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Abstract: This study utilizes artificial neural networks (ANN) to estimate prediction intervals (PI) for
seismic performance assessment of buildings subjected to long-term ground motion. To address the
uncertainty quantification in structural health monitoring (SHM), the quality-driven lower upper
bound estimation (QD-LUBE) has been opted for global probabilistic assessment of damage at
local and global levels, unlike traditional methods. A distribution-free machine learning model
has been adopted for enhanced reliability in quantifying uncertainty and ensuring robustness in
post-earthquake probabilistic assessments and early warning systems. The distribution-free machine
learning model is capable of quantifying uncertainty with high accuracy as compared to previous
methods such as the bootstrap method, etc. This research demonstrates the efficacy of the QD-LUBE
method in complex seismic risk assessment scenarios, thereby contributing significant enhancement
in building resilience and disaster management strategies. This study also validates the findings
through fragility curve analysis, offering comprehensive insights into structural damage assessment
and mitigation strategies.

Keywords: machine learning in SHM; QD-LUBE; uncertainty quantification in SHM; prediction interval

1. Introduction

The uncertainty quantification (UQ) is an emerging domain, alongside artificial intelli-
gence in natural events where accurate prediction is extremely difficult. To compensate for
this uncertainty, a considerable margin over and above the actual requirement of natural
disasters is added in structure design which results in a huge cost investment. The nominal
design plans and point estimations having insufficient information are unable to address
the uncertainty challenges [1]. The main causes of uncertainty include data mismatch,
input, and parameter uncertainty. Instead of relying on point forecast value, incorporating
an uncertainty margin such as the prediction interval (PI) can help make decisions more
credible and reliable [2].

One specific example where the challenges of uncertainty are evident is in the design
of high-rise buildings situated even in intra-plate regions that face threats from long-
period ground motions originating from distant earthquakes. The slow attenuation of
long-period waves coupled with potential amplification by soft soil sites renders these
structures susceptible to resonance-induced seismic damage. These vulnerabilities have
been evidenced during seismic events, such as the 1985 Michoacán earthquake [3], 2011
Tohoku earthquake [4], and 2015 Nepal earthquake [5], whereby high-rise buildings experi-
enced excessive vibrations and severe damage to their non-structural components, notably
in Mexico City and Tokyo. This underscores the critical importance of understanding
and mitigating the impact of long-period ground motions on high-rise buildings, both
structurally and functionally. Given the complex nature of long-period ground motions and
the dearth of dependable seismic records, accurate prediction of the structural response of
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high-rise buildings remains a challenge without real-time monitoring systems supported by
sensors and a robust communication infrastructure. The deployment of an early warning
system (EWS), as discussed in [6], becomes imperative with access to reliable building data,
to ensure decisions are based on the certainty of both the data and the model to mitigate
casualties and losses.

The increasing frequency and intensity of earthquakes worldwide highlight the ur-
gent need for advanced methodologies in seismic analysis and SHM. While historically
droughts and floods have accounted for significant casualties, the rise in seismic activity,
particularly in densely populated urban areas with vertical housing and rapid urbanization,
has emerged as a primary concern. Records since the early 1900s indicate a consistent oc-
currence of major earthquakes, with an average of 16 significant events annually, including
one of magnitude 8.0 on the Richter or Mercalli standard scales or greater. The United
States Geological Survey (USGS) reports approximately 20,000 earthquakes globally each
year with an average of 55 per day [7]. In the past 40–50 years, USGS records show that
on average, long-term major earthquakes occurred more than a dozen times every year.
Notably, in 2011 alone, 23 major earthquakes of magnitude 7.0 on the Richter or Mercalli
standard scales or higher occurred, surpassing the long-term annual average. In other
years, the total was well below the annual long-term average of 16 major earthquakes.
The lowest-ranking year is 1989 with only 6 major earthquakes followed by 1988 with
7 only. Table 1 shows the top-ranked earthquake countries. These seismic events pose
severe threats to structures, particularly those situated near fault lines and seismic zones,
resulting in substantial casualties and property losses, amounting to tens of billions of
dollars annually.

Table 1. Ranking of most earthquake-prone countries [8].

Rank 1 2 3 4 5 6 7 8 9

Country China Indonesia Iran Turkey Japan Peru USA Italy Afghanistan, India,
Greece, and Mexico

No. of
earthquakes,

from 1900 to 2016
157 113 106 77 61 44 41 33 32

Post-earthquake probabilistic performance assessment (PPPA) is crucial for promptly
and accurately evaluating building safety, particularly in ensuring safe shelter after seismic
events. Typically, this assessment is time-consuming and is carried out by licensed engi-
neering experts [9]. Buildings are categorized into safety levels such as inspected, restricted
use, and unsafe, based on these assessments [10,11]. However, the scarcity of experts
poses challenges, as exemplified by the Tokyo metropolitan government’s 110,375 certified
experts tasked with assessing over 1.9 million buildings [11,12]. This shortage becomes
more acute during aftershocks or subsequent earthquakes, as demonstrated by the two
intense earthquakes that struck the Kyushu area within 28 hours [13]. Thus, the swift and
reliable post-earthquake assessment of building structures becomes even more critical in
safeguarding human lives. Occupants must be promptly notified of the assessed damage
state of the building to facilitate safe evacuation.

2. Background and Related Works

In recent research, a novel model for sensor-based EWS and PPPA has been intro-
duced [6], employing the Vanmarcke approximation based on a two-state Markov assump-
tion for extreme value detection. This approach outperforms previous heuristic techniques,
demonstrating its superiority. Moreover, advancements in artificial intelligence (AI), par-
ticularly machine learning (ML) techniques employing artificial neural networks (ANNs),
have garnered significant attention in seismic analysis. These techniques exhibit remarkable
accuracy in predicting the transient behavior of buildings, facilitating real-time applications
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such as EWS and PPPA, as well as informing performance-based design strategies for
buildings [14,15]. Notably, AI methodologies have been employed for nonlinear mapping
in data modeling, utilizing bootstrapped ANNs for rapid seismic damage evaluation of
structural systems [16]. Additionally, AI techniques have been instrumental in stripe-based
fragility analysis of multi-span concrete bridges [15] where uniform design-based Gaussian
process regression was implemented.

While significant strides have been made in SHM utilizing AI techniques, the crucial
aspect of UQ remains largely unexplored in seismic analysis. The oversight of uncertainty
can lead to substantial misinterpretations in real-world applications, particularly in scenar-
ios where sudden severe hazards occur. Addressing this gap, researchers have proposed
modifications to neural networks (NNs) to account for uncertainty [17,18]. Further ad-
vancements include the development of lower upper bound estimation (LUBE) method [19]
which integrates delta, Bayesian, bootstrap, and mean-variance estimation (MVE) tech-
niques directly into the NN loss function. While the LUBE technique has gained traction
across various domains, such as energy demand and wind speed forecasting, challenges
arise during simulation and implementation phases, notably with the risk of converging to a
global minimum when all high-quality prediction intervals for deep learning PIs are dimin-
ished to zero. To mitigate this issue [17] introduces the quality-driven PI method (QD) and
quality-driven ensemble (QD-Ens.), employing gradient descent (GD) standard training
methods for NNs, thereby enhancing robustness and reliability in predictive modeling.

Utilizing QD and QD-Ens. methods, estimating the characteristics of extreme value
distribution functions becomes more convenient. Typically, deterministic hazard analysis
specifies mean-plus-one-standard-deviation [20]. The QD-LUBE method, known for its
high accuracy, rapid convergence, and robustness, is applied to extreme engineering
demand parameters (EDPs) like inter-storey drift (IDRs), acceleration (A), and base shear
(V) providing prediction intervals (PIs) for observed extreme values. Case studies on a
three-storey European laboratory for structural assessment (ELSA) model demonstrate the
applicability of this approach. This work signifies a new dimension in assessing building
structures in/during post-extreme events, such as earthquakes, enhancing the reliability of
probabilistic performance analysis. Correctly estimating value bounds based on analyzed
data aids disaster management decision-makers in resource allocation, prioritizing life
mitigation, and formulating rehabilitation plans.

3. Proposed Method: QD-LUBE-Based Prediction Interval Analysis

The conventional ML techniques like nonlinear mapping in data modeling, utilizing
bootstrapped ANNs for rapid seismic damage evaluation, and stripe-based fragility analy-
sis only provide point predictions, which means single output for every single target, and
are incapable of monitoring the sampling error, prediction accuracy, and uncertainty of
the model. For important decisions and design plans, point estimations cannot provide
sufficient information [1]. In seismic analysis, the minimum and maximum values or upper
and lower bound values are important for both PPPA and real-time warning systems.
Estimating a credible maximum value is crucial as the risk costs the human and capital loss.
Furthermore, the uncertainty sources evolved in earthquake prediction must be precisely
quantified to provide essential information for decision-makers.

Hence, in model-based forecasting, specifically the ANN or ML models of natural
phenomena, decisions are not solely dependent upon the accurate forecasting the certain
variables but also on the uncertainty of data associated with the forecast. The main causes
of uncertainty are model and data mismatch, input uncertainty, and parameter uncertainty.
Incorporating the uncertainty margins termed as prediction interval (PI) in the determined
point forecast value can help to make the decision more credible and reliable [2]. The
proposed technique for earthquake damage assessment begins with the data generation
and acquisition where response spectra from moderate earthquakes are modeled using
the CSI SAP2000 v22 software generating engineering demand parameters (EDPs) such as
maximum inter-storey drift (MIDR), acceleration, and base shear. MIDRs are pre-processed
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for extreme value analysis using the peak-over-threshold method and then prepared for the
QD-LUBE method. In the threshold and extreme values detection phase, the generalized
pareto distribution (GPD) is employed to identify threshold values, crucial for analyzing
extreme values during earthquakes. The QD-LUBE method is then applied to predict
the upper and lower bounds of these extreme EDPs, enhancing UQ. The fuzzy inference
system (FIS) is subsequently used to assess performance-based damage by associating
EDPs with fuzzy membership functions and evaluating them against predefined rules.
This process involves fuzzification, rule evaluation, and defuzzification to produce crisp
output values. Finally, local and global damage states are assessed using these outputs,
with fragility curves and cost estimations based on the upper bounds of EDPs providing
a comprehensive framework for earthquake damage assessment and real-time warning
systems. An overview of the workflow of the paper has been discussed with minor details.
A flow diagram is given in Figure 1.
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3.1. Data Generation and Acquisition

In the first step, a response spectrum generated from CSI SAP 2000 software with
a 475-years’ return period earthquake for a three-storey ELSA model was obtained. We
considered the population of moderate earthquakes of the 475-year return period. The
model was trained on fifteen moderate-intensity earthquakes to obtain EDPs including
IDR, A, and V, collectively called DAV. Further, EDPs data were pre-processed to make
them compatible with extreme values analysis using peak-over-threshold (EVA-POT) and
subsequently prepared for the QD-LUBE method.

3.2. Threshold and Extreme Values Detection

In the case of earthquakes or other natural disasters, extreme values are the main points
of interest as they have the worst impact. Being the tail-end values, normal distributions
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cannot capture them well and the output of the system is normally biased to the overall
behavior of the data. For this purpose, GPD was used to select the value of the behavior
of data. The approach is used to attain the threshold values for all the earthquakes under
analysis. Section 3.3 discusses complete results with certain examples.

3.3. QD-LUBE-Based PI Analysis and Uncertainity Framework

In the predictive performance-based earthquake analysis, the concept of UQ is not
extensively evolved yet; however, it is gathering fame in other natural hazards like flood
and prediction of energy demand. The QD-LUBE method proposed by [17] with fast
processing speed, higher accuracy, ease of handling big data, and other competitive benefits
over the previous techniques to attain the upper bound of the extreme values has been
applied and the model has been trained on the selected earthquake data, i.e., EDPs. The
upper bound of EDPs extreme values premeditated in this step have been used in the global
and local damage state assessment and global cost estimation.

Pearce et al. [17] proposed the uncertainty framework with QD-LUBE loss function
using GD. In the model, if the data generating function f (x) exist and are combined with
additive noise, they produce observable target values y:

y = f (x) + ϵ (1)

where ‘ϵ’ is termed as irreducible noise or data noise. Some models, for example the
delta method, assume ϵ is constant across the input space (homoscedastic), while others
allow for it to vary (heteroskedastic). The term “quality-driven” means that the frame-
work incorporates a gradient descent method, designed through qualitative assessment,
and includes model uncertainty, which is different than the conventional lower–upper
boundary estimation (LUBE) approach. The loss function used in the proposed frame-
work is distribution–free. In other words, it does require any assumption with a specific
distribution for the dataset. The loss function (i.e., the objective function) that needs to
be minimized to obtain the optimal neural network for a specific dataset can be defined
as follows [17]:

L = MPIWcapt + λ
n

α(1 − α)
max[0, (1 − α)− PICP] (2)

where MPIWcapt is the captured mean prediction interval width, PICP is the prediction
interval coverage probability, λ is a Lagrangian multiplier that controls the relative impor-
tance of the width compared to the coverage of the prediction interval, n is the number of
data points, (1 − α) is the desired proportion of coverage, and α is commonly assumed 0.01
or 0.05. The prediction interval (PI) should be bounded by the predicted upper bound, y,
and lower bound, ŷ, such that:

Pr
(
ŷLi < yi < ŷUi

)
(1 − α) (3)

where yi is the target observation of an input covariate yi, and 1 ≤ i ≤ n. The PI of each point
should be calculated such that MPIWcapt is minimum, while maintaining PICP < (1 − α).
To quantify the MPIWcapt and PICP mathematically, the following equations can be used:

MPIWcapt =
1
C

n

∑
1

(
ŷUi − ŷLi

)
·ki (4)

PCIP =
c
n

(5)

where c is the total number of data points captured by PI(c = ∑n
i=1 ki), ŷUi , ŷLi , and ŷUi

and ŷLi are the upper and lower bounds of the point under consideration, and ki is a binary
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variable (ki ϵ 0, 1) that represents the occurrence of the data point within the estimated PI,
such that:

1 i f ŷLi< yi< ŷUi

0 else
(6)

It is assumed that k can be represented as a Bernoulli random variable (i.e., ki Bernoulli
(1 − α)). In addition, ki is assumed to be an independent and identically distributed
variable. The former assumption can be used to justify that c can be represented by a
binomial distribution (i.e., c binomial (n, (1 − α))). Utilizing the likelihood-based approach,
θ, the optimum neural network parameters are optimized to maximize, L′

θ = L′(θ|K,α),
where K is the vector of length n with each element in the vector is represented by Ki. Based
on the probability, the mass function can be calculated using the central limit theorem and
the negative log likelihood.

L′
θ =

(
n
c

)
(1 − α)cαn−c (7)

3.4. Fuzzification and Performance-Based Assessment

The fuzzy inference system (FIS) serves a dual purpose in nonlinear mapping within
fuzzy logic, addressing inherent fuzziness and vagueness in limit states while relating
earthquake damage parameters to multiple limit states simultaneously [21]. Overall, FIS
process flowchart is shown in Figure 2. Utilizing the Mamdani procedure, the FIS is
established with fuzzification as its initial step, associating each EDP limit state with
specific membership functions and determining the degree of association for each EDP
value within these functions [22]. Fuzzy operators, employing T-norm (minimum) and
S-norm (maximum), are then employed to form fuzzy rules, with the number of rules
contingent upon the limit states associated with member functions, which is 27 in our case.
The antecedent of each rule is evaluated through fuzzy operators to derive a consequent, a
unique number between 0 and 1 [23]. The inference engine assigns implication relations
for each rule, allowing for different rule weights to represent their relative importance.
This weight assignment is crucial, especially when certain EDPs are of greater significance,
necessitating higher weights for corresponding rules. Although in this study, all rules are
given equal weight. The maximum composition operator aggregates the output fuzzy
numbers from each rule which are then transformed into crisp output numbers through
the center of the area (CoA) defuzzification process. This involves dividing the total
area of membership function distributions into sub-areas, with the de-fuzzified value
(z*) of a discrete fuzzy set calculated based on sample elements and their associated
membership functions [22]:

z∗ = ∑n
1=1 zi·µ(zi)

∑n
1=1 µ(zi)

(8)

where zi is the sample element, µ(zi) is the membership function, and n is the number of
elements in the sample [22].

The concept of evaluation ratio (ER) and its classification into “recommended”, “mod-
erate”, and “not recommended” classes based on certain threshold values is utilized to
assess building damage assessment based on structural characteristics and the earthquake
response spectrum. It explains how different ranges of ER correspond to different levels of
system performance and suitability for design. These classes are mapped to three different
levels of the evaluation ratio as (ER > 0.7), (0.35 > ER > 0.7), and (ER < 0.35), respectively.
The ER of each system is labeled “not recommended” if ER < 0.5. The “recommended” class
means that system responses are within the recommended limits and vice versa [23,24].
This study aims to compare the fuzzified original, without incorporating the PI uncertainty,
on EDPs such as MIDR, A, and V with the enhanced value of EDPs based on PI results.
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In this step, local damage state assessment has been performed. The fragility curves of
FEMA P-58 PACT software (version 3.1.1) were used as the basis for comparison. Global
damage assessment of structures passing the maximum values of DAV through the fuzzy
inference system (FIS) is executed, followed by the global cost estimation.

In the local damage state assessment on the maximum inter-storey drift values used,
the probability of damage states for post-earthquake performance assessment and real-time
warning systems is calculated using the upper bound of extreme values of 15 earthquakes.
Global cost estimation is calculated based on D values passed through FIS. Similarly, the
global damage state of structures has been calculated using the maximum upper bound
values of DAV passing through the FIS.

4. Experimental Evaluation: Case Study Model and Validation

All the steps named in the previous section have been elaborated in depth with the
ELSA model. The ELSA model is a well-known standard model used as benchmark for
most of the structural design software. Components and material details of the ELSA
three-storey model are given in Table 2 and Figure 3.

Table 2. Steel (a) and concrete (b) properties of ELSA model.

a. Steel properties

Material Fy
(
KN/m2) Fu

(
KN/m2)

A992Fy50 458,999.89 517,106.84

b. Concrete properties

Material Fc
(
KN/m2) eFc

(
KN/m2)

4000Psi 27,579.03 27,579.03

C25/30 25,000 25,000
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Figure 3. ELSA three-storey model in SAP2000.

4.1. Data Acquisition

Non-linear time history analysis (NLTHA) of fifteen moderate-intensity earthquakes
with a 475-year return period was used. All these earthquakes have many similar parame-
ters, and huge infrastructure lies on their fault lines. These moderate earthquakes occurred
during the years 1956 to 1980 and provide sufficient data. Important parameters of selected
earthquakes are given in Table 2. The nonlinear time series data for all the earthquakes
have been formulated, pre-processed, and visualized to make it compatible with the model
and for other mathematical operations. The nonlinear time series data of MIDR for the
first to second floor during the San Ramon–Eastman Kodak (1980) earthquake is plotted
in Figure 4. All fifteen earthquakes, as shown in Table 3, were run on this building model
in a single degree of freedom (SDOF), i.e., in the Y direction only, to attain the maximum
DAV values.
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Table 3. List of the selected earthquakes.

EQ NO. Earthquake Name Year Station Name Magnitude

16 “El Alamo” 1956 “El Centro Array #9” 6.8
17 “Hollister-02” 1961 “Hollister City Hall” 5.5
18 “Borrego Mtn” 1968 “El Centro Array #9” 6.63
19 “Borrego Mtn” 1968 “San Onofre-So Cal Edison” 6.63
20 “Imperial Valley-06” 1979 “Chihuahua” 6.53
21 “Imperial Valley-06” 1979 “Delta” 6.53
22 “Imperial Valley-06” 1979 “El Centro Array #12” 6.53
23 “Imperial Valley-06” 1979 “Westmorland Fire Sta” 6.53
24 “Imperial Valley-07” 1979 “El Centro Array #4” 5.01
25 “Imperial Valley-07” 1979 “El Centro Array #7” 5.01
26 “Imperial Valley-07” 1979 “El Centro Array #8” 5.01
27 “Livermore-01” 1980 “San Ramon-Eastman Kodak” 5.8
28 “Livermore-01” 1980 “Tracy-Sewage Treatm Plant” 5.8
29 “Livermore-02” 1980 “Livermore-Fagundas Ranch” 5.42
30 “Livermore-02” 1980 “Livermore-Morgan Terr Park” 5.42

Fault Mechanism: Strike-slip.

4.2. Extreme Values Detection

Hu et al. in [6] used the Poisson’s assumption and compared the results based on the
Vanmarcke assumption and Monte Carlo simulation using Kalman Smoother to attain ex-
treme values. However, the extreme values shoot out due to non-flexible, static assumptions
only linked with the mean deviation method, leading towards overestimations.

Due to these shortcomings of log-normal distribution and Vanmarcke assumption, the
GPD method is used to fit the POT. This allows a continuous range of possible shapes that
includes both the exponential and Pareto distributions as special cases. The distribution
allows us to “let the data decide” [25] which distribution is appropriate; hence, the highest
level of adaptability and accuracy is achieved.

When fitting the excess with the GPD, the primary problem is the selection of threshold
λ. If λ is too large, few excesses and insufficient data lead to excessively large estimator
variance. If λ is too small, a large deviation between an excess distribution and GPD leads
to a biased estimation. Therefore, a compromise between bias and variance is needed for λ
selection. By adopting the straightforward graphic methods including the mean residual
life plot and shape and scale parameters stability plots to determine λ based on the average
excess function, an optimal threshold value can be calculated separately at each node and
for every earthquake. Figure 5 shows the plots of the extreme values data against mean
excesses and shape parameters for mean inter-storey drift between the roof and third floor
for the Imperial Valley-07 earthquake. Similarly, the are plotted in respect to the cumulative
distribution function and probability density function in Figure 6. The threshold selection
has been calculated considering the mean value of data for each earthquake.

Moreover, GPD distribution estimation for IDR values calculated at nodes ‘113’ and
‘112’ for ‘EQ25’(“Imperial Valley-07”, “El Centro Array #7”) is given in Table 4.

4.3. LUBE-Based Prediction Interval Analysis
4.3.1. Preparation of Training Sets

Datasets are the relative joint acceleration, joint displacements, and the sheer force for
the 15 earthquakes as explained in Section 2. SAP 2000 produces a nonlinear time series.
Pre-processing of data to make them readable to ANN is performed after the extreme
values analysis. Absolute values, sorted from the minimum to the maximum value, were
used. A sample shape of data is shown in Figure 7.



Sensors 2024, 24, 4218 10 of 16
Sensors 2024, 24, x FOR PEER REVIEW 10 of 17 
 

 

  
Figure 5. Mean residual life plot and shape parameter stability plot for MIDR third floor to roof for 
Imperial Valley-07 earthquake. 

 
Figure 6. CDF and PDF for mean residual threshold selection. 

Moreover, GPD distribution estimation for IDR values calculated at nodes ‘113’ and 
‘112’ for ‘EQ25’(“Imperial Valley-07”, “El Centro Array #7”) is given in Table 4. 

Table 4. GPD distribution estimation for IDR values calculated at nodes ‘113’ and ‘112’ for 
‘EQ25’(“Imperial Valley-07”, “El Centro Array #7”). 

Estimator: MLE 
Deviance: −471.854 

AIC: −467.854 

Threshold Call: 0.17 
Number above: 102 

Proportion above: 0.1021 

Optimization Information 
Convergence: Successful 
Function Evaluations: 38 
Gradient Evaluations: 6 

Estimates Standard Errors Asymptotic Variance Covariance 
Scale Shape Scale Shape Scale Shape 

0.03352 0.08286 0.004622 0.096623 2.136 × 10−5 

−2.831 × 10−4 
−2.831 × 10−4 

9.336 × 10−3 

4.3. LUBE-Based Prediction Interval Analysis 
4.3.1. Preparation of Training Sets 

Datasets are the relative joint acceleration, joint displacements, and the sheer force 
for the 15 earthquakes as explained in Section 2. SAP 2000 produces a nonlinear time 
series. Pre-processing of data to make them readable to ANN is performed after the 
extreme values analysis. Absolute values, sorted from the minimum to the maximum 
value, were used. A sample shape of data is shown in Figure 7. 

Figure 5. Mean residual life plot and shape parameter stability plot for MIDR third floor to roof for
Imperial Valley-07 earthquake.

Sensors 2024, 24, x FOR PEER REVIEW 10 of 17 
 

 

  
Figure 5. Mean residual life plot and shape parameter stability plot for MIDR third floor to roof for 
Imperial Valley-07 earthquake. 

 
Figure 6. CDF and PDF for mean residual threshold selection. 

Moreover, GPD distribution estimation for IDR values calculated at nodes ‘113’ and 
‘112’ for ‘EQ25’(“Imperial Valley-07”, “El Centro Array #7”) is given in Table 4. 

Table 4. GPD distribution estimation for IDR values calculated at nodes ‘113’ and ‘112’ for 
‘EQ25’(“Imperial Valley-07”, “El Centro Array #7”). 

Estimator: MLE 
Deviance: −471.854 

AIC: −467.854 

Threshold Call: 0.17 
Number above: 102 

Proportion above: 0.1021 

Optimization Information 
Convergence: Successful 
Function Evaluations: 38 
Gradient Evaluations: 6 

Estimates Standard Errors Asymptotic Variance Covariance 
Scale Shape Scale Shape Scale Shape 

0.03352 0.08286 0.004622 0.096623 2.136 × 10−5 

−2.831 × 10−4 
−2.831 × 10−4 

9.336 × 10−3 

4.3. LUBE-Based Prediction Interval Analysis 
4.3.1. Preparation of Training Sets 

Datasets are the relative joint acceleration, joint displacements, and the sheer force 
for the 15 earthquakes as explained in Section 2. SAP 2000 produces a nonlinear time 
series. Pre-processing of data to make them readable to ANN is performed after the 
extreme values analysis. Absolute values, sorted from the minimum to the maximum 
value, were used. A sample shape of data is shown in Figure 7. 

Figure 6. CDF and PDF for mean residual threshold selection.

Table 4. GPD distribution estimation for IDR values calculated at nodes ‘113’ and ‘112’ for
‘EQ25’(“Imperial Valley-07”, “El Centro Array #7”).

Estimator: MLE
Deviance: −471.854

AIC: −467.854

Threshold Call: 0.17
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4.3.2. Setting up the Model

The dataset was further refined and scaled to make it compatible with the model and
the loss function of QD-LUBE. The key advantages of the QD-LUBE method are its intuitive
objective, low computational demand, robustness to outliers, and lack of distributional
assumption. The model used is the Python TensorFlow library Keras sequential model
with the input layer and one intermediate layer both having 100 neurons first with RELU
activation functions and the output layer having two neurons with the LINEAR activation
function. The Adam optimizer was used as a compiler and the confidence level was set
at 95%.

4.3.3. Predicting the Upper and Lower Bounds for DAV

Finally, the model was run to make the prediction of the upper and lower bounds. The
absolute values were used; hence, the peak values information lies in the upper bound only.
The upper bounds of the selected earthquakes are shown in Figure 8. From the graph, we
can see the outliers which are abnormal from the distribution; however, PI can determine
the upper bound on these outliers using the accumulative behavior of the distribution,
and prediction can be calculated for any next value. The same procedure was used to
attain the upper bound values of the base sheer and MIDR. Table 5 shows the acceleration
values of the maximum value of distribution treated as point prediction, and after fitting
the QD-LUBE, an upper bound is calculated for every earthquake. This upper bound adds
to the margin of uncertainty while trading itself from the behavior of the input data which
is above the threshold value. For comparison, the model was also trained with values more
than the median, and it was found that the threshold section method using GPD provides a
very good approximation of the extreme events or the tail-end events. The LUBE method
further adds to the margin of error as the confidence level is specified in the model (in our
case 95%). Therefore, the combination of POT and QD-LUBE provides a very robust hybrid
combination of UQ.
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The two main parameters used to evaluate the performance of any model based on
a statistical model (e.g.,: LUBE method) given in the literature [26] are the normalized
mean prediction interval width (NMPIW), which should be minimized, and PICP, which is
considered as good as it is near to 1. QD-LUBE is proven to be better than that of Bootstrap
or the LUBE method, and this fact was verified by this work. The PICP of the base shear is
given in Table 6.
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Table 5. Maximum point prediction and upper bound of the acceleration values.

EQ Roof Top
(PI)

Max. Point
Prediction

Second
Floor (PI)

Max. Point
Prediction

First Floor
(PI)

Max. Point
Prediction

16 2.9675 3.4174 5.9089 5.2019 6.215 5.345
17 2.8001 3.4675 6.8572 5.5788 9.3251 7.8572
18 2.3061 2.6807 4.8099 4.2846 5.2393 4.5784
19 3.0411 3.4264 6.2884 5.5184 7.3024 6.4267
20 3.4903 4.138 6.655 5.5865 8.2102 6.9327
21 3.1628 3.6077 5.7879 5.247 7.1848 6.2229
22 3.1478 3.7681 4.6042 3.9615 7.4352 6.5044
23 2.2957 2.7041 4.1963 3.6141 5.7631 4.9219
24 9.8914 10.7104 11.5897 10.7372 11.7686 10.6755
25 4.1296 4.8969 8.9263 8.5162 7.7993 6.9579
26 5.2757 6.2128 9.4837 8.8617 10.3545 9.3089
27 3.0524 3.5914 6.1852 5.2417 8.3252 7.2863
28 1.8029 2.1028 3.7836 3.2533 4.7728 3.9677
29 7.4119 8.4068 8.3186 7.4626 10.6357 9.3142
30 4.337 5.0773 10.1222 8.6577 8.2177 6.8408

Table 6. PCIP of the base shear of all the selected earthquakes.

EQ No. 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

PICP 0.9637 0.9899 0.9779 0.9899 0.9822 0.9584 0.9498 0.9617 0.9897 0.9962 0.9632 0.9658 0.9758 0.9604 0.9774

4.4. Performance Assessment (Results and Discussion)

In the final step, the building performance assessment was performed for the follow-
ing aspects:

1. Local damage state assessment using the FEMA P-58 PACT fragility specification
manager, using the MIDR values calculated in Section 3.3.

2. Global damage state assessment using the DAV values after passing them through
the FIS system of the set limit state member functions.

4.4.1. Local Damage State Assessment

The local damage assessment was performed using FEMA P-58 PACT software. Table 7
shows a comparison of the MIDRS point maximum values and the upper bound calculated
by the QD-LUBE model. Figure 9 also shows the same graphically. The model provided an
uncertainty margin to accommodate for the noise, data, and model uncertainties, closely
following the behavior of tail-end data.

Table 7. MIDR values and upper bound for 15 earthquakes.

Earthquakes 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

MIDR
point value 0.0147 0.0198 0.0116 0.0087 0.0195 0.0103 0.0115 0.0079 0.0104 0.0081 0.0092 0.0312 0.0113 0.0082 0.0105

MIDR LUBE
Upper Bound 0.0154 0.0211 0.0122 0.009 0.021 0.011 0.013 0.009 0.011 0.009 0.010 0.035 0.012 0.009 0.012

The structural component B1044.102 slender concrete wall, 18” thick, 12’ high, 20’ long,
was evaluated on three earthquakes (Imperial Valley-06 at “Chihuahua” station (EQ20),
“El Centro Array #12” station (EQ22), and Livermore-01 at “San Ramon–Eastman Kodak”
station) as shown in Figure 10. The damage states which were on the borderline were
moved to the next damage state after adding the uncertainty margins using the upper
bound of the predicted model for each earthquake. Table 7 shows the values of MIDRs
simulated by the SAP model and prediction intervals upper bound.
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4.4.2. Global Damage Assessment

For the global cost assessment, the value of Dmax is fuzzified. It is clarified that the
highest impact is that of EQ27, followed by EQ17. The ELSA three-storey model has very
minor to no damage in the case of other earthquakes. Results of fuzzification are given
in Table 8.

Table 8. ER of engineering demand parameters (DAV) values’ fuzzification without PI.

EQ 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

ER 50 47.7049 50 50 50 50 50 50 50 50 50 37.7852 50 50 50

For UQ, the global damage assessment of DAV based on PI has been fuzzified. The
evaluation ratio (ER) of EQ-17 and EQ-27 shows the highest damage. Structures’ evaluation
for these earthquakes resulted in “not recommended”. Hence, structural parameters
need to be modified to attain performance assessment results in the acceptable range.
Table 9 provides normalized and un-normalized output values and evaluation ratios
after fuzzification.

Table 9. ER for engineering demand parameters (DAV) values fuzzification based on PI.

OUTPUT
FIS

Earthquakes
PI Non-Normalized PI Normalized

D A V D A V
MIDR g kips _ _ _ ER

16 0.015462 0.633537 150.2882186 0.293871 0.510105556 1 37.7852
17 0.021186 0.950571 182.280015 0.402999 0.843064627 1 11.6554
18 0.012242 0.534077 151.4524366 0.232481 0.405649697 1 37.7852
19 0.009 0.744 138.406 0.176468 0.626519721 1 37.7852
20 0.021 0.837 167.104 0.399739 0.723706385 1 37.7852
21 0.011 0.732 141.637 0.19927 0.613929776 1 37.7852
22 0.013 0.758 142.793 0.23986 0.640736937 1 37.7852
23 0.009 0.587 119.586 0.162684 0.461726338 1 37.7852
24 0.011 1.200 133.100 0.209661 1.104659268 1 11.6539
25 0.009 0.910 120.495 0.164229 0.800370155 1 37.0901
26 0.010 1.056 110.478 0.180205 0.953269466 1 11.6539
27 0.035 0.849 218.384 0.661673 0.736017981 1 37.7852
28 0.012 0.487 143.498 0.234483 0.355707442 1 37.7852
29 0.009 1.084 118.425 0.17216 0.983373993 1 11.6539
30 0.012 1.032 127.581 0.219593 0.928400043 1 11.6539

5. Conclusions

The distribution-free ensemble approach, the QD-LUBE method, has been used for
uncertainty quantification, in assessing the critical parameters of structural models like
inter-storey drift, peak ground acceleration, and base shear, which has been proven as
powerful ML tool. In this study, the QD-LUBE was applied to the ELSA model, focusing
on a three-storey building subjected to 16 well-known earthquakes within a single degree
of freedom framework.

Key aspects of the methodology included leveraging the Vanmarcke’s assumption
for extreme value detection, which allowed us to extract peak-over-threshold determi-
nations. The upper bounds of prediction intervals for certain parameters were accessed
by training the model and testing on given datasets. The process yielded robust results
and demonstrated superior performance compared to the bootstrap method in terms of
accuracy and reliability.

Furthermore, the findings were validated through fragility curve analysis, specifically
evaluating the impact of three earthquakes on the effective drift and transitioning between
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damage states. To assess the overall structural damage, a fuzzy inference system was
integrated, providing a comprehensive evaluation of the global damage state.

The research not only contributes to advancing the field of uncertainty quantification
in structural engineering, but also showcases the efficacy of the QD-LUBE method in
handling complex scenarios and providing actionable insights for seismic risk assessment
and mitigation strategies.

6. Future Works

The LUBE method can be used to enhance the reliability of a real-time warning system
by predicting the upper bound of point prediction. In the event of an earthquake, the
system will take the data from sensors and ICT infrastructures. The data samples from
multiple buildings can help to make the decision for all the buildings of the same kind
and the model trains itself with the extreme values behavior to provide certain values.
Moreover, novel ML models are considered to improve the seismic performance assessment
of buildings by incorporating additional details and methodologies [27,28]. Determining a
threshold in peak-over-threshold modeling using mean residual life and threshold stability
plots involves significant subjectivity. The identification of linear portions in these plots is
challenging due to the vague definition of linearity, leading to potential errors in selecting
constant scale and shape parameter estimates. An objective method like a segmentation
approach is needed to accurately determine the constant portion of these parameters [29].
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