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Abstract: Accurate 3D image recognition, critical for autonomous driving safety, is shifting from the
LIDAR-based point cloud to camera-based depth estimation technologies driven by cost considera-
tions and the point cloud’s limitations in detecting distant small objects. This research aims to enhance
MDE (Monocular Depth Estimation) using a single camera, offering extreme cost-effectiveness in ac-
quiring 3D environmental data. In particular, this paper focuses on novel data augmentation methods
designed to enhance the accuracy of MDE. Our research addresses the challenge of limited MDE data
quantities by proposing the use of synthetic-based augmentation techniques: Mask, Mask-Scale, and
CutFlip. The implementation of these synthetic-based data augmentation strategies has demonstrably
enhanced the accuracy of MDE models by 4.0% compared to the original dataset. Furthermore,
this study introduces the RMS (Real-time Monocular Depth Estimation configuration considering
Resolution, Efficiency, and Latency) algorithm, designed for the optimization of neural networks
to augment the performance of contemporary monocular depth estimation technologies through a
three-step process. Initially, it selects a model based on minimum latency and REL criteria, followed
by refining the model’s accuracy using various data augmentation techniques and loss functions.
Finally, the refined model is compressed using quantization and pruning techniques to minimize its
size for efficient on-device real-time applications. Experimental results from implementing the RMS
algorithm indicated that, within the required latency and size constraints, the IEBins model exhibited
the most accurate REL (absolute RELative error) performance, achieving a 0.0480 REL. Furthermore,
the data augmentation combination of the original dataset with Flip, Mask, and CutFlip, alongside
the SigLoss loss function, displayed the best REL performance, with a score of 0.0461. The network
compression technique using FP16 was analyzed as the most effective, reducing the model size by
83.4% compared to the original while maintaining the least impact on REL performance and latency.
Finally, the performance of the RMS algorithm was validated on the on-device autonomous driving
platform, NVIDIA Jetson AGX Orin, through which optimal deployment strategies were derived for
various applications and scenarios requiring autonomous driving technologies.

Keywords: autonomous driving; monocular depth estimation; absolute relative error; data augmentation;
quantization; pruning

1. Introduction

Autonomous driving technology is one of the most extensively researched areas in
recent times, owing to its wide applicability and significant impact across industries. Such
vehicles are equipped with the capability to perceive and analyze their surrounding envi-
ronment without a human driver, facilitating safe navigation to the designated destinations.
However, one of the key challenges that these innovative technologies continue to face is
the capability to accurately and swiftly comprehend and process three-dimensional space
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for real-time autonomous driving decisions [1,2]. Three-dimensional spatial perception
plays a crucial role in autonomous driving systems, leading to research efforts that aim to
perform depth estimation using expensive equipment such as LiDAR through sensor fu-
sion techniques [3–8]. However, for effective implementation and widespread commercial
application, it is preferable to perform depth estimation of objects and scenes quickly and
cost-effectively using only a single camera [9,10]. This MDE (Monocular Depth Estimation)
technique maximizes the safety and efficiency of autonomous vehicles by providing es-
sential three-dimensional information needed to understand the surrounding vehicular
environment, avoid obstacles, and plan safe routes [9,10]. In the field of MDE, a variety of
methods have been developed [9–11]. However, these methods often encounter limitations
in addressing real-world variability, such as complex lighting conditions, diverse meteoro-
logical circumstances, and the variety in objects and textures. However, these performance
limitations can be substantially improved by leveraging rapidly advancing deep learning
technologies if comprehensive datasets are available that include data for diverse scenar-
ios, such as complex lighting conditions, varied meteorological conditions, textures of
different objects, and advanced data augmentation techniques. In this study, we introduce
synthetic-based data augmentation techniques that account for data diversity. Specifically,
we propose a Mask method, which segments objects of interest from one image and syn-
thesizes them onto another image. This approach is further enhanced with Mask-Scale,
which involves resizing adjustments, and CutFlip, based on image flipping, to maximize
the utilization of natural features and textures within existing datasets. Furthermore, we
have derived optimal data augmentation strategies for contemporary MDE technologies by
combining these techniques with other data augmentation methods previously suggested
in various studies. Building on this, we propose the RMS algorithm, which integrates the
latest MDE techniques, loss functions for MDE training, network compression methods,
and system deployment considerations. This algorithm is designed to derive optimal
application strategies tailored to specific autonomous driving applications.

The following section introduces the research related to the proposed techniques
and outlines the major contributions. Section 2 details the technical aspects of the MDE
methods. Section 4 describes the proposed data augmentation techniques, specifically the
Mask, Mask-Scale, and CutFlip methods. Section 5 elaborates on the three operational
stages of the proposed RMS algorithm. In Section 6, the performance of the proposed
techniques is validated, and Section 7 concludes the discussion.

2. Related Work

Prior to the advent of deep learning, early research in MDE primarily revolved around
depth-cue-based approaches [12–14]. Study [12] utilized an approach based on the van-
ishing point, study [13] focused on depth perception derived from focus and defocus
techniques, and study [14] employed a shadow-based approach. However, these studies
were constrained by their ability to perform MDE under limited conditions, rendering them
inadequate for application in real-world settings with diverse variations.

With the advent and progression of deep learning [15–17], research in the field of MDE
also began to incorporate deep learning methodologies [18]. This approach is character-
ized by an encoder–decoder structure that receives RGB input and produces depth maps.
Subsequently, numerous studies [18–25] emerged, adopting a similar encoder–decoder
framework. Further advancements were made as research [26–28] explored the generation
of depth maps based on probabilistic combinations of sequential images using CRFs (Con-
ditional Random Fields) applied to the output feature maps of the encoder. In study [26],
depth maps were derived by extracting feature maps of various sizes from consecutive
images and combining them using an attention-based mechanism. Additionally, the ap-
plication of CRFs was diversified, with study [29] implementing multiple cascade CRFs,
study [27] using continuous CRFs, study [28] applying hierarchical CRFs, and study [30]
employing FC-CRFs (Fully Connected CRFs) for performing MDE.
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However, the application of supervised learning to MDE incurs high data-labeling
costs. To mitigate this, attempts have been made to employ unsupervised learning method-
ologies [31–36]. These studies, predominantly based on image reconstruction techniques,
stereo matching, and depth extraction through camera pose estimation from consecutive
video frames, introduce additional complexities without achieving significant advance-
ments in accuracy. Meanwhile, as an alternative approach to overcoming the issue of
insufficient data in MDE, several research attempts have been made to generate variant
data to supplement the scarce training dataset. In studies [37–47], attempts were made
to augment and utilize existing data through various methods such as data augmenta-
tion techniques, style transfer, and data synthesis. In the studies by [48–50], the use of
copy-and-paste-based data augmentation techniques was explored to enhance performance
in various tasks, specifically object detection and segmentation. This approach involves
integrating elements from one image into another to enrich the dataset and improve the
robustness of the models trained for these applications. Similarly, the study by [37] ex-
plored data augmentation for MDE in their CutDepth approach by pasting rectangular
regions from one image onto the original image. This method was analyzed to enhance the
REL performance by approximately 1.5%, demonstrating its efficacy in improving depth
estimation accuracy. Based on the CutDepth framework, various composite techniques
have emerged, specifically vertical orientation and perpendicular orientation techniques,
referred to as vertical CutDepth [51] and perpendicular CutDepth [52], respectively. These
methods have demonstrated performance improvements comparable to those achieved
with the original CutDepth approach. In studies [38–47], classical methods involving noise,
brightness, contrast adjustments, and multi-scale and geometric transformations were
applied to MDE techniques to enhance accuracy. These approaches resulted in achieving
an REL performance metric of 0.112 on the KITTI dataset, according to the analysis. The
study [53] analyzed the performance of a simple encoder–decoder-based MDE model by
applying data augmentation techniques such as scale, rotation, color jitter, color normal-
ization, and flips, utilizing geometric variations and filtering methods. The application of
these techniques achieved an REL performance of 0.066 on the KITTI dataset, as analyzed.
Several studies [54–57] have utilized Generative Adversarial Network (GAN) technology
to generate data or perform style transformations for data augmentation purposes. In
particular, research by [55–57] focused on implementing data augmentation techniques
tailored to various weather conditions to enhance robust performance. Additionally, the
study [58] explored the creation of image data and corresponding depth labels within a
virtual environment for use as data resources. The study [59] introduced reliable data
augmentation that minimizes the loss between disparity maps generated by the original
and augmented images, enhancing image robustness in predicting color fluctuations. Sim-
ilarly, in the study by [60], an attempt was made to enhance the performance of depth
estimation by applying augmentation at the feature representation level derived from the
results of an image encoder. Research [61] implemented a data augmentation technique
based on supervisory loss, improving depth at occluded edges and image boundaries while
making the model more resilient to changes in illumination and image noise. The study [62]
generated multi-perspective views and corresponding depth maps based on NeRFs (Neu-
ral Radiance Fields), utilizing interpolated- and angle-variation-based data augmentation
methods, and conducted performance evaluations for AdaBins [63], DepthFormer [64], and
BinsFormer [65].

In parallel, substantial research has been undertaken to enhance MDE technologies
for dependable and real-time performance on devices with limited resources, such as
autonomous vehicles, robotics, and embedded systems. These advancements focus on
model compression, lightweight architectures, and acceleration techniques, which are
typically grouped into pruning [66,67], the development of efficient architectures [68–70],
the application of knowledge distillation [71,72], and real-time operation [66–73]. This
body of work aims to refine MDE functionality to suit the computational constraints of
various hardware platforms, enhancing operational efficiency across multiple application
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domains. In the studies by [66,67], pruning techniques and similar methods were explored
with the objective of energy conservation through targeted weight training approaches.
These methods focus on reducing the computational demands of models by selectively
pruning less important network weights, thereby enhancing energy efficiency during op-
erations. In the study by [68], a lightweight design approach for the encoder–decoder
network in MDE was addressed. Specifically, the research utilized MobileNet to reduce
the weight of the encoder–decoder structure. By replicating this streamlined architecture
twice, the study aimed to mitigate the loss of accuracy typically associated with reductions
in model complexity. In the study by [69], visual domain adaptation was employed to min-
imize accuracy degradation within a lightweight network structure based on MobileNet.
The research by [70] aimed to enhance prediction accuracy through a lightweight design
that incorporates elements from the biological visual system and self-attention mecha-
nisms. Meanwhile, the studies [71,72] explored the use of KD (Knowledge Distillation) to
streamline the traditional encoder–decoder architecture in MDE. However, despite these
technologies’ ability to significantly reduce latency—by up to a factor of ten—accuracy
degradation remains a substantial limitation. Finally, the technologies for the real-time
operation of autonomous driving computations can utilize the previously described model
lightweight techniques, namely pruning [66,67], efficient architecture [68–70], and knowl-
edge distillation [71,72]. However, while these model lightweight techniques can reduce
the size of the model, they do not always decrease operational latency because they may
require additional computations for the model operation. Therefore, it is essential to deploy
and analyze the performance on actual embedded devices to verify their effectiveness.

Despite advancements in various data augmentation techniques, the current REL
performance still presents limitations for commercial deployment. The reason for this is
that the proposed data augmentation techniques do not necessarily guarantee performance
improvements. Specifically, data augmentation methods based on color filters (e.g., color
jitter, color normalization, brightness control, contrast control) tend to exhibit variability
in performance enhancement compared to geometric variation techniques. Moreover, the
performance can vary depending on the MDE model, making it challenging to ensure
performance improvements in recent MDE models.

Consequently, there is a demand for developing geometric-variation-based data aug-
mentation techniques that can consistently yield performance enhancements across all MDE
technologies. Furthermore, it is essential to identify combinations of data augmentation
techniques that can effectively enhance the performance of recent MDE models through
the integrated use of traditional augmentation methods.

In this research, we have developed data augmentation techniques based on geomet-
ric variations, specifically Mask, Mask-Scale, and CutFlip, that can reliably enhance the
accuracy of MDE. We particularly investigated the optimal combinations of these tech-
niques with traditional data augmentation methods such as scaling, rotation, translation,
noise, and brightness control by analyzing their performance synergies. Additionally, we
conducted experimental analyses to determine the most effective strategies for maximizing
MDE accuracy across various loss functions and optimized these strategies for operational
latency and memory efficiency through network lightweighting techniques. This approach
is applicable to supervised, unsupervised, and semi-supervised learning, offering a vi-
able method for enhancing the accuracy of monocular depth prediction in robotic and
autonomous driving environments.

The contributions of this paper are summarized as follows:

• Proposal of Novel Synthetic-Based Data Augmentation Techniques for MDE Per-
formance Enhancement: This paper proposes new synthetic-based data augmen-
tation methods, such as Mask, Mask-Scale, and CutFlip, to improve monocular
depth estimation performance and derive the optimal combination of data augmenta-
tion techniques.
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• Proposal of Network Compression Methods for Enhanced Efficiency in Real-Time
MDE: Strategies to minimize the size and operational time of real-time monocular
depth estimation models through quantization and pruning techniques are suggested.

• Optimal Application Strategies for Autonomous Driving Systems Considering Per-
formance: This paper presents the RMS algorithm, an optimal strategy tailored for
commercial autonomous driving applications, taking into account the current MDE
performances on high-end servers and on-device systems. This strategic approach is
designed to harness the capabilities of different deployment environments effectively.

3. Technical Details for Performance Analysis and Enhancement of MDE
3.1. Base Model

For the RMS algorithm, MonoDepth [20], DepthFormer [64], and IEBins [65] are
considered as base model options for performance analysis and real-time configuration.

Firstly, MonoDepth [20] follows a fundamental encoder–decoder structure. The en-
coder, based on ResNet, extracts features to learn visual characteristics. The decoder,
comprising convolution and upsampling operations, fuses features from the encoder to
restore resolution and predicts high-resolution depth maps. Here, the encoder can be
diversified using techniques such as FPNs (Feature Pyramid Networks) [74], Bi-FPNs
(Bidirectional Feature Pyramid Networks) [75], and PFPNs (Panoptic Feature Pyramid
Networks) [76].

DepthFormer [64] also adheres to an encoder–decoder structure but introduces the
HAHI (Hierarchical Aggregation and Heterogeneous Interaction) module between the
encoder and decoder to enhance the model’s performance. The HAHI module models
interactions and relations between features F and G obtained from the transformer and
convolution branches.

Lastly, IEBins [65] also adheres to an encoder–decoder structure based on skip connections.
The encoder utilizes Swin Transformer as its backbone and is composed of a four-level
feature pyramid. Each skip connection links pyramid features to the decoding phase.
The decoder employs three CRF modules to capture long-range correlations and uses an
iterative optimizer to extract context features, which are then fed into the GRU hidden
state. Ultimately, the depth map is derived from the linear combination of the probability
distribution outputs of the three stages.

3.2. Loss Function

In the context of monocular depth estimation, loss functions are pivotal for quanti-
fying the disparity between actual depth values and those predicted by the model. For
this purpose, SigLoss (scale-invariant gradient loss) LSig and BerhuLoss LBerhu [77] were
employed as loss functions, with the more effective loss function value being selected and
utilized based on experimental outcomes.

First of all, the formulas of SigLoss [78] are as follows:

di = log(d)− log(d∗), (1)

LSigLoss =
1
T ∑

i
d2

i −
1

T2

(
∑

i
di

)2

where d represents the predicted value, d∗ the true depth value, and c the threshold.
The SigLoss is designed to reduce dependency on the absolute values of depth predic-

tion. Most depth estimation methods heavily rely on absolute depth values, which can often
be inaccurately estimated. SigLoss focuses on the relative relationships or gradients between
log-based depth values within an image, ensuring that the overall structure of the predicted
depth map remains similar to that of the original depth map. This approach shifts the focus
from absolute depth values to maintaining structural integrity in depth estimation.
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Next, BerhuLoss is defined as follows:

LBerhu(d, d∗) =

{
|d − d∗| , if |d − d∗| ≤ c,
|d−d∗ |2+c2

2c , if |d − d∗| > c.
(2)

BerhuLoss operates such that when the error is less than or equal to a threshold c, it
directly uses the error |d − d∗|. However, for errors exceeding the threshold c—indicating
that the prediction error surpasses the set limit—the formula adds a constant c2 and
divides by 2c, thus aggressively eliminating outliers while still allowing for some error.
This approach ensures that the model is not overly sensitive to large errors, facilitating
stable learning.

3.3. Network Compression

Model quantization is a technique extensively utilized to condense and expedite the
inference phase in deep learning systems. This technique involves compressing network
weights by reducing the bit representation, typically from 32 bits to a lower bit rate. Conse-
quently, quantization constrains the dynamic range and precision of bit representation but
offers the benefit of significantly diminishing the overall network weight size, proportional
to the reduction in bits.

These quantization techniques can be categorized based on their approach into
Quantization-Aware Training (QAT) and Post-Training Quantization (PTQ). Further, PTQ
can be subdivided into three distinct methods depending on the degree and manner of
compression: Baseline Quantization (BLQ), Full-Integer Quantization (FIQ), and Float 16
Quantization (F16), as outlined in [79].

According to previous research [79], among various quantization techniques, only
FP16 uniquely offers the benefit of reducing size without compromising latency and accu-
racy. Consequently, this paper focuses on the FP16 method as the quantization technique
of choice.

On the other hand, the pruning technique in deep learning operations involves re-
taining weights that exceed a certain threshold value and setting the remaining weights to
zero. This approach typically involves sorting some of the weights based on their absolute
values and then zeroing out the smallest ones until a specific level of sparsity is achieved,
as outlined in [80]. In this study, we incrementally increased the number of weights set to
zero in the CNN models over 60–70 iterations to optimize accuracy.

4. Proposed Data Augmentation Techniques for MDE

MDE faces a significant challenge due to the high costs associated with data acquisi-
tion and labeling, resulting in substantially fewer training data compared to other image
recognition tasks. Consequently, the application of data augmentation is essential to com-
pensate for the insufficient quantities of training data for MDE. However, traditional data
augmentation techniques such as flipping, scaling, noise addition, brightness adjustment,
and rotation encounter limitations in enhancing performance due to a lack of data diversity.
In this section, we propose techniques that go beyond variations within a single image,
introducing methods that synthesize data across multiple images, namely Mask, Mask-
Scale, and CutFlip. Table 1 outlines the definitions of these techniques, Figure 1 presents
their illustrative diagrams, and Figure 2 depicts examples of applying Mask, Mask-Scale,
and CutFlip.

In this study, we conducted experiments applying the proposed data augmentation
techniques on the KITTI dataset as the original data source [81]. The primary reason for
utilizing the KITTI dataset is that it not only provides depth map data for MDE but also
encompasses classes such as cars, pedestrians, bicycles, and people, which are crucial for
autonomous driving in outdoor environments.

When augmenting data using the Mask, Mask-Scale, and CutFlip techniques, the
corresponding depth map should be synthesized in the same manner as the altered image.
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As described in Figure 1a, when augmenting data with Mask, the depth map information
is masked in the depth map exactly as the masked object’s depth information and location.
Conversely, as explained in Figure 1b, when applying Mask-Scale, the depth map infor-
mation is adjusted inversely proportional to the scale ratio. For CutFlip-L and CutFlip-R
applications, as illustrated in Figure 1c, the depth map from either the left or right side
is directly copied to the opposite side. CutFlip-D combines several images by selectively
applying Flip to the left or right images, and the corresponding depth maps are combined
and structured similarly.

Table 1. Proposed data augmentation techniques proposed for MDE.

Definition

Mask The Mask technique employs segmentation technologies to segment
specific objects, such as cars, from various original images and
superimposes them onto target original images, thereby synthesizing
new images.

Mask-Scale Similar to Mask, segmenting specific objects from various original
images, adjusting the size and the depth of segmented objects, and then
superimposing these adjusted segments onto target original images
to create a new composite.

CutFlip The left or right half of the image is flipped and copied to the opposite
side to create a mirrored image. The CutFlip technique allows for three
variations based on its synthesis method: CutFlip-L, CutFlip-R, CutFlip-D.
· CutFlip-L copies the left half of the original image to the right,
· CutFlip-R copies the right half of the original image to the left,
· CutFlip-D swaps and combines the sides of two arbitrary images.

Figure 1. Illustrative diagrams of Mask, Mask-Scale, and CutFlip: 1-A represents the left part of image
1, 1-A’ is the flipped version of 1-A, 2-A represents the left part of image 2, 2-A’ is the flipped version
of 2-A, 1-B represents the right part of image 1, 1-B’ is the flipped version of 1-B, 2-B represents the
right part of image 2, 2-B’ is the flipped version of 2-B.
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Figure 2. Application examples of Mask, Mask-Scale and variations of CutFlip.

The traditional data augmentation methods mentioned above, namely flip, scale, noise,
brightness and rotation, artificially create a variety of environmental changes that could be
encountered in real driving scenarios. This integration during the training process enables
a better REL performance in actual test datasets and enhances the model’s generalization
capability. However, these methods face performance limitations in enhancing depth
prediction based on object information due to insufficient variability and the scarcity
of object data themselves caused by class imbalance. Conversely, the synthetic-based
Mask method proposed in this paper employs segmentation techniques to extract objects
from different images and synthesizes them onto the base image, including their depth
information. This approach addresses the lack of high-quality depth prediction data based
on object information, thereby contributing to an enhanced performance. Furthermore,
the Mask-Scale data augmentation method overcomes a limitation of the Mask method,
which is restricted to augmenting data based on the existing size of objects and their
corresponding depth information in the original image. By proportionally varying the size
of the objects and their depth information during augmentation, the Mask-Scale method
enables the synthesis and augmentation of not only the objects themselves but also their
associated depth information. Lastly, CutFlip represents one of the most efficient and
straightforward methods for data augmentation. Unlike traditional data augmentation
techniques, it possesses photorealistic qualities that closely mimic actual data, thereby
significantly enabling the enhancement of REL performance during real testing scenarios.

5. Optimal Configuration Process of MDE According to Application
5.1. Overall Configuration Flow

The workflow of the entire system for optimizing MDE settings according to the appli-
cation is depicted in Figure 3. Initially, an autonomous driving application suitable for MDE
is selected. Since each autonomous driving application possesses distinct characteristics
and associated performance requirements, this selection is prioritized to subsequently
optimize the overall MDE system settings. Considered applications include autonomous
vehicles, which must meet high levels of real-time performance, accuracy, and memory
requirements of embedded systems due to the necessity to drive at high speeds while
ensuring safety. In the realm of autonomous robots, these can be classified into high-speed
and low-speed robots based on their operational velocities. High-speed robots, used for
high-speed outdoor delivery purposes, require high mobility not unlike autonomous vehi-
cles and must handle a variety of data variability and stringent performance requirements.
Conversely, low-speed robots are utilized for indoor delivery at slower speeds, where
environmental variables are relatively consistent and minimal, thereby influencing their
performance requirements accordingly.

Subsequently, data augmentation is utilized to acquire a more diverse dataset. In
reality, datasets sufficient for MDE are not adequately available, which leads to overfitting
issues when training neural-network-based MDE models, thereby capping the potential for
accuracy improvement. To address this, a combination of geometric-based methods such as
rotation, flipping, and scaling, alongside filter-based methods like brightness control and
noise addition and the proposed Mask, Mask-Scale, and CutFlip techniques, are employed
to enhance dataset diversity.
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Figure 3. The overall operational process for optimal configuration of monocular depth estimation
according to application.

The base model is then determined and configured. For this purpose, models based on
the encoder–decoder structure, such as MonoDepth [20], DepthFormer [64], and IEBins [65],
are established as the basic options for proceeding.

Following this, the loss functions are configured to achieve higher REL values. This
step is critical as various functions can significantly impact the training accuracy of models
trained on identical datasets and model architectures. Therefore, a range of functions are
tested to determine the most effective ones.

The next phase involves exploring the potential for network compression. This is
carried out not solely for enhancing REL accuracy but primarily to improve operational
efficiency in embedded systems.

Finally, the completed model undergoes a comprehensive performance analysis. This
evaluation is conducted from three perspectives: accuracy, as measured by the REL metric;
efficiency, determined using the size metric; and real-time capability, assessed via the
latency metric.

5.2. RMS Algorithm

A comprehensive greedy search for all possible configurations, as mentioned above,
would be time-consuming and resource-intensive. To enable efficient implementation,
strategic and systematic approaches to configuring these factors are necessary. For this goal,
our research introduces the RMS (Real-time configuration of Monocular Depth Estimation
considering REL, Size, and Speed) algorithm, structured in three steps as illustrated in
Figure 4. This approach streamlines the process of determining the optimal configuration,
balancing critical factors such as accuracy, model size, and latency, for effective monocular
depth estimation in real-time applications.

Figure 4. RMS algorithm for optimal configuration of monocular depth estimation.

For the elucidation of our algorithm, parameters are defined as depicted in Table 2.
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Table 2. Parameters for describing RMS.

Notation Meaning

B Base model of MDE
WB Weights of base model B
D Dataset employed for training
L Loss function employed for training
Q Scheme employed for network compression
LAT(WB) Latency of base model B with WB
REL(WB, D, L) REL of MDE model B trained with dataset D and by loss function L
Φ(Q, W∗

B∗ ) Compression of W∗
B∗ using scheme Q

SIZE(Φ(Q, W∗
B∗ )) Size of Φ(Q, W∗

B∗ )
γ REL threshold
τ Latency threshold

5.2.1. Selection of the MDE Model Trained on Original Dataset to Minimize Latency

Based on the original dataset and the loss function SigLoss, we select the MDE model
B∗ that minimizes latency while satisfying the minimum REL condition, as determined
by Equation (3). The candidate MDE models considered include MonoDepth [20], Depth-
Former [64], and IEBins [65], though the inclusion of other models with demonstrated
superior performance remains a feasible option.

B∗ = arg min
B

{LAT(WB)} (3)

Subject To REL(WB, D, L) ≤ γ,

B ∈ {MonoDepth, DepthFormer, IEBins},

D ⊂ {Original}, L ∈ {SigLoss}.

In this framework, the minimum REL threshold γ is a critical parameter that balances
the trade-off between the accuracy and latency performance of MDE. A lower REL threshold
might lead to the absence of feasible solutions or unsatisfactory latency outcomes. On
the other hand, a higher REL threshold broadens the feasible solution space, possibly
yielding acceptable latency results, but at the risk of compromising MDE accuracy, which
could negatively impact the safety of autonomous driving. Therefore, it necessitates a
comprehensive evaluation, taking into account the intended level of autonomous driving
and the given hardware specifications.

5.2.2. Further Training of the Predetermined Model to Minimize REL

As shown in Equation (4), step 2 involves additional training to minimize the REL
based on the base model selected in step 1. This step aims to optimize the weights of the
base model using a variety of data augmentation techniques and loss function options.
The dataset D includes Original, Flip, Rotation, Noise, Brightness, Mask, Mask-Scale,
CutFlip, and their combinations. The loss functions employed include options of SigLoss
and BerhuLoss for training. While all currently advantageous data augmentation methods
and loss functions were utilized, the inclusion of alternative methods into this set allows
for the expansion and application of the RMS algorithm.

W∗
B∗ , D∗, L∗ = arg min

WB∗ ,D,L
{REL(WB∗ , D, L)}, (4)

D ⊂ {Original, Flip, Rotation, Mask, Mask-Scale, CutFlip},

L ∈ {SigLoss, BerhuLoss}.

5.2.3. Compression of the Model Trained in Step 2 to Minimize Size

Step 3 involves compressing the base model weights W∗
B∗ , trained for minimizing

latency and REL in steps 1 and 2, based on Equation (5). For network compression, methods
such as FP32 (no quantization), FP16 (Float Point 16 quantization) and PRN (Pruning)
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are considered [79]. The objective is to perform network lightening within a range that
maintains or minimally impacts the previously achieved REL and latency performance.

Q∗ = arg min
Q

{SIZE(Φ(Q, W∗
B∗))}, (5)

Subject To REL(Φ(Q, W∗
B∗), D∗, L∗) ≤ γ,

LAT(Φ(Q, W∗
B∗)) ≤ τ,

Q ∈ {FP32, FP16, PRN}.

6. Simulation Results
6.1. Data Augmentation and Model Selection Strategies

The experiments were primarily focused on validating the real-time feasibility of MDE
through the RMS algorithm, improving the accuracy in terms of REL performance, and
verifying the model size reduction. For the experimental setup, training was conducted
on a single NVIDIA H100 GPU, while testing was performed on a dual RTX 4090 NVIDIA
GPU setup, with programming and result analysis carried out using the Pytorch framework.
The NVIDIA GPU 4090 RTX [82] used for inference offers an AI computation performance
of 1321 TOPS and requires approximately 850 W of power. The dataset utilized for the
experiments was based on the KITTI database, using 72,084 pairs of original RGB images,
supplemented by an additional 72,084 pairs per each applied augmentation technique.
Training was executed over 20 epochs with a batch size of 4 to evaluate performance. For
the implementation of the RMS algorithm, detailed parameters were set, with γ configured
to 0.05 and τ established at 100 ms.

Tables 3 and 4 presents the performance metrics derived for steps 1 and 2 of the RMS
algorithm. To determine the optimal base model for step 1, the performance in terms of REL
and latency was demonstrated for MonoDepth, DepthFormer, and IEBins models, which
were trained using the original dataset. Furthermore, for the optimization of additional
training in step 2, the REL and latency performances obtained after subjecting these base
models to various data augmentation techniques and different loss function configurations
were also presented. Table 4 illustrates the latency and size performance values of the MDE
base models, which are evaluated for steps 1 and 2 of the RMS algorithm.

As discernible from Table 3, the IEBins model is identified as the base model with the
most commendable REL performance. Notably, IEBins is the only technology that satisfies
the REL performance threshold, set at γ = 0.05. Additionally, as evidenced in Table 4, it can
be observed that IEBins exhibits a better performance compared to DepthFormer in terms
of latency. Therefore, selecting IEBins as the base model from the options explored in this
study is the most judicious choice, denoted as B∗ = IEBins. Step 2 of the RMS algorithm
involves optimizing the REL performance through additional training of the identified
optimal base model, IEBins, using an augmented dataset and a loss function. As evidenced
in Table 3, the outcome of further training with various data augmentation combinations
reveals that data augmentation significantly enhances REL performance. Specifically, the
Ori + Flip + Mask + CutFlip combination yields the most exemplary result among all
experimental sets, with a metric of 0.0461. This figure is an improvement of 0.0019 over the
0.0480 result achieved from training on the original dataset, translating to an approximate
enhancement of 4.0% = 0.0019

0.0480 . The combinations of Ori + Flip + Mask + CutFlip, as well
as Ori + Flip + Mask, Ori + Flip + Mask + Rotation + CutFlip, Ori. + Mask + Mask-Scale
+ CF, and Ori. + Scaling + Rotation + Translate + Noise + Flip + Mask + Mask-Scale +
CF that incorporate the use of Mask, also demonstrate similarly excellent performance.
This indicates that the proposed Mask-based data augmentation combinations are highly
effective in enhancing the REL performance of MDE.
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Table 3. REL results according to data augmentations (Ori.: original dataset, CF: CutFlip, Rot: Rota-
tion, Sca: Scaling, Tr: Translate, Noi: Noise).

MonoDepth DepthFormer IEBins

Augmentation SigL BerhuL SigL BerhuL SigL BerhuL

Ori. 0.0685 0.0696 0.0528 0.0595 0.0480 0.0487
Ori. + Flip 0.0693 0.0704 0.0534 0.0599 0.0487 0.0494
Ori. + Scale 0.0730 0.0741 0.0570 0.0643 0.0523 0.0531
Ori. + Noise 0.0710 0.0721 0.0551 0.0619 0.0503 0.0512
Ori. + Bright 0.0688 0.0699 0.0528 0.0638 0.0481 0.0489
Ori. + Rotation 0.0689 0.0701 0.0530 0.0597 0.0482 0.0490
Ori. + Mask 0.0696 0.0708 0.0538 0.0612 0.0491 0.0499
Ori. + Mask-Scale 0.0671 0.0681 0.0513 0.0586 0.0466 0.0475
Ori. + Noise + Bright 0.0717 0.0729 0.0559 0.0628 0.0513 0.0521
Ori. + Scale + Bright 0.0719 0.0731 0.0561 0.0632 0.0515 0.0523
Ori. + Flip + Noise 0.0711 0.0722 0.0553 0.0619 0.0506 0.0514
Ori. + Flip + Mask 0.0611 0.0620 0.0510 0.0581 0.0468 0.0476
Ori. + Flip + Mask + CF 0.0610 0.0619 0.0514 0.0571 0.0461 0.0469
Ori. + Flip + Mask + Rot + CF 0.0610 0.0620 0.0512 0.0578 0.0465 0.0473
Ori. + Sca + Rot + Tr + Noi + Flip 0.0621 0.0630 0.0519 0.0584 0.0473 0.0480
Ori. + Mask + Mask-Scale + CF 0.0612 0.0622 0.0515 0.0579 0.0463 0.0470
Ori. + Sca + Rot + Tr + Noi + Flip + 0.0616 0.0625 0.0524 0.0565 0.0468 0.0474
Mask + Mask-Scale + CF

Table 4. Latency result according to MDE base models.

MonoDepth DepthFormer IEBins

Latency 24 ms 114 ms 93.3 ms
Size 0.1 GB 3.3 GB 3.3 GB

In the experimental results for data augmentation, it is notable that not all data augmen-
tation techniques contribute to performance enhancement. Specifically, combinations such
as Noise with Brightness, Scale with Brightness, and Flip with Noise showed a decrease
in REL performance. Furthermore, the application outcomes of these data augmenta-
tion techniques demonstrated similar results not only in IEBins but also in MonoDepth
and DepthFormer. This indicates that selective application of datasets through various
experiments is essential for optimizing MDE performance.

Figure 5 displays exemplary result images from the combinations of data augmentation
that have been additionally trained on the IEBins model. As observed in Figure 5, the
depth predictions made using the Original + Flip + Mask + CutFlip dataset distinctly
depict the presence and form of distant signs, aspects that were not discernible in the depth
predicted using the original dataset. Figure 6 illustrates the results of the base models
MonoDepth, DepthFormer, and IEBins when trained with the best data augmentation
combination: Ori + Flip + Mask + CutFlip. As demonstrated in Figure 6, it is evident
that IEBins more distinctly identifies shapes compared to MonoDepth and DepthFormer.
Finally, it is observed that the SigLoss loss function demonstrates superior performance
compared to the BerhuLoss. This implies that, for MDE problems, a log-difference-based
SigLoss is more effective than a Euclidean difference-based BerhuLoss.

Remark 1. Mask-based data augmentation techniques are effective in enhancing the REL of MDE.
Furthermore, the optimal data augmentation strategy for MDE is identified as the combination of
Ori + Flip + Mask + CutFlip.

Remark 2. For enhancing the REL, size, and latency performance in MDE, SigLoss is found to be
more suitable than BerhuLoss.
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Figure 5. The example inference results of IEBins according to data augmentation technique
combinations.

Figure 6. The comparison of results for MonoDepth, DepthFormer, and IEBins when applying the
best-performing data augmentation combination of Ori + Flip + Mask + CutFlip and the SigLoss
loss function.

6.2. Network Compression Strategy

Proceeding to step 3 of the RMS algorithm, the focus shifts to network compression.
Table 5 showcases the results of compressing the IEBins network utilizing quantization and
pruning techniques as delineated in Equation (5). As Table 5 indicates, the FP16 format
achieves the highest compression rate at 83.4% = 1− 0.54

3.3 while simultaneously maintaining
a robust REL and latency performance. In the context of pruning, the compression rate
varies according to the adjustment in the ratio, meaning that setting a higher ratio results
in a greater compression rate. However, considering the REL threshold of γ = 0.05, the
feasible range for the ratio is between 0.05 and 0.1. Given that the size and latency metrics
for FP16 are superior to those achieved through pruning, it is evident that FP16 represents
the most effective network compression method. Figure 7 exhibits example image results
of the IEBins model corresponding to various network compression techniques.
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Table 5. Network compression result of the best combination (augmentation and loss) for IEBins.

Scheme REL Size (GB) Latency (ms)

FP32 0.0462 3.3 93.3
FP16 0.0463 0.54 93.8
Pruning (0.05) 0.0463 3.15 96.6
Pruning (0.1) 0.0483 2.99 96.5
Pruning (0.15) 0.0511 2.82 96.1
Pruning (0.1) + FP16 0.0483 0.61 95.9

Figure 7. The example inference results for the IEBins model with the best performance based on
network compression techniques.

Remark 3. The FP16-based quantization technique exhibits the most effective network compression
performance, along with the best REL, size, and latency metrics.

6.3. On-Device Strategy

Finally, the optimized models, MonoDepth, DepthFormer, and IEBins, which were
trained and compressed under the best data augmentation combinations determined by the
RMS algorithm, were deployed on the on-device AI platform NVIDIA Jetson AGX Orin [83]
for performance analysis. The NVIDIA Jetson AGX Orin features a 2048-core GPU with 64
Tensor Cores and delivers up to 275 TOPS of AI computation performance, with power
consumption settings ranging from 15 W to 75 W. Table 6 analyzes the latency performance
of these models under 50W and 30W power modes of NVIDIA Jetson AGX Orin. Table 7
displays the size of each model following network compression by the RMS algorithm.

In the experimental results, it was observed that the NVIDIA AGX Orin platform
demonstrated an increase in latency by approximately 8.75 times (821/93.8) under a 50 W
setting and about 20.7 times (1942/93.8) under a 30 W setting compared to the traditional
4090 GPU. Additionally, power consumption decreased by 94% (1− 50

850 ) at 50 W and by 96%
(1− 30

850 ) at 30 W. This results in significant power reduction, yet it also leads to considerable
increases in latency, which can be observed through the experimental data. Consequently,
it becomes evident that such settings are impractical for high-speed autonomous vehicles
where real-time processing is critical. If the application is intended for more dynamic
outdoor environments, it becomes evident that a distributed computing approach utilizing
multiple NVIDIA Jetson AGX Orin units is necessary. Furthermore, as evidenced in Table 6,
MonoDepth exhibits the lowest latency compared to other models, DepthFormer and
IEBins. According to Tables 3 and 7, although MonoDepth has the highest REL accuracy
performance at 0.0610, which is less accurate compared to DepthFormer at 0.0510 and
IEBins at 0.0461, it demonstrates a clear advantage in terms of memory size and latency.
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This suggests that MonoDepth is a suitable choice for indoor navigation robots operating
in static environmental conditions.

Table 6. Latency results (ms) according to network compression techniques and power consumption.

Latency (ms) FP32 FP16 FP16 + Pruning

Power Mode 50 W 30 W 50 W 30 W 50 W 30 W

MonoDepth 87.5 172.2 69.0 143.7 71.1 146.9
DepthFormer 1382.2 2686.4 868.7 2138.5 874.9 2143.8
IEBins 1115.8 2432.8 821.1 1942.7 828.2 1948.3

Table 7. Size (GB) according to Network Compression techniques.

Size (GB) FP32 FP16 FP16 + Pruning

MonoDepth 0.1 0.05 0.06
DepthFormer 3.3 0.56 0.64
IEBins 3.3 0.54 0.61

Conversely, IEBins and DepthFormer, which show better REL performance as per
Table 3, exhibit significantly poorer latency in low-power on-device environments. There-
fore, employing these models in low-power on-device setups in actual autonomous driving
vehicles appears to be impractical; they are more suited for low-speed outdoor or indoor
navigation robots. If deploying MDE in an autonomous vehicle, it is recommended to use
server-grade GPUs in environments where the power supply is stable in order to ensure
effective performance.

Finally, DepthFormer shows inferior performance in both speed and accuracy com-
pared to IEBins, as shown in Tables 3 and 6. Hence, for all autonomous driving applications,
using IEBins over DepthFormer is recommended.

7. Conclusions

This study investigates methods for optimizing real-time performance in monocular
depth prediction within autonomous driving systems equipped with limited datasets and
relying on a single camera for environmental depth perception. To achieve this, we propose
a three-stage RMS algorithm experiment to optimize performance indicators in accuracy
(REL), operational speed (latency), and memory size. In the first stage, a base model
that satisfies REL performance criteria while minimizing latency is selected. Encoder–
decoder-based models such as MonoDepth, DepthFormer, and IEBins were evaluated,
with IEBins emerging as the most suitable model through experimental analysis. The
second stage involves training the chosen base model with newly proposed synthetic-based
data augmentation techniques and various loss functions to minimize its REL. This stage
proves that a combination of Flip, Mask, and CutFlip data augmentation techniques, along
with a SigLoss-based loss function, yields the most optimal performance. In the third
stage, network compression techniques that can minimize the size of the trained base
model are identified. Among quantization and pruning methods, FP16-based quantization
was proven to be the best combination, optimizing performance in terms of REL, latency,
and size. The proposed RMS algorithm’s data augmentation and network compression
techniques have enabled significant improvements over the existing IEBins base model:
approximately a 4.0% decrease in REL and an 83.4% reduction in model size without any
degradation in latency performance. Additionally, the optimal models derived from the
RMS algorithm—MonoDepth, DepthFormer, and IEBins—were deployed on the NVIDIA
Jetson AGX Orin robot platform [83] for performance analysis. The experimental results
indicated that these models are more suitable for static indoor environments when imple-
mented on the NVIDIA Jetson AGX Orin platform. It was also observed that, for more
dynamic outdoor environments, a distributed computing approach using multiple NVIDIA
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Jetson AGX Orin units would be necessary. These results are expected to be highly ap-
plicable in real-world scenarios, such as autonomous vehicles and robotics, particularly
where data-labeling costs are high and additional data acquisition is challenging. The
approach is anticipated to significantly enhance the performance of depth prediction mod-
els at a lower cost. While these data augmentation techniques may require significant
time investment, it should be noted that this occurs only during the training phase prior
to product deployment. For end-users, this approach offers improved REL performance,
making it a beneficial strategy for commercialization. Conversely, despite the application
of network compression techniques such as pruning and quantization within this study’s
RMS algorithm, there are inherent limitations in improving the latency performance of
monocular depth estimation. Therefore, it is recommended that future efforts focus on
designing a light encoder specifically aimed at achieving low latency.
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