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Abstract: The spindle rotation error of computer numerical control (CNC) equipment directly reflects
the machining quality of the workpiece and is a key indicator reflecting the performance and reliability
of CNC equipment. Existing rotation error prediction methods do not consider the importance of
different sensor data. This study developed an adaptive weighted deep residual network (ResNet) for
predicting spindle rotation errors, thereby establishing accurate mapping between easily obtainable
vibration information and difficult-to-obtain rotation errors. Firstly, multi-sensor data are collected
by a vibration sensor, and Short-time Fourier Transform (STFT) is adopted to extract the feature
information in the original data. Then, an adaptive feature recalibration unit with residual connection
is constructed based on the attention weighting operation. By stacking multiple residual blocks
and attention weighting units, the data of different channels are adaptively weighted to highlight
important information and suppress redundancy information. The weight visualization results
indicate that the adaptive weighted ResNet (AWResNet) can learn a set of weights for channel
recalibration. The comparison results indicate that AWResNet has higher prediction accuracy than
other deep learning models and can be used for spindle rotation error prediction.
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1. Introduction

High-precision computer numerical control (CNC) equipment is the core of the modern
manufacturing industry. The spindle is the key rotating part of CNC equipment, which is a
complex mechanical system integrating machine, electricity, liquid and gas. Rotation error
refers to the distance that the actual rotation axis deviates from its ideal axis [1]. The spindle
rotation error of CNC equipment directly reflects the machining quality of the workpiece
and is a key indicator reflecting the performance and reliability of CNC equipment [2,3].
Accurately predicting the rotation error of the spindle is of great significance for reducing
machining errors and improving the reliability of CNC equipment.

Through reviewing the existing literature, it is found that spindle rotation error pre-
diction is mainly divided into the direct measurement method and the physical modeling-
based method. The direct measurement method installs a standard ball or rod at the end
of the tool jig, and the rotation accuracy tester is utilized to measure the spindle rotation
error. Based on the direct measurement method, researchers have conducted extensive
research on monitoring spindle rotation errors. For example, Castro [4] proposed a laser
interferometer-based method for evaluating the rotation error of machine tool spindles,
utilizing a master ball with high surface finish and accuracy to reflect the incident beam
back to the interferometer. Liu et al. [5] proposed a four-point method for spindle rotation
error measurement and separation by using four sensors to measure the orbit at the center
of the spindle cross-section. Wang et al. [6,7] developed a spindle rotation error evalua-
tion method based on the least squares method, which is based on a measuring system
composed of a standard ball and high-precision capacitive displacement sensor. The error
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characteristics are extracted by time domain and frequency domain signal analyses. At
the same time, it was found that the rotation error is closely related to the spindle rotation
speed. Anandan et al. [8] proposed a multi-directional error separation technique to obtain
the radial axis rotation error.

The physical modeling-based approaches carry out spindle vibration analysis and
rotation error prediction by establishing a spindle dynamics model. For example, Karacay
et al. [9] studied the spindle vibration in radial, axial, rocking and yawing directions,
utilizing a model of spindle dynamics of a rigid rotor grinder supported by angular contact
ball bearings. Kang et al. [10] developed a physical model of a high-fidelity and high-
speed spindle bearing system and realized the dynamic prediction of spindle rotation
error. Bai [11] studied the formation mechanism of rotation error and concluded that the
bearing, spindle and spindle shank joint face are the key components that lead to the decline
in spindle rotation accuracy, and they established a physical model of spindle rotation
accuracy degradation based on bearing wear.

The above review shows that direct measurement methods and physical model-based
methods are able to obtain the spindle rotation error. However, there are still some limita-
tions to these methods. The main drawback of direct measurement methods is that the tool
position is occupied by a standard ball or standard bar. The spindle being measured cannot
mount the tool and complete the normal machining process [12]. Therefore, the direct
measurement methods are based on the premise of an idle spindle and cannot measure the
rotation error when the spindle is loaded [13], which is challenging to use in the actual ma-
chining of workpieces with cutting tools. Most current studies utilize the spindle dynamics
model to study the spindle stiffness, intrinsic frequency and other dynamics parameters,
and carry out the optimization design. Due to the extensive simplification of the rolling
bearing dynamics model, few studies have predicted the spindle rotation error [10]. In ad-
dition, establishing a dynamic prediction model is an extraordinarily time-consuming and
idealized process, which is not conducive to industrial practical applications. The real-time
monitoring of machine tool spindle performance and the real-time compensation of rotation
errors have become enormous challenges. Complex and simplified dynamic models do not
accurately reflect spindle rotation; expensive measurement equipment, strict installation
requirements and existing measurement techniques can affect regular machining tasks.
These challenges create obstacles to the direct prediction of spindle rotation errors.

According to references [6,7,11], the spindle rotation error is closely related to speed
and wear degree. Spindle vibration signals usually contain characteristic information
about spindle speed [14] and wear level [15]. Therefore, it is reasonable and feasible
to establish the function mapping relationship between the spindle rotation error and
vibration signal [16]. In fact, the realization of rotating machinery fault diagnosis [17–19]
and remaining useful life prediction [20–22] through vibration signals has been rapidly
developed. The difference with fault diagnosis is that the spindle rotation error is a non-fault
state, the vibration signals are similar between categories and the discriminative features
are weak, unlike the significant difference in features between different fault categories.
Spindle rotation error prediction is also not a regression problem, such as remaining useful
life prediction, and the regression method is not generalized enough for rotation error
prediction at multiple speeds [12]. With the help of the above idea, researchers established
a mapping relationship between the vibration signal and the rotation error by means of
a neural network. Song et al. [23] developed a multi-scale convolutional neural network
(MSCNN) model for spindle rotation error prediction by first acquiring spindle vibration
signals through multiple sensors and then extracting features using convolutional kernels
of different sizes. The experimental results verify the feasibility of the prediction of spindle
rotation error by a convolutional neural network (CNN). Further, to address the bottleneck
regarding traditional CNN models, which are difficult to train when superimposing deep
structures, Song et al. [24] proposed a residual network (ResNet)-based spindle rotation
error prediction algorithm, which achieved good prediction accuracy. However, existing
CNN-based methods do not consider the correlation of multi-sensor data, affecting the
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accuracy of deep learning methods. Specifically, due to different installation locations, data
from different sensors may contain various degrees of degraded information. In particular,
data collected by multiple sensors are redundant, and the direct fusion of different channels
without distinguishing the importance of the sensors may lead to the transfer of redundant
information between networks, further affecting the performance of the model. So, deep
learning requires effective learning mechanisms to highlight sensor data that contain more
degraded information to improve the generalization ability of the model. The categories
for spindle rotation error prediction are non-fault states, and the small intra-class distance
further increases the difficulty of prediction.

To address the above problems, this article developed a new neural network model
named adaptive weighted ResNet (AWResNet) for predicting spindle rotation error. The
method incorporates an adaptive multi-sensor data-recalibration module in ResNet to
weight the channel data, thus improving the accuracy of spindle rotation error prediction.
In order to assess the effectiveness and superiority of the developed model, spindle rotation
error prediction experiments were carried out. The main contributions of this article can be
summarized as follows:

1. The attention weighting unit is adopted to adaptively distinguish the importance
of the spindle multi-sensor vibration data, so as to emphasize the important feature
information, suppress the redundant feature information, and enhance the feature
extraction capability of the model.

2. The AWResNet model for spindle rotation error prediction is constructed by adding
an attention weighting unit to the original residual network (ResNet), which takes the
Short-time Fourier Transform (STFT) time-frequency domain features of the vibration
signals as inputs to establishes end-to-end mapping between the vibration signals
and the rotation errors.

3. Comparison tests, feature visualization, attention weight visualization, and anti-noise
experiments are carried out based on the vibration data collected from the machine
tool spindle reliability test bed, and the experimental results verify the effectiveness
and superiority of the proposed method.

The rest of the article consists of Section 2, which introduces the fundamentals of
ResNet; Section 3, which describes in detail the developed AWResNet prediction model;
Section 4, which employs the spindle rotation error dataset to verify the validity and
superiority of AWResNet; and Section 5, which draws conclusions.

2. The Fundamentals of ResNet
2.1. Convolution Neural Network

The CNN [25,26] is an important branch of deep learning methods. Because of its
strong feature-learning ability, it has been widely used in the manufacturing industry in
equipment reliability analysis fields such as fault diagnosis [27,28], remaining useful life
prediction [29,30] and so on. In the CNN model, a trainable convolution kernel slides over
the input data to extract local features at different positions. Sparse connection and weight
sharing are the main features that distinguish CNNs from traditional neural networks.
Convolutional operations are performed by multiplying the convolution kernel with the
corresponding positions of the input data and then adding them to obtain the output [31].
The convolution operation can be expressed as follows:

xl
j = f

(
∑ xl−1

i ∗ωl
ij + bl

j

)
(1)

where x indicates the output of the convolution layer; ω indicates the weight of the
convolution kernel and b is the bias; i, j and l represent the serial numbers of input
channels, output channels and the convolution layer, respectively; ∗ represents convolution
operation; f (·) represents the nonlinear transformation activation function. The derivative
of the rectified linear unit (ReLU) can only be 0 or 1, which is more effective than the
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traditional Sigmoid and Tanh activation functions at avoiding gradient disappearance and
gradient burst during deep neural network training.

2.2. Pooling

Pooling is a downsampling operation that significantly compresses the data and
reduces the data dimension. The specific operation of the pooling layer is to aggregate a
data point with its surrounding data points to reduce the data dimensions. Commonly used
pooling operations are average pooling and maximum pooling. Average pooling takes the
average value of the data points in a specific region of the feature map in a particular step
size, while maximum pooling takes its maximum value. Taking maximum pooling as an
example, its mathematical description can be expressed as follows:

pc(k, z) = max{xc(m + s(k− 1), n + s(z− 1))} (2)

where pc(k, z) is the output at coordinates (c, k, z); xc(k, z) is the input data at c-th channel,
k-th row and z-th column, where m, n ∈ [1, i]; i represents the size of the pooling region;
s represents the sampling interval. Global average pooling (GAP) is shown in Figure 1,
which takes the average of all the data in each channel and is mainly used before the fully
connected layer of the ResNet model, thus enabling data dimensionality reduction.
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2.3. Cross-Entropy Loss Function

The loss function for classification tasks is generally cross-entropy loss (CEL). In the
classification calculation, the estimated probability qi(y) that the observation y belongs to
class i can be calculated and compared with the true probability pi(y) for obtaining the loss
of the CNN. In deep learning methods, CEL calculates the distance between the predicted
and true values. CEL can be expressed as follows:

L = −
M

∑
i=1

pi(y)log(qi(y)) (3)

In the CEL function, M represents the number of classification categories.
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3. The Proposed Prediction Method

The existing spindle rotation error tester is expensive and requires high installation
accuracy, and it is easy to cause damage in practical applications. Therefore, it is challenging
to measure rotation error under load. How to monitor the performance of the spindle
and compensate for the error in real time has become an urgent problem. The prediction
method based on vibration signal does not consider the importance of different sensor data.
To solve the above issues, this section adopts the original vibration signal as the input and
firstly extracts the time–frequency characteristics of the original multi-sensor data by using
STFT. Then, in order to distinguish the importance of different sensor data and establish
the correlation of multi-sensor data, a new AWResNet method is proposed to adaptively
recalibrate different sensor data to give more weight to data containing more degenerate
information and less weight to data containing redundant information, so as to extract
more discriminative features and improve the prediction ability of deep learning networks.

3.1. STFT Representation

STFT is a joint time–frequency transform method for non-stationary signals. It con-
verts one-dimensional vibration signals into a two-dimensional matrix suitable for two-
dimensional CNN processing, which contains not only the time domain characteristic
spectrum, but also the frequency domain characteristic spectrum. STFT divides the original
vibration data into equal-length segments, then multiplies each segment by a window
function in chronological order to perform a segmented Fourier transform. The results
of the obtained series of Fourier transform are lined up to become a two-dimensional
representation. Mathematically, STFT can be written as follows:

STFT(t, ω) =
∫ +∞

−∞
x(τ)h(τ − t)e−jωtdτ (4)

where t and τ are time; ω is frequency; x(τ) is the signal that needs to be transformed;
h(τ − t) is the window function; and STFT(t, ω) is the Fourier transform of x(τ)h(τ − t).
This paper adopts the Hann window as the window function, and the Hann window
function can be expressed as follows:

h(τ) = 0.5− 0.5cos
(

2πτ

K− 1

)
(5)

where K denotes the number of data points in the output of each Fourier transform segment,
which is set to 64 in this article. An input signal of length 1024 is passed through a
Hann window STFT with an overlap of 32 to obtain a two-dimensional representation of
33× 33. Figure 2 illustrates the raw vibration data and their corresponding STFT time-
frequency representation. (a) and (b) represent the time domain of the vibration sensor at
the spindle end with a rotation error of 8.5 µm when the spindle speed is 1000 r/min and
the vibration sensor at the bearing end with a rotation error of 12 µm when the spindle
speed is 3000 r/min, respectively. (c) and (d) are time–frequency domain representations of
(a) and (b), respectively.

By observing the time domain signals under different rotation errors, it is found that
the vibration data under different rotation errors have apparent similarities. In the STFT
time-frequency domain feature map, the vertical axis indicates the frequency bands at
different frequencies, and the horizontal axis indicates the time points. It can be seen that
researchers find it difficult to simply use time or time-frequency domain signal analysis
methods to distinguish different categories of rotation errors.
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Figure 2. Time and time-frequency domain characterization of vibration data: (a) Time domain
representation of spindle-end vibration signal with a rotation speed of 1000 r/min and a rotation
error of 8.5 µm; (b) time domain representation of spindle-end vibration signal with a rotation speed
of 3000 r/min and a rotation error of 12 µm; (c) time–frequency domain representation of spindle-end
vibration signal with a rotation speed of 1000 r/min and a rotation error of 8.5 µm; (d) time-frequency
domain representation of spindle-end vibration signal with a rotation speed of 3000 r/min and a
rotation error of 12 µm.

3.2. The Proposed AWResNet Model

ResNet was developed to solve the problem of deep CNN training in image processing.
The ResNet model adds many identity maps to the convolution layer, which is beneficial to
the backpropagation of errors and optimization of network weights. ResNet has performed
well in image recognition, image segmentation and object detection [32]. Figure 3 shows
the residual building units (RBUs) of ResNet. Each RBU module consists of Conv, BN [33]
and ReLU. Stacking multiple RBU modules builds the ResNet model. In Figure 3, Conv
represents the convolutional layer. The output y of the entire RBU can be represented
as follows:

y = ReLU(F(x) + x) (6)

where BN stands for Batch Normalization. When the batch training method is used, the
feature distribution among samples often changes during iteration, which is an internal
covariance shift problem. In this case, the model parameters need to be constantly updated
to accommodate the changing distribution. BN is a normalization method to solve the
problem of internal covariance shift.

3.2.1. Attention Weighting Unit

The STFT time-frequency representation of the multi-sensor data is utilized as an
input to the ResNet model, with each input data channel representing a sensor signal. Data
from different sensors contain information about spindle degradation to varying degrees.
Specifically, some data may contain rich feature information related to spindle degradation
features, while others may contain very few degradation features or even only measurement
noise. Therefore, in order to identify discriminatively important information in multi-sensor
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data, it is necessary to identify the importance of different sensor data by modeling the
relationship between channels along the channel dimension. To highlight the critical feature
information and suppress the useless feature information, an adaptive weighting ResNet
(AWResNet) model is proposed for the recalibration of spindle multi-sensor data. The core
idea of AWResNet is to add the squeeze-excitation attention weighting unit [34] to the
RBU. The attention weighting unit can adaptively recalibrate the weights of multi-sensor
channel data according to the input, with each channel’s data having a weight of varying
magnitude. A larger weight represents the greater influence of the channel’s data, with vice
versa indicating that the channel’s data are less important. The attention weighting unit
is displayed in Figure 4 and comprises four parts: global information extraction, channel
interrelationship modeling, weight calculation and weighted output.
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Global information extraction: In order to establish dependencies between different
channel information, it is necessary to compress global spatial information into channel de-
scriptions, which is achieved through GAP operations. The global information of statistical
information z in channel c can be represented as follows:

zc =
1

H ×W

H

∑
k=1

W

∑
z=1

xc(k, z) (7)
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where x ∈ Rc×H×W , H ×W represents the spatial dimension of xc, and the input signal is
an STFT time-frequency representation with a height of H and a width of W. z ∈ Rc×1×1,
zc can be interpreted as a channel description, which can describe the global information of
different channels. xc represents the input feature information in the c-th channel.

Channel inter-relationship modeling: To establish the inter-relationships between
channels and capture the dependencies between different channel information, this step
must be able to learn the nonlinear interactions between different channels, which is
implemented through a one-dimensional convolutional Conv and ReLU activation function.
The input for this step is z ∈ Rc×1×1, with a channel of c. The convolution operation with
a kernel of 1× 1 can fuse information from different channels. In order to control the
computational complexity of the attention mechanism, the number of output channels of
the one-dimensional convolution is reduced by the dimension parameter β. The number
of input channels of the one-dimensional convolution is c, and the output channels is
c/β. Feature nonlinear transformations are implemented by employing ReLU after one-
dimensional convolution.

Weight calculation: The weight calculation must ensure that the feature information of
multiple channels is allowed to be emphasized rather than a single channel, and the weight
of each channel is obtained by adopting the Sigmoid function. The output value of the
Sigmoid is between 0 and 1, which ensures that multiple channels are emphasized. Before
activating the Sigmoid function, it is also necessary to increase the dimension through a
one-dimensional Conv with a convolution kernel of 1× 1, so that the number of weights is
consistent with the number of channels. The convolutional layer has c/β input channels
and c output channels. The process of channel relationship modeling and weight calculation
can be expressed as follows:

s = σ(W2δ(W1z)) (8)

where σ represents Sigmoid and δ represents ReLU function; s denotes attention weight;
the weight of the first convolutional layer is W1, and the second convolutional layer is W2.
It should be noted that the value of attention weight s will adaptively change with the input
sample. By adopting the channel attention mechanism, different samples can adaptively
learn a set of weights of different sizes, thereby assigning larger weights to more important
channels and smaller weights to less important channels.

Weighted output: Multiply the input feature x and attention weight to obtain a
weighted output, and the final recalibrated output xc can be expressed as follows:

xc = scxc (9)

3.2.2. AWResNet Model

By embedding an attention weighting unit in the RBU module, the adaptive weighting
of data from different channels can be realized. Figure 5a shows the proposed adap-
tive weighting RBU module. The attention weighting unit is located after the second
BN layer. The proposed AWResNet model can be constructed by stacking multiple
adaptive weighting RBU modules, as shown in Figure 5b, where FC indicates the fully
connected layer.

Based on the AWResNet model proposed above, the model’s parameters need to
be further determined. The structure of AWResNet is illustrated in Table 1. In the table,
adaptive weighting RBU1 ×2 represents the residual block repeated once. Therefore, the
structure contains 17 convolution and 1 fully connected layer operations. In adaptive
weighting RBU, the dimension parameter β is set to 16.



Sensors 2024, 24, 4244 9 of 19

Sensors 2024, 24, x FOR PEER REVIEW 9 of 20 
 

 

Based on the AWResNet model proposed above, the model’s parameters need to be 
further determined. The structure of AWResNet is illustrated in Table 1. In the table, adap-
tive weighting RBU1  × 2  represents the residual block repeated once. Therefore, the 
structure contains 17 convolution and 1 fully connected layer operations. In adaptive 
weighting RBU, the dimension parameter 𝛽 is set to 16. 

 
(a) (b) 

Figure 5. Adaptive weighting RBU and AWResNet model: (a) Adaptive weighting RBU; (b) AWRes-
Net model. 

Table 1. AWResNet model structure parameters. 

Layer Name Kernel Size Stride Input Output 
Conv+BN+ReLU 64 × 7 × 7 2 × 2 3 × 33 × 33 64 × 17 × 17 

Adaptive weighting RBU1 × 2 64 × 3 × 3 1 × 1 64 × 17 × 17 64 × 17 × 17 
Adaptive weighting RBU2 × 2 128 × 3 × 3 1 × 1 128 × 17 × 17 128 × 17 × 17 
Adaptive weighting RBU3 × 2 256 × 3 × 3 1 × 1 256 × 17 × 17 256 × 17 × 17 
Adaptive weighting RBU4 × 2 512 × 3 × 3 1 × 1 512 × 17 × 17 512 × 17 × 17 

GAP - - 512 × 17 × 17 512 × 1 × 1 
FC - - 512 × 1 × 1 20 

3.2.3. AWResNet-Based Spindle Rotation Error Prediction Procedure 
Figure 6 shows the AWResNet-based spindle rotation error prediction procedure, 

which can be summarized into four steps: data collection and preprocessing, network 
structure design, model offline training, and model online testing. The detailed steps are 
as follows: 

(1) Data collection and preprocessing. Firstly, multiple vibration sensors were em-
ployed to acquire vibration data from the spindle with different rotation errors. Secondly, 
the vibration signals were divided by a fixed length, and corresponding labels were made 
for each divided sample according to the category of rotation error. Meanwhile, STFT 

Conv+BN+ReLU

Conv+BN

ReLU

x

F(x)

Identity

Attention weighting unit

F' (x)

FC

Conv+BN+ReLU

adaptive weighting RBU

adaptive weighting RBU

adaptive weighting RBU

GAP

y=ReLU(F' (x)+x)

Figure 5. Adaptive weighting RBU and AWResNet model: (a) Adaptive weighting RBU; (b) AWRes-
Net model.

Table 1. AWResNet model structure parameters.

Layer Name Kernel Size Stride Input Output

Conv+BN+ReLU 64× 7× 7 2× 2 3× 33× 33 64× 17× 17
Adaptive weighting RBU1 × 2 64× 3× 3 1× 1 64× 17× 17 64× 17× 17
Adaptive weighting RBU2 × 2 128× 3× 3 1× 1 128× 17× 17 128× 17× 17
Adaptive weighting RBU3 × 2 256× 3× 3 1× 1 256× 17× 17 256× 17× 17
Adaptive weighting RBU4 × 2 512× 3× 3 1× 1 512× 17× 17 512× 17× 17

GAP - - 512× 17× 17 512× 1× 1
FC - - 512× 1× 1 20

3.2.3. AWResNet-Based Spindle Rotation Error Prediction Procedure

Figure 6 shows the AWResNet-based spindle rotation error prediction procedure,
which can be summarized into four steps: data collection and preprocessing, network
structure design, model offline training, and model online testing. The detailed steps are
as follows:

(1) Data collection and preprocessing. Firstly, multiple vibration sensors were em-
ployed to acquire vibration data from the spindle with different rotation errors. Secondly,
the vibration signals were divided by a fixed length, and corresponding labels were made
for each divided sample according to the category of rotation error. Meanwhile, STFT
processing converted the signal into time–frequency domain features. Then, min–max
normalization was used to preprocess the data, which is conducive to the convergence of
the model.
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(2) Network structure design. The network structure adopted in this paper is shown
in Table 1.

(3) Model offline training. The prepared training set data were fed into the AWResNet
model, and the model was trained by the gradient descent method. Forward propagation
calculated the loss, and back propagation updated the model parameters. The detailed
algorithm flow for training AWResNet model is presented in Algorithm 1. When the
maximum training epoch was reached, the trained model weight and bias were saved as
local files for model testing and calling during online deployment.

(4) Model online testing. The saved AWResNet model structure and parameters were
called, the prepared test set was taken as the input of the trained AWResNet algorithm, the
actual classification probability was calculated, and the prediction result of the rotation
error was obtained.
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Algorithm 1: AWResNet training procedure

Input: Training dataset: D =
{

xi, yi
}n

i=1; Learning rate: η; Maximum training epoch: E.
1: for epoch = 1, 2, 3, . . .. . ., E do
2: //Feature extract
3: Calculate the output of Conv+BN+ReLU layers;
4: Calculate the output of 8 adaptive weighting RBU modules in series;
5: Calculate the output of the GAP layer;
6: Calculate the output xi of the FC layer;
7: //Calculate the probability pj of each category

8: pj =
exj

M
∑

i=1
exi

, where M stands for the number of categories;

9: //Calculate loss
10: Calculate the cross entropy loss L(p(x), q(x)) using Formula (3);
11: //Error backpropagation and updating parameters

12: W∗ ←W − η
(

∂L
∂W

)
, b∗ ← b− η

(
∂L
∂b

)
13: end for
Output: θ∗ = {W∗, b∗}

4. Experimental Verifications

To evaluate the effectiveness and superiority of the developed AWResNet model in
predicting the rotation error of spindle of CNC machines, vibration data and the corre-
sponding rotation error were collected through a spindle reliability test bed. Python 3.7
and PyTorch was adopted as programming language to carry out experimental verification
and analysis in the hardware environment of Windows, i7 CPU and RTX2060 SUPER GPU.
It should be noted that to ensure the fairness of the comparison results, the experimental
results of all methods were obtained under the same data acquisition platform, the same
dataset and the same programming environment.

4.1. Experimental Platform

Figure 7 illustrates the spindle rotation error reliability analysis testbed, which consists
of a CTB40D spindle and drive, a PCB256A14 vibration sensor, a DYMH-104 force sensor,
a rotation signal processing unit, an NI PXie-1082 data acquisition and control unit, etc.
The experimental platform can collect vibration signals and rotation signals through the
vibration sensor and spindle rotation signal processing unit, respectively. The vibration
sensors are installed at the base end, spindle end and bearing end. The loading experiments
were performed through the load spectrum of the spindle to ensure that the spindle
operation was similar to the actual working conditions [35]. The rotation signal processing
unit collected the rotation error signal every 10 h and performed wear tests at other times.

4.2. Data Preprocessing

After the data acquisition was completed, data preprocessing and discretization were
needed. Errors were rounded to 0.5. The spindle speed range was 1000 r/min~4000 r/min,
and the range of spindle rotation error was 5 µm~14.5 µm. The rotation error data were
discretized to contain a total of 20 categories. Two datasets were selected for each category.
The vibration signal sampling frequency was 20 KHz, and the sampling time of each
sub-dataset was 10 s. The signals in the Z-axis direction from three vibration sensors were
selected as experimental data. To simulate the application in the actual industry, the data
were divided according to the time order. The first 70% of the data points of each signal in
order were regarded as the training data, and the last 30% of the data points were regarded
as the test data. Data enhancement can improve the generalization ability of deep learning
algorithms [36]. Data enhancement with overlapping samples was adopted in this article,
as shown in Figure 8. For each training sample, there was an overlap of data points with
the subsequent sample. The example in Figure 8 has 1024 data points per sample, and there
are 704 overlapping data points.
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4.3. Comparision Methods

To demonstrate the validity and superiority of AWResNet, we compared the AWRes-
Net algorithm with many existing methods including LeNet, CNN, convolutional bidirec-
tional long short-term memory (CBiLSTM), MSCNN and ResNet.
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LeNet: LeNet is the classical deep learning method for image classification. The
improved LeNet network structure adopted in this paper is successively as follows:
Conv+ReLU layer with an output channel of 6; the maximum pooling layer area is 2× 2,
with a stride of 2; Conv+ReLU layer with an output channel of 16; the adaptive maximum
pooling layer output size is 5× 5. The LeNet model has a convolutional kernel size of 5× 5.

CNN: One of the most significant differences from LeNet is that this CNN model
adds the BN layer. The CNN model structure includes two Conv+BN+ReLU layers with
output channels of 16 and 32; the maximum pooling layer area of 2× 2, with a stride of 2;
two Conv+BN+ReLU layers with output channels of 64 and 128; the adaptive maximum
pooling layer output size of 4× 4. The CNN model has a convolutional kernel size of 3× 3.

CBiLSTM: A CNN can extract spatial correlation features from data, while bidirec-
tional long short-term memory (BiLSTM) can extract temporal correlation features from
data. According to the literature [37], CNN+BiLSTM (CBiLSTM) was adopted in compari-
son experiments.

MSCNN: According to the literature [23], by using different convolution kernel sizes,
an MSCNN can extract multi-scale features from spindle vibration signals and achieve
good results in spindle rotation error prediction. Therefore, an MSCNN was used in the
comparison experiments.

ResNet: According to the literature [24], through identity mapping, ResNet can accu-
rately predict spindle rotation error, so ResNet was used for comparison experiments.

In addition, to ensure the fairness of the comparison results, the same hyperparameters
were used for the proposed model and other comparative models. We set the batch size to
64, which affected the accuracy and training speed of the model. Adam was the parameter
optimization method. Momentum was an important parameter, with a value of 0.9. The
learning rate had a value of 0.001. L2 regularization was employed to optimize model
training. The parameter was set to 0.00001. The experimental maximum epoch was set
to 100. The above parameters followed the benchmark settings for deep learning used in
mechanical industry fault diagnosis in reference [37].

The performance evaluation index of the model is classification accuracy, which can
be expressed as follows:

Acc =
Sum(Testi == Truei)

Sum(Truei)
× 100% (10)

where Sum(Truei) represents the number of test samples; Acc represents classification
accuracy; Sum(Testi == Truei) indicates that the number of the predicted labels of the test
sample is equal to real labels. The larger the Acc, the better the model performance.

4.4. Prediction Results

Five experiments were performed for each method. The prediction accuracy and
standard deviation of the five experiments are presented in Figure 9 and Table 2. The
average prediction accuracy of AWResNet models was significantly better than that of
other deep learning models. Compared with LeNet, CNN and BiLSTM methods, the
average prediction accuracies of the AWResNet model were significantly improved by
5.84%, 4.49% and 2.95%, respectively. The above three methods have fewer convolution
layers and could not extract helpful feature information from vibration data. Compared
with the MSCNN, the average accuracy of the AWResNet model was improved by 2.07%.
Since the MSCNN did not use identity mapping, the accuracy was lower than that of
ResNet and AWResNet. The average accuracy of the AWResNet model was improved by
0.64% compared to the ResNet method. This was due to the attention weighting unit’s
ability to adaptively recalibrate the importance of multi-sensor data, assigning greater
weights to channel data containing more degraded information, thereby enhancing useful
information and suppressing redundant information.
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Table 2. Spindle rotation error prediction accuracy and standard deviation.

LeNet CNN CBiLSTM MSCNN ResNet AWResNet

Model
comparison

Complexity 712.07 k 16.95 M 6.4 M 851.44 M 3.23 G 3.23 G
Inference time 0.09 s 0.12 s 0.14 s 0.44 s 1.39 s 1.46 s

Parameters 62.8 k 2.33 M 977.24 k 16.98 M 11.19 M 11.80 M

Experiment

First prediction 87.20 88.15 89.44 90.60 91.94 92.76
Second prediction 86.72 89.66 90.17 90.82 92.41 92.72
Third prediction 86.98 86.94 89.91 90.22 92.59 92.24

Fourth prediction 86.77 88.41 89.74 90.82 91.85 92.89
Fifth prediction 86.72 87.97 89.61 90.78 91.59 92.97

Average and
standard deviation 86.88 ± 0.21 88.23 ± 0.98 89.77 ± 0.28 90.65 ± 0.26 92.08 ± 0.41 92.72 ± 0.28Sensors 2024, 24, x FOR PEER REVIEW 15 of 20 
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In addition, this paper compared the computational complexity, inference time and
number of parameters of different methods, where the inference time was the time con-
sumed by 2320 test samples on the dataset. Although LeNet, CNN and BiLSTM had
relatively low computational complexity, inference time and parameters, their prediction
accuracies were significantly lower than the AWResNet models. For the MSCNN, not
only was the prediction accuracy lower than the AWResNet model, but the multi-scale
structure also brought a large number of parametric quantities. Compared with ResNet,
AWResNet brought few additional parameters, and the inference time for 2320 samples
increased by 0.07 s, (translating to 0.03 ms for a single sample), and the increased inference
time was negligible.

4.5. Confusion Matrix

The confusion matrix was utilized to observe the classification accuracy of the net-
work in each category. The confusion matrices of ResNet and AWResNet models for the
classification of spindle rotation errors are shown in Figure 10. Each row represents the
predicted label category, and each column represents the real label category. The data in
row i and column j in the figure represent the proportion of categories in row i predicted to
correspond to categories in column j. As can be seen from the figure, in 14 of the 20 classes
(rotation errors were 5 µm, 5.5 µm, 6.5 µm, 7 µm, 7.5 µm, 8.5 µm, 9 µm, 10 µm, 10.5 µm,
11 µm, 12 µm, 12.5 µm, 13 µm and 14 µm), the classification accuracy of the AWResNet
model was higher than the ResNet model. For two categories (11.5 µm, 13.5 µm), the
classification accuracy of the AWResNet model was equal to the ResNet model. Although



Sensors 2024, 24, 4244 15 of 19

the accuracy of the AWResNet model was slightly lower than that of the ResNet model
for rotation errors of 6 µm, 8 µm, 9.5 µm and 14.5 µm, the AWResNet predictions were
generally close to the actual values. For example, 14% of the 9.5 µm samples were predicted
to be 9 µm, and 5% of the 14.5 µm samples were predicted to be 14. This was due to the fact
that the rotation error division spacing was too small, and the vibration signals between
the current category and the neighboring categories were very similar, making it difficult
for the model to extract the weak feature information. Such prediction results still represent
very essential guidance for actual processing. The confusion matrix further demonstrates
that AWResNet outperformed ResNet in classification in most categories.

Sensors 2024, 24, x FOR PEER REVIEW 16 of 20 
 

 

 
(a) 

 
(b) 

Figure 10. Confusion matrices of different methods: (a) ResNet; (b) AWResNet. 

4.6. Weight Visualization 
To further demonstrate that the AWResNet model can learn weights of varying sizes 

for different channels to recalibrate the data, thereby highlighting important information 
and suppressing redundant information, the weights of the last batch in the second adap-
tive weighting RBU4 module are visualized along 512 channels in Figure 11. The weight 
visualization graph indicates that different channels had different weights, and the maxi-
mum weight value was 0.8109, which appeared in channel 286. The minimum weight was 

Figure 10. Confusion matrices of different methods: (a) ResNet; (b) AWResNet.



Sensors 2024, 24, 4244 16 of 19

4.6. Weight Visualization

To further demonstrate that the AWResNet model can learn weights of varying sizes
for different channels to recalibrate the data, thereby highlighting important informa-
tion and suppressing redundant information, the weights of the last batch in the second
adaptive weighting RBU4 module are visualized along 512 channels in Figure 11. The
weight visualization graph indicates that different channels had different weights, and
the maximum weight value was 0.8109, which appeared in channel 286. The minimum
weight was 0.3007 and appeared in channel 502. As shown in Figure 11, channels 7, 173,
182, 236 and 286 all had weights more than 0.7, which corresponded to more important
feature information; channels 89, 149, 177, 293, 328, 348, 385, 407, 408, 502 and 510 all had
weights less than 0.4, which corresponded to relatively unimportant feature information.
Attention weighting units adopted larger weights to reinforce important features, while
smaller weights weakened unnecessary features. This was mainly due to differences in the
data collected by the vibration sensors installed at the base end, the spindle end and the
bearing end. Different rotation errors or samples are not consistently sensitive to different
sensor data. Some may be more sensitive to data from the bearing end, some more sensitive
to the spindle end and some more sensitive to the base end. Thus, there are differences in
the importance of the data from different channels and differences in the importance of
the features extracted from varying channels for the prediction of the rotation error. The
weight visualization further demonstrates that attention weighting units learn different
sizes of weights for different channels, emphasizing important feature information and
suppressing redundant information. Thus, AWResNet can accurately extract the critical
features of different rotation errors and avoid the influence of similar features.
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4.7. Anti-Noise Experiment

In practical industrial applications, the monitoring signals collected by vibration
sensors are often affected by environmental noise generated by vibration and friction,
thereby reducing the quality of monitoring data. To evaluate the prediction performance
of AWResNet in noisy environments, we conducted anti-noise experiments by adding
Gaussian and Laplace noise signals with different signal-to-noise ratios (SNRs) to the
original signal. The SNR can be expressed as follows:

SNR = 10log10

(Psignal

Pnoise

)
(11)
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where Psignal represents the original signal power and Pnoise represents the noise signal
power. In the experiment, Gaussian and Laplace noise with an SNR of 12 dB, 10 dB and
8 dB was added to the original signal. Table 3 shows that the prediction accuracy of the
AWResNet model was 90.74%, 89.59% and 87.12%, respectively, when the Gaussian noise
level was 12 dB, 10 dB and 8 dB. As the SNR decreased and the noise became stronger, the
prediction accuracy of all models decreased, but the predictive performance of AWResNet
consistently outperformed other deep learning models. In particular, compared to the
ResNet model, AWResNet improved prediction accuracy by 1.41%, 1.89% and 1.11% under
three noise levels. When Laplace noise was added, the prediction accuracies were 90.91%,
89.53% and 87.71% at an SNR of 12 dB, 10 dB and 8 dB, respectively. The prediction accuracy
was significantly higher than that of other deep learning models. Compared to the ResNet
model, it was improved by 1.73%, 1.82% and 1.77%. It can be concluded that the AWResNet
model has better anti-noise robustness and stability. This advantage contributes to the
practical application of the AWResNet model.

Table 3. Prediction accuracy in different noise environments.

Noise Type SNR LeNet CNN CBiLSTM MSCNN ResNet AWResNet

Gaussian
12 dB 85.47 ± 0.98 86.99 ± 0.85 87.82 ± 0.54 89.36 ± 0.72 89.33 ± 0.71 90.74 ± 0.19
10 dB 83.85 ± 1.26 85.73 ± 0.54 86.14 ± 0.56 88.80 ± 0.36 87.70 ± 0.28 89.59 ± 0.53
8 dB 80.66 ± 2.44 84.53 ± 0.89 84.22 ± 0.93 87.49 ± 0.95 86.01 ± 0.66 87.12 ± 0.81

Laplace
12 dB 85.54 ± 0.82 86.81 ± 0.44 88.34 ± 0.64 89.70 ± 0.38 89.18 ± 1.02 90.91 ± 0.21
10 dB 84.16 ± 0.96 86.32 ± 0.54 86.12 ± 0.64 88.72 ± 0.62 87.71 ± 0.53 89.53 ± 0.22
8 dB 79.69 ± 3.08 85.01 ± 1.04 85.10 ± 0.85 87.39 ± 0.75 85.94 ± 0.52 87.71 ± 0.67

5. Conclusions

The existing measurement methods of spindle rotation error are usually implemented
on the premise of spindle idling, which is challenging to use for real-time monitoring
and real-time rotation error compensation in actual machining. The prediction method
based on vibration signal does not consider multi-sensor data interaction and highlight
critical sensor data. To solve this problem, a new AWResNet model for spindle rotation
error prediction is proposed in this paper. The AWResNet model mainly implements
the adaptive recalibration of data in different channels through the attention weighting
unit embedded behind the RBU module. To evaluate the effectiveness and superiority of
the AWResNet model, we carried out prediction experiments on a machine tool spindle
reliability test bed and concluded the following:

(1) The results of rotation error prediction experiment show that the prediction ac-
curacy of AWResNet model is 92.72%, which is significantly higher than other deep
learning models.

(2) The confusion matrices show that the AWResNet model is more accurate than the
ResNet model in 14 out of 20 categories.

(3) Weight visualization shows that the embedded attention weighting unit can learn
different weights for each channel. The weight is between 0.3007 and 0.8109. AWResNet
model can highlight important feature information and suppress redundant information.

(4) The anti-noise experiments indicate that the accuracy of the AWResNet model is
higher than that of the ResNet model under three different noise levels of Gaussian and
Laplace noise and that the AWResNet model has better robustness, stability, and more
significant potential for industrial applications.

In our future research work, we will collect more rotation errors and vibration signals
from different types of spindles, which will be utilized to study the generalization and
transfer ability of the model.
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