Temporal Convolutional Neural Network-Based Prediction of Vascular Health in Elderly Women Using Photoplethysmography-Derived Pulse Wave during Exercise
Abstract
:1. Introduction
2. Participants and Method
2.1. Participants
2.2. Method
2.2.1. Study Design
2.2.2. Vascular Indicators
2.2.3. Pulse Wave Measurements
2.2.4. Exercise Protocol
2.2.5. Neural Network Construction
2.3. Statistical Analysis
3. Results
4. Discussion
- (1)
- Non-invasive assessment method: the study uses exercise-related pulse wave features for assessment without invasive examination, which is more convenient and comfortable.
- (2)
- High accuracy: By applying a neural network model based on pulse wave signatures, the study was able to accurately predict the vascular health status of elderly women, providing a reliable assessment tool for medical professionals.
- (3)
- Personalized management recommendations: based on the prediction results, healthcare teams can develop individually tailored interventions, such as customized exercise plans, dietary recommendations, or medication regimens to improve cardiovascular health in older women.
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Freitas, E.G.; Souza, D.F.; Ferreira-Filho, S.R. Probability of at Least One High Arterial Blood Pressure Measurement in Elderly Patients with Healthy Vascular Aging in Two Years of Follow-Up. Kidney Blood Press. Res. 2018, 43, 1765–1771. [Google Scholar] [CrossRef] [PubMed]
- Halandras, P.M. Vascular Surgery and Geriatric Patients. Clin. Geriatr. Med. 2019, 35, 93–101. [Google Scholar] [CrossRef] [PubMed]
- Triposkiadis, F.; Xanthopoulos, A.; Lampropoulos, K.; Briasoulis, A.; Sarafidis, P.; Skoularigis, J.; Boudoulas, H. Aortic Stiffness: A Major Risk Factor for Multimorbidity in the Elderly. J. Clin. Med. 2023, 12, 2321. [Google Scholar] [CrossRef] [PubMed]
- Spencer, C.A.; Jamrozik, K.; Lawrence-Brown, M.; Norman, P.E. Lifestyle still predicts mortality in older men with established vascular disease. Prev. Med. 2005, 41, 583–588. [Google Scholar] [CrossRef]
- Guzik, P.; Schneider, A.; Piskorski, J.; Klimas, K.; Krauze, T.; Marciniak, R.; Minczykowski, A.; Mihailidou, A.S.; Wykretowicz, A. Sex differences in excess and reservoir arterial blood pressures as markers of phenotype. J. Hypertens. 2019, 37, 2159–2167. [Google Scholar] [CrossRef] [PubMed]
- Krishnan, M.; Mast, B.T.; Ficker, L.J.; Lawhorne, L.; Lichtenberg, P.A. The Effects of Preexisting Depression on Cerebrovascular Health Outcomes in Geriatric Continuing Care. J. Gerontol. 2005, 60, 915–919. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.; Park, H.S.; Ban, T.H.; Yang, S.B.; Kwon, Y.J. Evaluation of outcomes with permanent vascular access in an elderly Korean population based on the National Health Insurance Service database. Hemodial. Int. 2023, 27, 249–258. [Google Scholar] [CrossRef] [PubMed]
- Virdis, A.; Ghiadoni, L.; Giannarelli, C.; Taddei, S. Endothelial dysfunction and vascular disease in later life. Maturitas 2010, 67, 20–24. [Google Scholar] [CrossRef]
- Galetta, F.; Franzoni, F.; Plantinga, Y.; Ghiadoni, L.; Rossi, M.; Prattichizzo, F.; Carpi, A.; Taddei, S.; Santoro, G. Ambulatory blood pressure monitoring and endothelium-dependent vasodilation in the elderly athletes. Biomed. Pharmacother. 2006, 60, 443–447. [Google Scholar] [CrossRef]
- Cao, X. Estrogen levels and risk factors for coronary artery disease in elderly women. Int. J. Clin. Exp. Med. 2019, 12, 10502–10509. [Google Scholar]
- Watanabe, M.; Sairenchi, T.; Nishida, K.; Uchiyama, K.; Haruyama, Y.; Satonaka, H.; Ishimitsu, T.; Yasu, T.; Fukasawa, I.; Kobashi, G. Gestational Hypertension as Risk Factor of Hypertension in Middle-Aged and Older Women. Int. J. Environ. Res. Public Health 2020, 17, 4052. [Google Scholar] [CrossRef] [PubMed]
- Thakur, S.S.; Supiano, M.A. Screening for Common Clinical Conditions in Older Women. Clin. Obstet. Gynecol. 2007, 50, 767–775. [Google Scholar] [CrossRef] [PubMed]
- Mikkola, T. Estrogen replacement therapy, atherosclerosis, and vascular function. Cardiovasc. Res. 2002, 53, 605–619. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.; Sohn, J.; Park, J.; Yang, S.; Lee, S.; Kim, H.C. Novel blood pressure and pulse pressure estimation based on pulse transit time and stroke volume approximation. Biomed. Eng. Online 2018, 17, 81. [Google Scholar] [CrossRef] [PubMed]
- Yi, Z.; Liu, Z.; Li, W.; Ruan, T.; Chen, X.; Liu, J.; Yang, B.; Zhang, W. Piezoelectric Dynamics of Arterial Pulse for Wearable Continuous Blood Pressure Monitoring. Adv. Mater. 2022, 34, e2110291. [Google Scholar] [CrossRef] [PubMed]
- Sharath, U.; Sukreet, R.; Apoorva, G.; Asokan, S. Blood pressure evaluation using sphygmomanometry assisted by arterial pulse waveform detection by fiber Bragg grating pulse device. J. Biomed. Opt. 2013, 18, 067010. [Google Scholar] [CrossRef] [PubMed]
- Kerkhof, P.L.; Tona, F. Sex differences in diagnostic modalities of atherosclerosis in the macrocirculation. Atherosclerosis 2023, 384, 117275. [Google Scholar] [CrossRef] [PubMed]
- Ji, C.; Wang, G.; Huang, Z.; Zhu, C.; Liu, Y. Estimated pulse wave velocity and risk of new-onset heart failure. ESC Heart Fail. 2024. [Google Scholar] [CrossRef] [PubMed]
- Zheng, H.; Wu, S.; Liu, X.; Qiu, G.; Chen, S.; Wu, Y.; Li, J.; Yin, C.; Zhang, Q. Association Between Arterial Stiffness and New-Onset Heart Failure: The Kailuan Study. Arterioscler. Thromb. Vasc. Biol. 2023, 43, E104–E111. [Google Scholar] [CrossRef]
- Boden, K.; Sandner, P.; Roessig, L.; Vogel, J.; Chirinos, J.A.; Mondritzki, T. Vericiguat Improves Aortic Wave Reflection Parameters in a New Preclinical Model of Hypertension. Circulation 2022, 15, e008735. [Google Scholar] [CrossRef]
- Reza, N.; Alford, R.L.; Belmont, J.W.; Marston, N. The Expansion of Genetic Testing in Cardiovascular Medicine: Preparing the Cardiology Community for the Changing Landscape. Curr. Cardiol. Rep. 2024, 26, 135–146. [Google Scholar] [CrossRef] [PubMed]
- Karim, S.; Chahal, A.; Khanji, M.Y.; Petersen, S.E.; Somers, V.K. Autonomic Cardiovascular Control in Health and Disease. Compr. Physiol. 2023, 13, 4493–4511. [Google Scholar] [CrossRef] [PubMed]
- Shan, D.; Yao, K.; Zhang, X. Sequential Learning Network with Residual Blocks: Incorporating Temporal Convolutional Information Into Recurrent Neural Networks. IEEE Trans. Cogn. Dev. Syst. 2024, 16, 396–401. [Google Scholar] [CrossRef]
- Lopes, I.; Zou, D.; Abdulqadder, I.H.; Akbar, S.; Li, Z.; Ruambo, F.; Pereira, W. Network intrusion detection based on the temporal convolutional model. Comput. Secur. 2023, 135, 103465. [Google Scholar] [CrossRef]
- Heiss, C.; Rodriguez-Mateos, A.; Bapir, M.; Skene, S.S.; Sies, H.; Kelm, M. Flow-mediated dilation reference values for evaluation of endothelial function and cardiovascular health. Cardiovasc. Res. 2023, 119, 283–293. [Google Scholar] [CrossRef] [PubMed]
- Fallow, B.A.; Tarumi, T.; Tanaka, H. Influence of skin type and wavelength on light wave reflectance. J. Clin. Monit. Comput. 2013, 27, 313–317. [Google Scholar] [CrossRef] [PubMed]
- Bai, S.; Kolter, J.Z.; Koltun, V. An Empirical Evaluation of Generic Convolutional and Recurrent Networks for Sequence Modeling. arXiv 2018, arXiv:1803.01271. [Google Scholar]
- Heffernan, K.S.; Wilmoth, J.M.; London, A.S.; Glynn, N.W. Estimated Pulse Wave Velocity and All-Cause Mortality: Findings from the Health and Retirement Study. Innov. Aging 2022, 6, igac056. [Google Scholar] [CrossRef] [PubMed]
- Jeong, J.-H.; Lee, B.; Hong, J.; Min, C.; Persad, A.R.; Yang, T.-H.; Park, Y.-H. Cardiovascular hardware simulator and artificial aorta-generated central blood pressure waveform database according to various vascular ages for cardiovascular health monitoring applications. Comput. Biol. Med. 2024, 172, 108224. [Google Scholar] [CrossRef]
- Vear, N.K.; Moon, Y.; Mielke, G.I.; Skinner, T.L.; Coombes, J.S.; McCarthy, A.L.; Abbott, C.R.; Bailey, T.G. Efficacy of exercise training for improving vascular dysfunction in people with cancer: A systematic review with meta-analyses. J. Cancer Surviv. 2023, 34, 42–56. [Google Scholar] [CrossRef]
- Gyongyosi, H. Differences between SCORE, Framingham Risk Score, and Estimated Pulse Wave Velocity-Based Vascular Age Calculation Methods Based on Data from the Three Generations Health Program in Hungary. J. Clin. Med. 2024, 13, 205. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Meng, Y.; Jiang, M.; Yang, L.; Zhang, K.; Lian, C.; Li, Z. Machine learning-based evaluation of application value of pulse wave parameter model in the diagnosis of hypertensive disorder in pregnancy. Math. Biosci. Eng. 2023, 20, 8308–8319. [Google Scholar] [CrossRef] [PubMed]
FMD | Accuracy | ||||
---|---|---|---|---|---|
Levels | Fold 1 | Fold 2 | Fold 3 | Average | CV |
Optimal | 79.4% | 84.6% | 73.1% | 79.0% | 7.3% |
Impaired | 81.2% | 85.1% | 88.2% | 84.8% | 4.1% |
Risk | 84.1% | 81.2% | 84.4% | 83.2% | 2.0% |
FMD Levels | |||
---|---|---|---|
Optimal | Impaired | Risk | |
LSTM | 67.8% ± 10.4% | 71.5% ± 6.1% | 65.4% ± 11.4% |
Random Forest | 65.8% ± 2.8% | 60.7% ± 9.9% | 67.2% ± 4.7% |
TCN | 79.0% ± 5.8% | 84.8% ± 3.5% b | 83.2% ± 1.7% a,b |
F | 3.06 | 8.96 | 5.62 |
p | 0.121 | 0.016 | 0.042 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xiao, Y.; Wang, G.; Li, H. Temporal Convolutional Neural Network-Based Prediction of Vascular Health in Elderly Women Using Photoplethysmography-Derived Pulse Wave during Exercise. Sensors 2024, 24, 4198. https://doi.org/10.3390/s24134198
Xiao Y, Wang G, Li H. Temporal Convolutional Neural Network-Based Prediction of Vascular Health in Elderly Women Using Photoplethysmography-Derived Pulse Wave during Exercise. Sensors. 2024; 24(13):4198. https://doi.org/10.3390/s24134198
Chicago/Turabian StyleXiao, Yue, Guixian Wang, and Haojie Li. 2024. "Temporal Convolutional Neural Network-Based Prediction of Vascular Health in Elderly Women Using Photoplethysmography-Derived Pulse Wave during Exercise" Sensors 24, no. 13: 4198. https://doi.org/10.3390/s24134198
APA StyleXiao, Y., Wang, G., & Li, H. (2024). Temporal Convolutional Neural Network-Based Prediction of Vascular Health in Elderly Women Using Photoplethysmography-Derived Pulse Wave during Exercise. Sensors, 24(13), 4198. https://doi.org/10.3390/s24134198