforming design for large-scale antenna arrays. IEEE J. Sel. Top. Signal Process.
2016, 10, 501–513. [CrossRef]

42. Gao, X.; Dai, L.; Han, S.; Chih-Lin, I.; Wang, X. Reliable beamspace channel estimation for millimeter-wave massive MIMO
systems with lens antenna array. IEEE Trans. Wirel. Commun. 2017, 16, 6010–6021. [CrossRef]

43. Li, Y.; Mallik, R.K.; Murch, R. Channel magnitude-based MIMO with energy detection for Internet of Things applications. IEEE
Internet Things J. 2019, 6, 9893–9907. [CrossRef]

44. Tan, W.; Ma, S. Antenna array topologies for mmwave massive MIMO systems: Spectral efficiency analysis. IEEE Trans. Veh.
Technol. 2022, 71, 12901–12915. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1109/TWC.2019.2936025
http://dx.doi.org/10.1109/LWC.2022.3224316
http://dx.doi.org/10.1109/LWC.2022.3179362
http://dx.doi.org/10.1109/OJVT.2022.3177253
http://dx.doi.org/10.1109/TVT.2022.3185187
http://dx.doi.org/10.1109/TWC.2006.256990
http://dx.doi.org/10.1109/LWC.2019.2939305
http://dx.doi.org/10.1109/JSTSP.2014.2324534
http://dx.doi.org/10.1109/TCOMM.2020.3001125
http://dx.doi.org/10.1109/TVT.2022.3203796
http://dx.doi.org/10.1109/TCOMM.2022.3230861
http://dx.doi.org/10.1109/LWC.2022.3218597
http://dx.doi.org/10.1109/TSP.2010.2090346
http://dx.doi.org/10.1109/TWC.2022.3178055
http://dx.doi.org/10.1109/TWC.2019.2932070
http://dx.doi.org/10.1109/ACCESS.2022.3199760
http://dx.doi.org/10.1109/JSTSP.2014.2334278
http://dx.doi.org/10.1109/JSTSP.2016.2523903
http://dx.doi.org/10.1109/TCOMM.2015.2431266
http://dx.doi.org/10.1109/JSTSP.2016.2520912
http://dx.doi.org/10.1109/TWC.2017.2718502
http://dx.doi.org/10.1109/JIOT.2019.2933216
http://dx.doi.org/10.1109/TVT.2022.3197600

	Introduction
	System Model and Problem Formulation
	System Model
	Problem Formulation

	An HBF Scheme Based on Subset Optimization Algorithm
	First Stage of SOA
	Second Stage of SOA
	SOA-Based HBF Scheme SOA-HBF

	Simulation Results 
	Determination of RZF Regularization Factors
	The Impact of Four Perspectives on IRS-Assisted System's Sum Rate
	The Impact of Three Perspectives on Traditional Direct Link System's Sum Rate

	Conclusions
	References

