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Abstract: The article’s main provisions are the development and application of a neural network
method for helicopter turboshaft engine thermogas-dynamic parameter integrating signals. This
allows you to effectively correct sensor data in real time, ensuring high accuracy and reliability of
readings. A neural network has been developed that integrates closed loops for the helicopter tur-
boshaft engine parameters, which are regulated based on the filtering method. This made achieving
almost 100% (0.995 or 99.5%) accuracy possible and reduced the loss function to 0.005 (0.5%) after
280 training epochs. An algorithm has been developed for neural network training based on the
errors in backpropagation for closed loops, integrating the helicopter turboshaft engine parameters
regulated based on the filtering method. It combines increasing the validation set accuracy and
controlling overfitting, considering error dynamics, which preserves the model generalization abil-
ity. The adaptive training rate improves adaptation to the data changes and training conditions,
improving performance. It has been mathematically proven that the helicopter turboshaft engine
parameters regulating neural network closed-loop integration using the filtering method, in compari-
son with traditional filters (median-recursive, recursive and median), significantly improve efficiency.
Moreover, that enables reduction of the errors of the 1st and 2nd types: 2.11 times compared to the
median-recursive filter, 2.89 times compared to the recursive filter, and 4.18 times compared to the
median filter. The achieved results significantly increase the helicopter turboshaft engine sensor
readings accuracy (up to 99.5%) and reliability, ensuring aircraft efficient and safe operations thanks
to improved filtering methods and neural network data integration. These advances open up new
prospects for the aviation industry, improving operational efficiency and overall helicopter flight
safety through advanced data processing technologies.
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1. Introduction and Related Work

Helicopter turboshaft engines (TEs) are complex technical devices requiring continu-
ous monitoring of their condition [1]. Helicopter TEs’ reliable operation depends on the
accurate monitoring of thermogas-dynamic parameters, such as temperature and pressure
at the engine’s various points, gas–generator rotor rpm and free turbine rotor speed, fuel
consumption and others [2]. Modern monitoring and diagnostic systems use many sensors
to obtain this data, which makes it possible to detect deviations from the norm and prevent
possible malfunctions promptly. However, under flight operating conditions, sensors are
exposed to various factors that affect measurement accuracy [3].

The helicopter turboshaft engine sensors must guarantee that data are received with
high accuracy to ensure the helicopter’s safe operation. Sensors that measure gas–generator
rotor rpm, free turbine rotor speed, and gas temperature in the compressor turbine front are
the engine control system’s critical components [4]. In real operating conditions, situations
may arise when sensors begin to provide inadequate information due to various factors,
such as noise, interference, sensor malfunctions, etc. Even though the sensor is recognized
as operational, the information received may be distorted. This can lead to incorrect
conclusions about the engine state and, as a result, to erroneous actions by the crew, which
are critically dangerous in flight conditions.

Traditional methods for processing sensor signals often face problems associated with
noise, sensor failures, and imperfect mathematical models [5–8]. As a result, a situation may
arise when the control system receives distorted data, which leads to incorrect conclusions
about the engine state [9,10]. This is especially critical for in-flight operating conditions,
where the measurement accuracy can be affected by vibrations, temperature changes and
other external factors [11,12].

To solve these problems, data integration methods [13,14] are of particular impor-
tance, which makes it possible to combine information from various sensors and systems,
the errors impact minimizing and the diagnostic reliability increase. Data integration is
based on the algorithms used to process signals, taking into account their relations and
correlations [15]. This makes obtaining a more accurate and complete picture of the engine
state possible.

The relevance of data integration methods in helicopter TE control and diagnostic
systems is due to several key factors. Increasing helicopter TE reliability is a priority
task in aviation [16]. Data integration systems make it possible to integrate and jointly
process information from multiple sensors, which significantly increases the accuracy and
reliability of engine condition diagnostics [17]. Such systems become indispensable in-flight
operating conditions, where failures and errors can lead to serious consequences. They
provide continuous monitoring and allow you to quickly respond to any changes in engine
operation, preventing potential emergencies.

Secondly, data integration methods significantly reduce the influence of external fac-
tors, such as vibrations and temperature fluctuations, which can distort the individual
sensors’ readings [18]. It is possible to minimize measurement errors and increase the
accuracy of the obtained data by taking into account the relations between various pa-
rameters and using correction algorithms [19]. This is especially important in helicopter
operations, where the environment and flight conditions can vary significantly, affecting
sensor performance.

Thirdly, data integration contributes to early fault detection and deviations from the
norm [20]. Combining information from various sensors allows potential problems to be
detected faster and more accurately, which makes it possible to carry out timely preventive
and repair work [21]. This significantly reduces the risk of sudden failure and accidents,
increasing overall flight safety. Early fault detection also helps to extend equipment life
and reduce operating costs.

Finally, data fusion techniques are crucial for maintenance optimization [22]. Accu-
rately determining the engine components’ conditions allows for effective maintenance
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planning, minimizing downtime and reducing costs. This enhances the helicopter’s opera-
tional performance and mission readiness.

In [23], an aircraft and spacecraft hull structures state acoustic emission diagnostics
method was developed using a distributed fibre-optic sensor system. It is shown that such
systems can provide vital information for ensuring safety at aerospace facilities. Green’s
function for a single sensor is found, and its features under the pulsed influence of acoustic
emission signals are researched. The sensor system’s ability to estimate the coordinates
and acoustic emission signal parameters has been determined. Experimental research has
confirmed the system’s ability to detect radiation signals even under specific interference
conditions. A key disadvantage is the difficulty in distributing fibre optic sensors into
existing aerospace designs, which may limit their widespread use and require significant
modifications during implementation.

In [24], challenges focused on flexibility and scalability are explored when integrating
sensors for Industry 4.0 functions into manufacturing systems. These systems use reconfig-
urable machines with intelligent actuators connected through a single electromechanical
interface. An adaptive sensor integration unit architecture is presented that supports in-
terleaved communication protocols and reduces the number of signal lines and the need
for protocol conversion units. A prototype system using dynamic partial FPGA recon-
figuration has been demonstrated to be effective in an industrial environment. The key
disadvantages are the complexity and high cost of developing and implementing a dynamic
partial reconfiguration FPGA system and the need for specialized knowledge to operate
and maintain it.

The multi-stage supercharging process in [25] is investigated, which is an effective
method for improving the engine’s volumetric efficiency at high altitudes, where the
intercooler must withstand high thermal loads caused by high levels of supercharging.
However, the existing research’s disadvantages on intercooler performance at high altitudes
require additional research to optimize its performance in actual flight conditions.

The research [26] aims to modify engines’ advanced knowledge to run on ammonia
to promote decarbonization by demonstrating that compression ignition engines can ef-
ficiently burn ammonia using spark plugs. The disadvantage is that existing research is
limited, and the available experimental data are randomly distributed without careful
design, increasing the results’ uncertainty.

Thus, the data integration methods used in monitoring and control systems for the
helicopter TE operation are an integral part of modern technology [23–26] to increase
aircraft operation safety and efficiency. The development and implementation of such
methods require an interdisciplinary approach and the advanced advances used in the
signal processing [27,28], mathematical modelling [29,30] and artificial intelligence [31,32]
field. One of these technologies is the neural network approach [33,34], which has several
unique advantages over traditional methods [35,36].

Firstly, neural network algorithms can efficiently process large amounts of data and
identify complex dependencies between various parameters, which is impossible when
using classical signal processing methods. Neural networks can be trained on large amounts
of data, which allows them to adapt to changing operating conditions and improve the
accuracy of engine prediction [37].

Secondly, neural network models are highly resistant to noise and data failures, which
is especially important in flight conditions, where data may be subject to various external
influences. Thanks to the ability to self-train and adapt, neural networks can effectively
compensate for distortions and provide more accurate diagnostic results [38].

In addition, neural network approaches make it possible to implement more complex
and accurate mathematical models that consider nonlinear dependencies between param-
eters and their time changes. This provides the helicopter TE operational status with a
more in-depth analysis and accurate prediction, which increases the helicopter operation
reliability and safety [39].
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Introducing neural network technology into helicopter TE control and diagnostic sys-
tems is a promising development direction that opens up new opportunities for increasing
aircraft operations efficiency and reliability.

The proposed method from helicopter TE thermogas-dynamic parameter sensor sig-
nals neural network integration represents significant improvements compared to tradi-
tional methods due to the dynamic compensation circuit (sensor signals adjustment in real
time to improve control system operations) use and a neural network for closed parameter
control loop integration. Dynamic compensation with an adaptive noise suppression device
effectively filters noise interference while maintaining the helicopter TE parameter essential
characteristics sensor signals, improving the control system’s accuracy and reliability.

A goal of this work is to develop a method for the helicopter TE thermogas-dynamic
parameters integrating signals coming from sensors in real-time and correcting them if they
contain noise or distortion to ensure the sensor readings’ accuracy and reliability, despite
the possible noise and distortion, to maintain safe and efficient helicopter control. To reach
this goal, it is necessary to solve the following tasks:

1. Diagram development for integrating signals from the helicopter TE thermogas-
dynamic parameter sensors based on the filtering method.

2. Neural network development to implement a diagram for integrating signals from
the helicopter TE thermogas-dynamic parameter sensors using the filtering method.

3. Neural network training algorithm development.
4. Helicopter TE thermogas-dynamic parameter sensor signals’ analysis and preliminary

processing.
5. Conduct a computational experiment to solve the filtering sensors signal task of the

helicopter TE thermogas-dynamic parameters (using a gas–generator rotor rpm signal
example).

6. Evaluate the results obtained effectiveness according to efficiency metrics (efficiency
coefficient, quality coefficient, accuracy, recall, precision, F1-score, etc.).

7. The 1st and 2nd errors are calculated and the results obtained are compared with
known analogues.

2. Materials and Methods
2.1. Diagram Development for Integrating Signals from Helicopter TE Thermogas-Dynamic
Parameter Sensors Using the Filtering Method

It is known [40–42] that the on-board system for monitoring helicopter TE param-
eters uses the following sensors: D-2M (records the gas–generator rotor rpm), 14 dual
thermocouples T-102 (records the gas temperature in front of the compressor turbine), and
D-1M (records free turbine rotor speed). These sensors transmit recorded parameters to
the onboard instrument panel, providing the pilot with important information about the
engine’s condition. However, all of these sensors are subject to noise, which reduces the
accuracy and reliability of the recorded data. This requires the neural network aggregation
and filtering methods used for signal processing to reduce the noise influence and increase
the information reliability displayed on the dashboard.

In the first stage, data reliability is analyzed, which makes it possible to identify and
correct anomalies in the data received by helicopter turboshaft engine sensors. According
to the helicopter TE sensors readings at times t1, t2, . . ., tn, a thermogas-dynamic parameter
time series is formed:

NTC = {nTC 1, nTC 2, . . . , nTC n},
TG =

{
T∗

G 1, T∗
G 2, . . . , T∗

G n
}

,
NFT = {nFT 1, nFT 2, . . . , nFT n},

(1)

where nTC 1, nTC 2, . . ., nTC n is the gas–generator rotor rpm values at times t1, t2, . . ., tn;
T∗

G 1, T∗
G 2, . . ., T∗

G n is the gas temperature in the compressor turbine values front at times
t1, t2, . . ., tn; and nFT 1, nFT 2, . . ., nFT n is the free turbine rotor speed values at times t1, t2,
. . ., tn.
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The interquartile range (IQR) method is used [43] to remove outliers from the heli-
copter TE thermogas-dynamic parameters data:

IQR = Q3 − Q1,
BL = Q1 − 1.5·IQR,
TL = Q1 + 1.5·IQR,

(2)

where Q1 and Q3 are the 1st and 3rd quartiles, respectively, BL is the lower limit, and TL is
the upper limit.

IQR is a statistical tool used to identify and remove outliers from a data set, which is
especially important when the helicopter TE thermogas-dynamic parameter time series are
analysed. IQR is defined as the difference between the 3rd Q3 and 1st Q1 quartiles, which
are the values below which the data lie at 75% and 25%, respectively. The IQR calculation
allows us to set the BL lower and TL upper bounds. Data that falls outside these boundaries
are considered outliers, anomalous values that can skew the analysis. Removing outliers
helps ensure data reliability and accuracy, which is critical for helicopter health reliable
monitoring and diagnosis, preventing errors and improving operational safety.

Q1 and Q3 are calculated for each data set to apply IQR to eliminate abnormal data
preprocessing. Then, values below BL or above TL are excluded from the analysis. Once out-
liers are removed and cleaned, further processing and analysis can be carried out. This helps
ensure data reliability and accuracy, which is critical for helicopter TE operational status
reliable monitoring and diagnostics, preventing errors and increasing operational safety.

The reference range standard is based on the central tendency and variability statistical
measures used to determine normal and anomalous values in helicopter TE thermogas-
dynamic parameter data sets recorded by sensors in onboard implementation conditions.
In particular, it applies the concepts of quartiles, which divide ordered data into four equal
parts. The Q1 1st quartile and the Q3 3rd quartile are the basis for determining the IQR,
which is the difference between Q3 and Q1. This range covers the middle 50% of the data
and provides a value spread measure.

To standardize the helicopter TE thermogas-dynamic parameter values, eliminating
differences in their ranges and facilitating subsequent analysis, these values are brought to
a single scale using normalization:

nnorm
TC (t) = nTC(t)−µ(nTC)

σ(nTC)
, T∗ norm

G (t) =
T∗

G(t)−µ(T∗
G)

σ(T∗
G)

,

nnorm
FT (t) = nFT(t)−µ(nFT)

σ(nFT)
,

(3)

where µ(•) and σ(•) are the helicopters TE thermogas-dynamic parameters nTC, and T∗
G

and nFT are the average value and standard deviation, respectively.
Data from the helicopter TE thermogas-dynamic parameters that exceed the estab-

lished BL and TL are considered anomalies since they demonstrate significant deviations
from the expected values. These deviations may indicate serious problems such as faulty
hardware malfunctions or sensors malfunctioning. Anomalous data require special atten-
tion and analysis, as they can lead to erroneous conclusions about the system state and, as
a result, to potentially dangerous situations. Such anomalies’ identification and correction
are critical to maintaining reliability and helicopter TE operation safety.

To do this, for each i-th helicopter TE thermogas-dynamic parameter xi(t) and each
time moment t, the anomaly indicator at is calculated as:

at =

{
1, i f xi(t) < BL or xi(t) > TL,
0, i f BL ≤ xi(t) ≤ TL,

(4)



Sensors 2024, 24, 4246 6 of 36

Next, the deviation di(t) is calculated for each i-th helicopter TE thermogas-dynamic
parameter xi(t) and each time moment t:

di(t) =
xi(t)− µi

σi
. (5)

The value di(t) shows how many standard deviations the measured value xi(t) differs
from the average value µi. If the helicopter turboshaft engine thermogas-dynamic parame-
ter (nTC, T∗

G, nFT) for any parameter ai(t) = 1, an alarm is generated about a possible sensor
malfunction or deviation in the system operation.

The proposed mathematical model makes it possible to detect sensor data anomalies
based on the parameter’s statistical characteristics. Using average values and standard
deviations to determine the deviations ensures anomaly detection in the reliable boundaries
in the helicopter TE sensors’ functioning. This, in turn, is closely related to the helicopter
TE control loops (Figure 1) [44], since accurate sensor data are critical for the engine control
systems’ proper functioning. Reliable detection and correction of anomalies ensure the
control loops’ correct operation, allowing timely response to changes in engine opera-
tion and maintaining optimal operating conditions, which increases overall flight safety
and efficiency.
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Figure 1. Diagram of closed loops for regulating helicopter turboshaft engine parameters (Wreg

is regulator transfer function, WFMU is fuel dispenser model transfer function, WTE is helicopter
turboshaft engine model transfer function): (a) gas–generator rotor rpm, (b) gas temperature in front
of the compressor turbine, (c) free turbine rotor speed (author’s research, based on [44]).

It is worth noting that feedback has been introduced into the control loop (Figure 1),
which plays a key role in maintaining the helicopter TE parameters control stability and
accuracy. Feedback allows the control system to correct deviations in real time using sensor
data. This improves the engine operation reliability and safety, ensuring optimal operating
parameters and preventing emergencies.

The helicopter TE parameter regulator in the control loop (Figure 1), connected to the
fuel dispenser regulator, acts as a filter. A fuel-metering regulator is present in the control
loop to ensure the fuel supply is accurate and has timely regulation, which is necessary to
maintain optimal engine operation and quickly respond to changes in operating conditions
(Figure 1) [44,45].

During the identification process, the closed control loop changes all elements’ param-
eters in real time (Figure 1). To ensure the desired behaviour, the helicopter TE parameter
regulators’ dynamic compensation [46] is carried out by replacing them with a similar
structure as the regulators configured in the desired way (Figure 2) [44,47,48].
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Figure 2. Dynamic compensation diagram in closed loops for regulating helicopter turboshaft engine
parameters: (a) gas–generator rotor rpm, (b) gas temperature in the compressor turbine front, (c) free
turbine rotor speed (author’s research, based on [44,47,48]).

In Figure 2, the compensator consists of the helicopter TE parameter regulator (nTC, T∗
G,

nFT) transfer function, with the desired settings W∗
reg and a transfer function compensating

the helicopter TE parameters regulator (nTC, T∗
G, nFT) W−1

reg , and the customized model
consists of the transfer functions of the helicopter TE parameters regulator Wreg, the fuel-
metering regulator WFMU, and the engine model.

The dynamic compensation aim is to tune the system to provide the desired system
behaviour over the entire operating range and minimize static control error [49]. Trans-
fer functions are used to describe the system. The closed-loop transfer function with a
compensator and tunable model can achieve zero static error and optimal control [50–52].

The desired system behaviour over the entire operating range is achieved by tuning
the controllers. The helicopter TE customizable model structure optimises them for a
symmetrical operating mode [47,53]. In this case [47,54], zero static errors are ensured. The
transfer function has the form [55] for an open-loop system configured for the symmetrical
mode:

W−1(p) =
4·Tµ + 1

8·T2
µ ·p2·

(
Tµ·p + 1

) , (6)

where Tµ is a small uncompensated time constant, and p is the Laplace operator.
During dynamic compensation, the current controller Wreg is replaced by a controller

with the desired settings W∗
reg with the inverse transfer function W−1

reg added to compen-
sating the current controller. The closed-loop system overall transfer function, taking into
account dynamic compensation, is then determined as Wcloset(p) = WFMU(p)·WTE(p)·C(p),
where C(p) = W∗

reg·W−1
reg . The Wreg and WFMU controllers are tuned to minimize static

errors and provide the required system dynamics to ensure the desired behaviour over the
entire operating range.

It is worth considering that various interferences are possible during the helicopter
TE operation, which can significantly affect the accuracy of the data received from the
sensors. This interference can occur due to external factors, such as electromagnetic fields,
vibrations, or sudden changes in the environment, as well as internal factors, including
sensor components wear or electronic failures. The interference makes it difficult to correctly
read parameters, leading to the engine control circuits’ incorrect operation, increasing
the risk of errors in the system operation and reducing the overall helicopter operation
reliability and safety. Therefore, the work provides filtering and data processing methods
that can effectively eliminate or minimize the influence of interference.

In the helicopter TE operation context, where the helicopter TE recorded parameters
(nTC, T∗

G, nFT) data from sensors’ reliability play a decisive role, it is crucial to consider
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possible interference that can distort the received signals. To combat this interference, it is
effective to use an adaptive interference suppression device, which uses filtering and signal
processing methods (Figure 3). This device is highly adaptable to changing operating con-
ditions and helps minimize the interference impact on data quality. Such a device operation
involves passing signal components through a reference input, where the signal is com-
pared with a reference value and then corrected or suppressed depending on the deviation
degree [56]. This approach allows for effective control and data management, ensuring the
helicopter TE control loops reliable operation and increasing overall flight safety.
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Figure 3. Adaptive device diagram for noise suppression with the helicopter turboshaft engine param-
eters signal components passage to the reference input (according to B. Widrow and S. Stearns) [56].

Figure 3 shows that s(t) is the useful signal that needs to be restored; n0(t) is the noise
added to the useful signal at the main input; d(t) = s(t) + n0(t) is the signal at the main
input (contaminated with noise); x(t) is the noise correlated with n0(t) at the reference input
(reference input); y(t) is the output of the adaptive filter, which tries to predict n0(t) based
on x(t); and e(t) is the error signal. According to Figure 3, it is assumed that the filter has a
nonlinearity, which is represented as a function f (•) acting on a linear filter output with a
transfer function H(p). Thus, the filter output y(t) is expressed as:

y(t) = f
(

L−1{H(p)·X(p)}
)

, (7)

where X(p) is the input signal x(t) Laplace transform of the helicopter TE-recorded thermogas-
dynamic parameters (nTC, T∗

G, nFT), and L–1 is the inverse Laplace transform.
The error signal is defined as the difference between the signal at the main input and

the nonlinear filter output, that is:

e(t) = d(t) − y(t). (8)

Nonlinear filter weights’ adaptation is described by a generalized version of the LMS
algorithm, which takes nonlinearity into account. It is assumed that w(t) is the nonlinear
filter parameters vector, then the parameter update is defined as:

w(t + 1) = w(t) + µ· ∂e(t)
∂w(t)

, (9)

where ∂e(t)
∂w(t) is the error signal gradient concerning the filter parameters and µ is the

training rate.
Models (7)–(9) describe the adaptive noise suppression process using a nonlinear filter

and transfer functions, which makes it possible to effectively suppress noise and restore
the useful signal s(t) under complex nonlinear influences.

Models (7)–(9) effectively suppress interference and extract an adaptive system capable
of a useful signal s(t) from the helicopter TE thermogas-dynamic parameters complex
nonlinear data characteristic. Equation (7) describes the nonlinear filter output, which
consists of two stages: the input signal X(p), transformed into Laplace space, is passed
through a linear filter with a transfer function H(p). The linear filtering result f (•) is
subjected to a nonlinear transformation using the function f (•). Equation (8) defines the
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error signal as the difference between the desired signal d(t) and the nonlinear filter output
signal y(t). Equation (9) describes the nonlinear filter parameter adaptation algorithm based
on the modified LMS algorithm.

Thus, the helicopter TE parameters nTC, T∗
G and nFT regulator play the role of an

interference suppression device. Therefore, the dynamic compensation circuit in closed
loops for regulating helicopter TE parameters takes the form shown in Figure 4. Thus,
the registration sensors system nTC, T∗

G and nFT, respectively, include the helicopter TE
parameters in three identical control loops (see Figure 4).
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Figure 4. Dynamic compensation diagram in closed loops for regulating the helicopter turboshaft
engine parameters with an adaptive noise suppression device with the component signals passage to
the reference input: (a) gas–generator rotor rpm, (b) gas temperature in the compressor turbine front,
(c) free rotor speed turbines (author’s research).

The transition to a unified integration diagram using the filtering method (Figure 5)
makes integrating data from three identical control loops for helicopter TE parameters
possible, providing more accurate and reliable control.

This approach allows information from various sensors to be combined into one
central control unit, where the data are processed using filtering techniques to eliminate
noise and improve measurement accuracy.

Thus, the data integration system provides the helicopter TE parameters with more
reliable and accurate control, increasing its performance and durability by optimizing the
control systems’ operation. This approach ensures engine stability under various flight
modes and external conditions.

The key to the helicopter TE parameters resulting in the control loop (see Figure 5)
is the development of helicopter TE parameter regulators that act as adaptive filters. Us-
ing a neural network controller, which acts as a filter, is advisable due to its ability to
adapt to diverse and dynamic operating conditions [56]. Neural network filters have the
unique ability to train from available data and automatically adjust their operation to
changes in input signals [57]. This allows them to effectively consider complex nonlinear
relationships between parameters and quickly adapt to new conditions without manual
reconfiguring. The beneficial qualities mentioned, such as the ability to adapt to diverse and
dynamic conditions and automatically adjust to changes in input signals, are characteristic
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of neural networks in general. However, achieving these benefits depends on the specific
implementation and training of the neural network used in this context.

Thus, the key task is the neural network architecture choice, the neural network
structure choice, determining the activation functions rules and the neural network hidden
layers number, which ensures the engine operational status monitoring with 1st and 2nd
type error probability at a minimum level.
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Figure 5. Diagram for integrating closed loops for regulating helicopter turboshaft engine parameters
using the filtration method (author’s research).

2.2. Neural Network Architecture Development

To solve this task, a multilayer neural network has been developed that processes
input data containing useful signals and noise, selects useful signals and provides feedback
(Figure 6). The developed neural network input layer contains 6 neurons: 1 is the helicopter
TE gas–generator rotor rpm nTC signal, 2 is the helicopter TE gas–generator rotor rpm nTC
signal interference nnTC , 3 is the helicopter TE gas temperature in front of the compressor
turbine T∗

G signal, 4 is the helicopter TE gas temperature in front of the compressor turbine
T∗

G signal interference nT∗
G

, 5 is the helicopter TE free turbine rotor speed nFT signal, and 6
is the helicopter TE free turbine rotor speed nFT signal interference nnFT . In the 1st hidden
layer, the parameter signals (inputs 1, 3, 5) are summed with their noise (inputs 2, 4, 6). The
2nd hidden layer means dynamic compensation. The following hidden layers filter the
resulting signal, which extracts the useful signal. The output layer contains feedback.

The developed neural network input layer does not perform any data transformation
but is intended to receive initial data (helicopter TE parameters nTC, T∗

G, nFT) from sensors,
which the network’s subsequent layers will process. In this case, 6 input neurons are
received, each of input signals, one of which receives x1 is the helicopter TE gas–generator
rotor rpm nTC signal, x2 is the helicopter TE gas–generator rotor rpm nTC signal interference
nnTC , x3 is the helicopter TE gas temperature in the compressor turbine T∗

G signal front, x4
is the helicopter TE gas temperature in the compressor turbine T∗

G signal interference front
nT∗

G
, x5 is the helicopter TE free turbine rotor speed nFT signal, and x6 is the helicopter TE

free turbine rotor speed nFT signal interference nnFT . Each input neuron receives one of
these signals unchanged, that is, yi = xi.
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Figure 6. The developed neural network architecture, which implements the closed-loop integration
for regulating the helicopter turboshaft engines’ parameters using the filtering method (author’s
research).

The neural network’s 1st hidden layer operates by summing the signals with their
corresponding noise. Each neuron in this layer processes a signal–noise pair (the signal-
noise is formed by adding random noise to the pure signal, which corresponds to the actual
helicopter flight conditions). This is necessary to prepare the data for subsequent dynamic
compensation and filtering. The combined signals allow the model to be trained more
efficiently to remove noise and highlight useful data. Thus,

h1 = x1 + x2, h2 = x3 + x4, h3 = x5 + x6, (10)

where h1, h2, h3 are the first hidden layer neurons outputs.
Based on the above, the neural network’s 1st hidden layer has three neurons. This

layer passes through the neuron without activation since simple summation is required.
The 2nd hidden layer performs the dynamic compensation task. This layer corrects

signals to compensate for noise and dynamic changes to improve the data quality before
filtering it in subsequent layers. In this layer, neurons are trained to adjust signals taking
into account their dynamics and noise. This is achieved by applying trainable weights and
activation functions to the summed signals, that is:

z1 = f (w11·h1 + w12·h2 + w13·h3 + b1),
z2 = f (w21·h1 + w22·h2 + w23·h3 + b2),
z3 = f (w31·h1 + w32·h2 + w33·h3 + b3),

(11)

where z1, z2, and z3 are the second hidden layer neuron outputs, wij are the weights trained
during the network training process, bi are the biases trained during the network training
process, and f (•) is the activation function.

For the 2nd hidden layer, selecting the ReLU (Rectified Linear Unit) activation function
is advisable because ReLU effectively copes with dynamic changes in signals and noise
due to its ability to pass positive values unchanged and to null out negative ones. This
allows neurons to adapt to different levels of input signals and quickly adjust for dynamic
changes, which is important for effective noise compensation. In addition, ReLU helps
avoid the gradient fading problem, improving the deep networks training and providing
more stable and faster model convergence, which is critical for tasks that require accurate
dynamic compensation.

Note 1. A critical drawback of the ReLU activation function is the problem of “dying”
neurons when input values are negative and the outputs become zero. In this case, neurons
stop participating in training since their weight gradient becomes zero. This can cause a
significant number of neurons in the network to remain inactive, reducing the model’s
overall training ability and degrading its performance. Later in the work, this problem will
be solved by modifying the ReLU function.
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The 3rd hidden layer (Filtering Layer 1) performs the resulting signals after dynamic
compensation filtering in the 1st stage. This layer is designed to reduce noise further
and improve the desired signal quality. The 3rd hidden layer applies trainable weights
and activation functions to the input signals to filter them and extract useful information.
Mathematically, the neural network’s 3rd hidden layer is represented as follows:

f1 = g(w11·z1 + w12·z2 + w13·z3 + b1),
f2 = g(w21·z1 + w22·z2 + w23·z3 + b2),
f3 = g(w31·z1 + w32·z2 + w33·z3 + b3),

(12)

where f 1, f 2, and f 3 are the 3rd hidden layer neuron outputs, wij is the trainable weights
applied to the input signals, bi is the trainable biases, and g(•) is the activation function
that helps neurons process input signals nonlinearly, which improves the ability models to
isolate useful signals and eliminate noise.

For the 3rd hidden layer, choosing the ReLU activation function is advisable because
it can handle noise and extract useful signals efficiently. ReLU allows neurons to only
pass positive values through while nulling out negative ones, which helps eliminate
unnecessary noise and improves overall signal quality. In addition, ReLU speeds up
training by eliminating the gradient decay issues associated with other activation functions
and allows the network to better model complex dependencies in data. This makes ReLU
ideal for the 1st stage of filtering, effectively extracting useful information from the corrected
signals.

The 4th hidden layer represents the resulting signals filtering the 2nd stage, which
follows the filtering 1st stage in the 3rd hidden layer. This layer further improves the
wanted signal quality by suppressing the remaining noise and making the signal more dis-
tinguishable from the background. The 4th hidden layer also applies trainable weights and
activation functions to the input signals to further filter the data and improve the desired
signal quality. Mathematically, the fourth neural network hidden layer is represented as
follows:

g1 = h(w11· f1 + w12· f2 + w13· f3 + b1),
g2 = h(w21· f1 + w22· f2 + w23· f3 + b2),
g3 = h(w31· f1 + w32· f2 + w33· f3 + b3),

(13)

where g1, g2, and g3 are the 4th hidden layer neuron outputs, wij is the trainable weights
applied to the input signals, bi is the trainable biases, and h(•) is the activation function.

For the 4th hidden layer, choosing the ReLU activation function is also advisable due
to its ability to effectively suppress unnecessary negative values, thereby reducing the
noise impact and preserving the signal’s positive aspects. This allows the network to more
efficiently identify and store useful features present in the data, which is important for the
task of integrating and improving signal quality.

Thus, the second, third and fourth hidden layers each have three neurons.
The neural network output layer predicts or classifies the input data according to

the given task. In this context, the output layer will predict the system parameters or
characteristics based on the input signals after they have been processed and filtered
through hidden layers. Given the feedback presence, this layer must also take into account
the error received in the previous stages and adjust the network outputs according to this
error. For the output neuron, the expression is valid:

y = r(v1·g1 + v2·g2 + v3·g3 + c), (14)

where y is the helicopter TE parameter (nTC, T∗
G and nFT) predicted output, vi is the output

layer trainable weights, c is the trainable bias (bias), and r(•) is the activation function.
Taking into account feedback, the error E at the network output can be defined as the

difference between the predicted output y and the expected output d, that is:

E = y − d. (15)
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The backpropagation algorithm is applied to update the weights vi and bias c of the
output layer. The weights and bias are adjusted in the opposite direction to the gradient
of the loss function to these parameters. Thus, updating the weights vi and bias c of the
output layer will occur according to gradient descent as:

∆vi = α· ∂E
∂vi

, ∆c = α·∂E
∂c

, (16)

where α is the adaptive training rate, which includes an adaptive change in the training
rate depending on the current gradient and the weight updates history, which, according
to the AdaGrad algorithm (Adaptive Gradient Algorithm), is defined as:

αt =
η√

Gt + ϵ
, (17)

where ϵ is a small constant added for numerical stability (ϵ ≈ 10–8 is assumed), αt is the
training rate at time t, η is the initial training rate, and Gt is the accumulated squared
gradients up to time t, which are updated at each training iteration in the following way:

Gt = Gt−1 + (∇E)2, (18)

where ∇E is the loss function gradient over the model parameters.
In a developed neural network where the main task is to predict the parameters or

characteristics of the system based on the processed data, the use of a linear activation
function at the output layer may be appropriate. This is especially relevant since the output
values will be helicopter TE parameters nTC, T∗

G, and nFT continuous numerical values. A
linear activation function will allow the neural network to flexibly adapt to different ranges
of output parameter values without limiting them to any specific range.

2.3. The ReLU Activation Function Modification

The work proposes to use the innovative activation function Smooth ReLU, developed
by this author’s team, which is a ReLU function derivative. The main aim of the ReLU
function modification is to create a smoother and more continuous activation function
to improve the convergence process and training stability. The proposed modification
can significantly affect the neural network efficiency, especially in deep training problems
where stability and convergence speed play a key role. The expression describes the Smooth
ReLU activation function:

f (x) =
{

x, if x > 0,
1

1+e−γ·x , if x ≤ 0, (19)

where γ is a parameter that determines the function “level of smoothness”. For x > 0,
the function behaves similarly to a regular ReLU, and for x ≤ 0 it smoothly transitions to
negative values using a sigmoid function. This avoids sudden gradient changes and can
speed up neural network training. The proposed Smooth ReLU activation function retains
the ReLU benefits, such as no gradient for positive values, while adding smoothness for
negative values. This can sometimes improve training, allowing for more stable and faster
convergence.

Theorem 1. The Smooth ReLU function is continuous over the entire domain of definition.

Proof of Theorem 1. Let f (x) be the Smooth ReLU activation function defined according
to (18). The Smooth ReLU activation function is continuous for x > 0 and x < 0, since for
x > 0 the function f (x) = x is a linear function that is continuous over the definition of the
entire domain, and for x < 0 f (x) = 1

1+e−γ·x , which means a modified sigmoid function is
continuous throughout the entire domain of the definition.
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To prove continuity at x = 0, it is necessary to show that the limit of f (x) as x tends to
zero from the left is equal to the limit of f (x) as x tends to zero from the right, and that this
limit is equal to the value of the function at x = 0. Consider the limit:

lim
x→0−

f (x) = lim
x→0−

1
1 + e−γ·x , (20)

in which as x → 0–, γ·x → 0, e–γ·x = 1, thus:

lim
x→0−

1
1 + e−γ·x =

1
1 + 1

=
1
2

. (21)

Consider the limit:
lim

x→0+
f (x) = lim

x→0+
x = 0. (22)

Since the different sides’ limits do not coincide, checking the function value at point
x = 0 is necessary. Let us take the value x ̸= 0 at point x = 0, for example, f (0) = 1

2 . Next,
continuity is revised with the set value f (0) = 1

2 , that is:

lim
x→0−

f (x) =
1
2

, lim
x→0+

f (x) = 0 ̸= 1
2

. (23)

Thus, the original function was not continuous at x = 0 with the given condition,
and an adjustment is required to determine continuity correctly. Then, the Smooth ReLU
function is described by the expression:

f (x) =


x, if x > 0,
0 if x = 0,

1
1+e−γ·x , if x < 0.

(24)

This function, similar to (19), is continuous for x > 0 and x < 0, and continuity at point
x = 0 is defined as:

lim
x→0−

f (x) = lim
x→0−

1
1 + e−γ·x =

1
2

, lim
x→0+

f (x) = 0. (25)

And its value at point x = 0 is zero.
Thus, the adjustment assumes that the function is not smooth at point 0, but remains

continuous throughout the definition of the entire domain. The theorem is proven: the
function f (x), defined with correction in the form (24), is continuous over the entire domain
of the definition. □

To research the neuron’s activation functions, it is imperative to analyze their deriva-
tives. The activation function derivative allows us to estimate this function change rate
in response to changes in input data. In turn, the updating neuron weights process helps
optimize during neural network training. The traditional neuron activation function ReLU
f (x) = max(0, x) derivative (Figure 7a) has the form:

f ′(x) =
{

1, if x > 0,
0, if x ≤ 0,

(26)

The proposed Smooth ReLU neuron activation function with correction (24) derivative
(Figure 7b) has the form:

f ′(x) =


1, if x > 0,
0, if x = 0,

γ·e−γ·x

(1+e−γ·x)2 , if x < 0.
(27)
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As can be seen from (26), (27), and Figure 7, the problem with the traditional ReLU
function f (x) = max(0, x) is that its derivative is zero for all x ≤ 0. This can lead to “dead
neurons” in the neural network when neurons stop updating due to the lack of gradient.
The advantage of Smooth ReLU is that it always has a non-zero gradient for all values of x,
including negative ones (except for x = 0). This avoids the problem of “dead neurons” and
ensures more stable neural network training.

Thus, the proposed Smooth ReLU use with adjustment (24) is mathematically justified
since it provides a smooth and continuous gradient throughout the definition domain,
which can help improve the convergence and training efficiency of the model.
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2.4. A Neural Network Training Algorithm Development

The work proposes an algorithm for training a neural network (Figure 6), consisting
of the following stages:

1. Weights initialization is initially setting the neural network weight values before
starting training. Proper weight initialization is important for efficient and fast network
training, as it helps avoid convergence problems and helps achieve more accurate results.

For the developed neural network that uses Smooth ReLU in the hidden layers, it
is appropriate to use the He initialization method [58]. The 1st hidden layer weight
initialization is not required since this layer performs simple summation. The neural
network remaining layers’ weight initialization is carried out as follows:

W ∼ N
(

0,
2
ni

)
, (28)

where N(µ, σ2) is a normal distribution with mean µ and variance σ2, and ni is the neuron
number in the neural network i-th layer.

2. Forward propagation is passing the neural network input data through all layers to
the output to obtain predictions, in which the input signals’ weighted sums are calculated
at each layer, to which an activation function is then applied. This process ensures that the
input data are transformed into network output values. Direct propagation is carried out
according to (10)–(15).

3. Backpropagation is a neural network training to minimize prediction error by
propagating the network output back error calculated through the layers, updating the
network’s weights and biases. The main purpose of backpropagation is to adjust the
weights in such a way as to reduce the predicted and actual values difference between them.
For each layer, the error function gradient concerning its weights and biases is calculated
as:

δout =
∂E
∂Y

= y − d,
∂E
∂vi

= δout·gi,
∂E
∂c

= δout. (29)

For the remaining layers (1st–4th hidden layers) of the neural network, similar calcula-
tions are given in Table 1.
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Table 1. Analytical expressions for the developed neural network hidden layers parameters calculat-
ing (author’s research).

Neural
Network Layer Parameter Analytical Expression

4th hidden
layer

Neuron weight error
δgi = δout·w(4)

ij ,

where w(4)
ij mean the 4th hidden layer of neurons’ weights (see expression (13)).

Gradient error
δgi = δgi ·

∂(Smooth ReLU)
∂x ,

where ∂(Smooth ReLU)
∂x is defined according to (27).

Gradients by weights ∂E
∂w(4)

ij

= δgi · fi

3rd hidden
layer

Neuron weight error
δ fi

= ∑ δ fi
·w(3)

ij ,

where w(3)
ij mean the 3rd hidden layer neurons weights (see expression (12)).

Gradient error
δ fi

= δ fi
· ∂(Smooth ReLU)

∂x ,

where ∂(Smooth ReLU)
∂x is defined according to (27).

Gradients by weights ∂E
∂w(3)

ij

= δ fi
·zi

2nd hidden
layer

Neuron weight error
δzi = ∑ δzi ·w

(2)
ij ,

where w(2)
ij mean the 3rd hidden layer of neurons’ weights (see expression (11)).

Gradient error
δzi = δzi ·

∂(Smooth ReLU)
∂x ,

where ∂(Smooth ReLU)
∂x is defined according to (27).

Gradients by weights ∂E
∂w(2)

ij

= δzi ·hi.

4. Updating weights and biases is the neural network’s weights and biases changing
process over time to the loss function minimization. The squared gradients accumulation is
defined as:

G
w(m)

ij
= G

w(m)
ij

+

 ∂E

∂w(m)
ij

2

, (30)

where m = 2. . .4 is the neural network hidden layers number (2nd, 3rd and 4th hidden
layers, respectively).

Weights and biases are updated according to the expressions:

w(m)
ij = w(m)

ij − η√
G

w(m)
ij

+ ϵ
· ∂E

∂w(m)
ij

, (31)

c = c − η√
Gc + ϵ

·∂E
∂c

. (32)

The weights and biases forward propagation, backpropagation, and updating are
repeated for all training examples and throughout all training epochs until the convergence
criterion is reached.

For the task posed in the work of filtering interference and integrating signals from the
helicopter TE thermogas-dynamic parameter sensors using the developed neural network
(Figure 6), which implements a diagram for the regulating helicopter TE parameters
integrating closed loops using the filtering method (Figure 5), the stopping criterion is a
balanced criterion for improving accuracy on the validation set and controlling the neural
network retraining.
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To create a balanced convergence criterion that takes into account both the improve-
ment in accuracy on the validation set and control for overfitting, a weighted average
between the two criteria can be used:

C = α·ε + (1 − α)·O, (33)

where ε is the accuracy (increase in model accuracy on the validation set (for example, the
percentage of correct predictions), O is the measure of model retraining control (ratio of
error on the validation set to error on the training set), and 0 ≤ α ≤ 1 is the coefficient
reflecting the increasing accuracy importance compared to the overfitting control.

Note 2. An appropriate value for α can be chosen depending on the specific task
requirements and preferences. For example, if increasing accuracy is more important than
controlling for overfitting, then α might be chosen closer to 1. If controlling for overfitting
is more important, then α might be chosen closer to 0.

The scientific novelty of the proposed neural network training algorithm lies in the
integration of two convergence criteria: increasing accuracy on the validation set and
controlling overfitting into a single criterion that allows for balancing, improving model
accuracy, and preventing overfitting. The difference from the traditional backpropagation
algorithm is that the proposed method not only minimizes the loss function but also takes
into account the error dynamics on the validation sample, which allows for maintaining the
model generalization ability when achieving a certain level of accuracy. Additionally, the
adaptive training rate complements this approach by allowing the model to efficiently and
quickly adapt to changes in data and training conditions, which improves its performance
in practice.

3. Case Study
3.1. Analysis and Preliminary Processing Results for Initial Signals from Helicopter TE
Thermogas-Dynamic Parameter Sensors

To conduct a computational experiment, data were obtained on the TV3-117 TE
thermogas-dynamic parameters [59–61], recorded on board the Mi-8MTV helicopter dur-
ing flight: gas–generator rotor rpm nTC at times t1. . .tn; gas temperature in front of the
compressor turbine T∗

G at times t1. . .tn; and free turbine rotor speed nFT at times t1. . .tn. The
nTC, T∗

G, and nFT values are given in absolute values (Tables 2–4).

Table 2. The training sample fragment for nTC gas–generator rotor rpm (author’s research).

Number 1 2 . . . 37 . . . 84 . . . 115 . . . 172 . . . 202 . . . 256

Value 0.943 0.982 . . . 0.948 . . . 0.957 . . . 0.962 . . . 0.974 . . . 0.935 . . . 0.981

Table 3. The training sample fragment for T∗
G gas temperature in the compressor turbine front

(author’s research).

Number 1 2 . . . 29 . . . 73 . . . 109 . . . 164 . . . 200 . . . 256

Value 0.932 0.964 . . . 0.975 . . . 0.926 . . . 0.918 . . . 0.905 . . . 0.902 . . . 0.953

Table 4. The training sample fragment for nFT free turbine rotor speed (author’s research).

Number 1 2 . . . 32 . . . 80 . . . 105 . . . 181 . . . 207 . . . 256

Value 0.929 0.933 . . . 0.909 . . . 0.932 . . . 0.941 . . . 0.955 . . . 0.926 . . . 0.973

At the helicopter TE thermogas-dynamic parameter (nTC, T∗
G and nFT) values pre-

liminary processing in the 1st stage, the homogeneity of the training samples is assessed
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(Tables 2–4). According to [59–61], the criterion by which the training sample homogeneity
is determined is the Fisher–Pearson criterion, which is defined as [62]:

χ2 =

√
N·(N − 1)

N − 2
·

1
N ·∑N

i=1(xi − x)3(
1
N ·∑N

i=1(xi − x)2
) 3

2
, (34)

where N = 256 is the training sample size, xi is the training sample (Tables 2–4) i-th element
value, and x = 1

n ·∑
n
i=1 xi is the training sample average value.

The significance level adopted in the work is 0.01, which means the probability of
introducing a type I error (erroneously rejecting the true null hypothesis) is 1%. That is,
while a statistical test indicates a significant result, there is only a 1% chance that the result
is due to chance and is due to noise or random variations in the data. This significance
indicates strict requirements for the results’ reliability, which is especially important in
the context of helicopter TE thermogas-dynamic parameter sensor readings’ accuracy
and reliability. The freedom degrees number is 1 (one type of parameter in each training
sample: nTC, T∗

G or nFT). Thus, the Fisher–Pearson test’s critical value for one degree of
freedom at a significance level of 0.01 was 6.6. The Fisher–Pearson criterion obtained
values are χ2

nTC
= 4.727, χ2

T∗
G
= 4.645, and χ2

nFT
= 5.619 are less than the critical value

χ2
critical = 6.6, which indicates the helicopter TE thermogas-dynamic parameter training

sample homogeneity.
To confirm the training sample (see Tables 2–4) homogeneity assessing results using

the Fisher–Pearson criterion according to [59–61], an identical experiment was carried out
using the Fisher–Snedecor criterion, which is defined as [63]:

F =
S2

1
S2

2
=

1
n1−1 ·∑

n1
i=1

(
x(1)i − x(1)

)2

1
n2−1 ·∑

n2
i=1

(
x(2)i − x(2)

)2 , (35)

where n1 and n2 are the 1st and 2nd training sample sizes, x(1)i and x(2)i are the i-th element
of the 1st and 2nd training samples, respectively, and x(1) and x(2) are the average values
of the 1st and 2nd training samples, respectively.

To calculate the Fisher–Snedecor criterion according to (35), the helicopter TE thermogas-
dynamic parameter (see Tables 2–4) value training samples, consisting of 256 elements each,
are randomly divided into two equal samples of 128 elements each, that is, n1 = n2 = 128. The
significance level for the Fisher–Snedecor criterion is also accepted as 0.01, and the freedom
degrees number is 1, which indicates the helicopter TE parameters one type in each training
sample: nTC, T∗

G or nFT. Thus, the Fisher–Snedecor test critical value for one freedom
degree at a significance level of 0.01 was 6.6. The Fisher–Snedecor criterion obtained
values are FnTC = 4.727, FT∗

G
= 4.645, and FnFT = 5.619 are less than the critical value

Fcritical = 6.6, which confirms the helicopter TE thermogas-dynamic parameter training
sample homogeneity.

At the helicopter TE thermogas-dynamic parameter (nTC, T∗
G and nFT) values pre-

liminary processing in the 1st stage according to [59–61], the training and test samples
representativeness is assessed using cluster analysis, the which aim is to separate the input
data set X = {x1, x2, . . ., xn} (see Tables 2–4) into k disjoint clusters, where k is a predeter-
mined number of clusters (k = 8 is assumed based on [59–61]). Each cluster is an object
group that is considered more similar than objects from other clusters. Taking into account
the results of [64], the k-means cluster analysis method was applied, based on minimizing
the squared distances sum between cluster objects and their centroids (the j-th cluster
centre) C = {µ1, µ2, . . ., µn}, where µj ∈ Rd.
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For each xi value of helicopter thermogas-dynamic parameters TE nTC, T∗
G and nFT,

the distance to all centroids is calculated and the object is assigned to the cluster with the
nearest centroid according to the expression:

rij =

{
1, if j = argminl∥xi − µl∥2,

0, otherwise
(36)

where j = argminl∥xi − µl∥2 means that object xi belongs to the j-th cluster, with rij ∈
{0, 1}.

The k-means method minimizes the squared distance sum between features and their
corresponding centroids. The objective function is presented as:

J =
k

∑
j=1

N

∑
i=1

rij·
∥∥xi − µj

∥∥2. (37)

For each j-th cluster, the centroid µj is updated as all objects assigned to that cluster
average as:

µj =
∑N

i=1 rij·xi

∑N
i=1 rij

. (38)

Calculations according to (36) and (38) are repeated until the object assignments to
clusters stop changing (until convergence).

A random selection procedure was used to select training and test samples in a 2:1
ratio (67 and 33%, respectively—172 and 84 elements) based on the helicopter TE (see
Tables 2–4) thermogas-dynamic parameter training samples. The cluster data analysis
results from the helicopter TE thermogas-dynamic parameter (Tables 2–4) training samples
revealed 8 classes (classes I. . .VIII), that is, eight groups are present in them, which indicates
the composition similarity of both training and test samples (Figure 8).
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The results obtained made it possible to determine the helicopter TE thermogas-
dynamic parameters’ optimal sample size: the training sample is 256 elements (100%),
the control sample is 172 elements (67% of the training sample), and the test sample is
84 elements (33% of the training sample).

3.2. The Developed Neural Network Training Results

At the developed neural network (see Figure 6) training in the 1st stage, the epochs
passed number (Figure 9, Table 5) which influence the final standard deviation that is the
training (loss function) quality assessing criterion and is defined as [59–61]:

Eepoch =
1
N
·

N

∑
i=1

(
1
2
·

n

∑
k=1

(yk − ŷk)
2

)
. (39)

Table 5. Determining the influence results for the number of epochs passed on the resulting error
(author’s research).

Number 1 2 3 4 5 6 7 8 9

Epoch 0 40 80 120 160 200 240 280 320
Eepoch 17.352 14.018 10.342 8.665 5.229 4.315 3.399 2.005 3.767

The results obtained indicate that 280 training epochs are sufficient to achieve the
minimum value of Eepoch = 2.005. (Figure 9a). It is worth noting that after 280 epochs, the
neural network training error increases. The neural network training convergence demon-
strated it was trained for 1000 epochs (Figure 9b). It can be seen that almost immediately
after 320 training epochs, the loss function decreases to its minimum value Eepoch = 2.005
and remains stable over 1000 training epochs. The slight increase in training error after
epoch 280 is due to the overfitting phenomenon, where the model begins to overfit the
training data rather than generalize to the new data. However, after epoch 330, the error is
reduced again due to hyperparameter adjustments using regularization techniques that
stabilize training.

The situation described above, where a slight increase in the training error is observed
after the i-th epoch due to model overtraining, is discussed in detail in [65,66]. These sources
provide various methods for reaching this state, including adjusting hyperparameters and
using regularization methods. These methods aim to stabilize the training process and
improve the model’s generalisation ability. It is important to note that the temporary
increase in training error is not critical and can be effectively managed using appropriate
techniques, allowing the model to continue training and achieve optimal results.
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At the next stage of training of the developed neural network (see Figure 6), its
performance, accuracy (Figure 10) and loss (Figure 11) are determined for 280 training
epochs. Accuracy provides information about how well the model classifies the data,
while loss reflects how well the model minimises the difference between predicted and
actual values.
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As can be seen from Figure 10, accuracy reaches a value of 0.995 (almost 100%).
Moreover, as can be seen from Figure 11, the loss function does not exceed 0.025 (2.5%)
at the beginning of training and decreases to 0.005 (0.5%) at 280 training epochs. This
indicates the high efficiency and accuracy of the developed neural network in solving the
problem. Achieving an accuracy value of 0.995 (almost 100%) indicates that the model
successfully classifies the data with high accuracy. In parallel, the observed decrease in
the loss function from 0.025 (2.5%) to 0.005 (0.5%) indicates that the model successfully
reduces the difference between the actual and predicted values, which is a key indicator
of the effectiveness of neural network training. These results highlight the high-quality
performance of the model and its ability to make accurate and reliable predictions.

It is worth noting that the work compares the accuracy and loss definition. As men-
tioned above, accuracy reaches a value of 0.995, and the loss function decreases from 0.025
(2.5%) to 0.005 (0.5%) after 280 training epochs when applying the Smooth ReLU activation
function. At the same time, when using the ReLU activation function, accuracy reaches
a 0.995 value when the loss function is reduced from 0.025 (2.5%) to 0.005 (0.5%) and is
achieved with 490 training epochs, which is almost several times further compared to
using Smooth ReLU. Moreover, with 280 training epochs, when using the ReLU activation
function, accuracy only reaches a 0.972 value, and the loss function decreases from 0.025
(2.5%) to 0.018 (1.8%).
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3.3. Helicopter Turboshaft Engines Thermogas-Dynamic Parameter Sensors Signal Neural
Network Integration Results

To conduct a computational experiment based on helicopter TE thermogas-dynamic
parameter (see Tables 2–4) training samples, as an example, the nTC parameter original sig-
nal, contaminated with noise, that was received from the corresponding sensor (Figure 12)
was restored.
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Figure 12. Initial diagram of the nTC gas–generator rotor rpm signal (author’s research).

As can be seen from Figure 12, the original nTC parameter signal contains various
distortions, interference, and noise, which can affect its accuracy in analysis and interpreta-
tion. Figure 13 shows the nTC parameter filtered signal after applying the developed neural
network (see Figure 6).
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Figure 13. Resulting diagram of the nTC gas–generator rotor rpm signal (author’s research).

As shown in Figure 13, the nTC parameter signal filtering effectively removed noise
and distortion while the signal’s main characteristics were preserved. The filtered nTC
signal appears cleaner and smoother, making it more suitable for further analysis and use.

To analyze the signal frequency composition, the nTC parameter is used to isolate or
suppress certain frequency components using the direct Fourier transform
F(ω) =

∫ ∞
−∞ f (t)·e−j·ω·tdt the transition from the time domain to the frequency domain has

been completed. This allows you to determine which frequencies are present in the signal
and at what amplitude, which in turn helps determine which frequencies should be re-
tained or excluded to achieve the desired filtering result. Moving into the frequency domain
allows you to understand the signal structure better and make informed decisions about
the necessary filtering actions, such as noise reduction, extraction of frequency components
of interest, or interference suppression. Figure 14a shows the nTC parameter’s original
signal spectrum, and Figure 14b shows the nTC parameter’s filtered signal spectrum.
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Figure 14. The nTC gas–generator rotor rpm signal spectrum diagram: (a) Original signal (b) Filtered
signal (author’s research).

The nTC parameter is the original and filtered signals spectrum resulting diagram,
allowing us to compare their frequency characteristics visually. Analyzing the differences
between the spectra allows you to determine the filtration effectiveness and evaluate how
successfully your aims were achieved. If the filtered signal spectrum shows a significant
reduction in amplitude at frequencies that need to be suppressed and retention or enhanced
that are important to the signal, this indicates the designed neural network is (Figure 6)
functioning well.

Further in the work, the parameter nTC signal repetition period is determined as T = 1
f ,

where f = 2π
ω is the frequency. This allows you to understand the nTC parameter signal

time’s main characteristics, such as its frequency and frequency spectrum. Knowing the
signal period helps analyze its dynamics and detect regular patterns. Figure 15a shows
the parameter nTC initial signal repetition period, and Figure 15b shows the nTC parameter
filtered signal repetition period.
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Figure 15. The nTC gas–generator rotor rpm signal repetition period diagram: (a) Original signal
(b) Filtered signal (author’s research).

At the computational experiment next stage, a transition was made from the parameter
signal nTC, presented in the time dependence f (t) form (see Figure 12), to the signal-to-noise
ratio (SNR) according to the expression:

SNR =

∫ T
0 ( f (t))2∫ T
0 (n(t))2

, (40)

where n(t) is the noise signal (in this work it is taken as a random variable).
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SNR provides a clear numerical value that shows how much the signal stands out
from the background noise. A high SNR indicates that the signal dominates the noise,
which means better data transmission and processing. A low SNR indicates that noise is
having a significant impact, which can result in distortion or loss of important information.
Figure 16a shows the SNR based on the original signal of the nTC parameter, and Figure 16b
shows the SNR based on the filtered signal of the nTC parameter.
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Figure 16. The nTC gas–generator rotor rpm signal signal-to-noise ratio diagram: (a) Original signal
(b) Filtered signal (author’s research).

We have performed a comparison of filtered and unfiltered results histograms along
with the nTC parameter signal filtered estimates dynamics qualitative analysis (Figures 17–20).

Sensors 2024, 24, x FOR PEER REVIEW 25 of 38 
 

 

𝑆𝑁𝑅 = ׬ ൫𝑓ሺ𝑡ሻ൯ଶ଴்׬ ൫𝑛ሺ𝑡ሻ൯ଶ଴் , (40) 

where n(t) is the noise signal (in this work it is taken as a random variable). 
SNR provides a clear numerical value that shows how much the signal stands out 

from the background noise. A high SNR indicates that the signal dominates the noise, 
which means better data transmission and processing. A low SNR indicates that noise is 
having a significant impact, which can result in distortion or loss of important 
information. Figure 16a shows the SNR based on the original signal of the nTC parameter, 
and Figure 16b shows the SNR based on the filtered signal of the nTC parameter. 

(a) (b) 

Figure 16. The nTC gas–generator rotor rpm signal signal-to-noise ratio diagram: (a) Original signal 
(b) Filtered signal (author’s research). 

We have performed a comparison of filtered and unfiltered results histograms along 
with the nTC parameter signal filtered estimates dynamics qualitative analysis (Figures 17–
20).  

  
(a) (b) 

Figure 17. Signal histogram for the nTC gas–generator rotor rpm estimates: (a) Original signal (b) 
Filtered signal (author’s research). Figure 17. Signal histogram for the nTC gas–generator rotor rpm estimates: (a) Original signal (b)

Filtered signal (author’s research).
Sensors 2024, 24, x FOR PEER REVIEW 26 of 38 
 

 

  
(a) (b) 

Figure 18. The spectrum histogram for the nTC gas–generator rotor rpm signal estimates: (a) Original 
signal (b) Filtered signal (author’s research). 

  
(a) (b) 

Figure 19. The sequence histogram for the gas–generator rotor rpm signal nTC estimates: (a) Original 
signal (b) Filtered signal (author’s research). 

  
(a) (b) 

Figure 20. The nTC gas–generator rotor rpm signal signal/noise estimates histogram: (a) Original 
signal (b) Filtered signal (author’s research). 

Commented [M23]: Please use commas to 
separate thousands for numbers with five or more 
digits (not four digits) in the picture, e.g., “10000” 
should be “10,000”. 

Figure 18. The spectrum histogram for the nTC gas–generator rotor rpm signal estimates: (a) Original
signal (b) Filtered signal (author’s research).
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Figure 19. The sequence histogram for the gas–generator rotor rpm signal nTC estimates: (a) Original
signal (b) Filtered signal (author’s research).
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Figure 20. The nTC gas–generator rotor rpm signal signal/noise estimates histogram: (a) Original
signal (b) Filtered signal (author’s research).

The obtained data analysis (see Figures 17–20) allows us to state that combining
signals using the filtering method leads to narrowing the unfiltered estimate histogram,
which, in turn, helps to increase accuracy. The presented histogram research shows that the
histogram maximum narrowing, and therefore accuracy improvement, is achieved for the
pulse repetition period.

4. Discussion
4.1. Noise Variance Estimation

The nTC parameter signal (see Figures 12 and 13) noise dispersion f (t) estimation is an
important aspect of time series analysis and signal processing since dispersion characterizes
the noise values spread degree around its average value. In the signal f (t) analyzing process,
which can be represented as the useful signal and noise sum, isolating and estimating the
noise variance makes it possible for the filtering methods to signal and the effectiveness
quality evaluated. A statistical method is used to calculate noise variance: first, the average
noise value is determined, and then all noise values’ standard deviation from this average
is calculated. Noise dispersion is defined as:

σ2 =
1
N
·

N

∑
i=1

(n(t)− n)2, (41)

where n(t) are the noise values at time t, n is the average noise value, and N is the element
number in the training set.

Figure 21 shows a diagram of the noise dispersion resulting estimate depending on
the number of the elements in the training set, from which it can be seen that if there
are 156 elements in the training set (58% of the total volume), the noise dispersion value
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becomes almost equal to zero. This indicates that increasing the training set size significantly
improves the model’s accuracy in estimating noise, and once a certain amount of data
are reached, the model almost eliminates the uncertainties associated with noise. Thus,
we can conclude that to achieve minimum noise variance, it is necessary to use at least
156 elements in the training set, which ensures that all possible signal variations have
adequate representation and allows the model to effectively take them into account.
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4.2. Comparative Analysis of Neural Network Signal Integration Based on the Filtering Method
with Traditional Filters

When performing the neural network signal integration comparative analysis using
the filtering method and traditional filters, the following metrics are used:

1. Mean square error characterizes the differences in squares arithmetic mean between
the observed and predicted values defined as:

MSE =
1
N
·

N

∑
i=1

(
fi(t)− f̂i(t)

)2
. (42)

2. The average absolute error characterizes the estimated values’ average absolute
deviation from the true signal values and is defined as:

MAE =
1
N
·

N

∑
i=1

∣∣∣ fi(t)− f̂i(t)
∣∣∣. (43)

3. The determination coefficient is a measure showing the variation proportion in the
dependent variable explained by the independent variables in the model and is defined as:

R2 = 1 −
1
N ·∑N

i=1

(
fi(t)− f̂i(t)

)2

1
N ·∑N

i=1

(
fi(t)− f

)2 . (44)

4. Peak signal to noise is used to the reconstructed signal quality measure concerning
the maximum signal and is defined as:

PNSR = 10·log10

(
MAX2

MSE

)
, (45)

where MAX is the maximum possible signal value.
5. Signal-to-noise ratio measures the ratio between signal power and noise power and

is defined as:

SNR = 10·log10

 ∑N
i=1( fi(t))

2

∑N
i=1

(
fi(t)− f̂i(t)

)2

. (46)
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6. Correlation measures the linear relations between the true and filtered values and is
defined as:

r =
1
N ·∑N

i=1

(
fi(t)− f

)
·
(

f̂i(t)− f̂
)

√
∑N

i=1

(
fi(t)− f

)2
·∑N

i=1

(
fi(t)− f̂

)2
, (47)

where f and f̂ are the average values of the true and filtered signals, respectively.
7. The root mean square error is the square root of the MSE gives an idea of magnitude

errors and is defined as:

RMSE =

√√√√ 1
N
·

N

∑
i=1

(
fi(t)− f̂i(t)

)2
. (48)

8. Average absolute percent error measures the average absolute error as the percent-
age of the true value and is defined as:

MAPE =
100%

N
·

N

∑
i=1

∣∣∣∣∣ fi(t)− f̂i(t)
fi(t)

∣∣∣∣∣. (49)

9. Average relative error estimates the predicted values average relative error relative
to the true values and is defined as:

MRE =
1
N
·

N

∑
i=1

∣∣∣∣∣ fi(t)− f̂i(t)
fi(t)

∣∣∣∣∣. (50)

10. The goodness-of-fit index measures the agreement between the true and predicted
values, taking into account both precision and deviation and is defined as:

CCC =
2·r·σf ·σ f̂

σ2
f + σ2

f̂
+
(

f − f̂
)2 , (51)

where σf and σ f̂ are the true and predicted values standard deviations, respectively.
11. Normalized mean squared error normalizes the true values variance MSE concern-

ing, allowing comparison of models at different data scales and is defined as:

NMSE =

1
N ·∑N

i=1

(
fi(t)− f̂i(t)

)2

1
N ·∑N

i=1

(
fi(t)− f

)2 . (52)

12. The signal reconstruction quality function evaluates the signal reconstruction
quality, taking into account the minimum values between the true and predicted values
and is defined as:

SQR =

1
N ·∑N

i=1 min
(

fi(t), f̂i(t)
)

1
N ·∑N

i=1 fi(t)
. (53)

Table 6 shows the neural network signal integration based on the filtering method
with recursive [67], median [68] and median-recursive [69] filters comparative analysis
results according to metrics (42)–(53).
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Table 6. The neural network signal integration based on the filtering method with traditional filters
comparative analysis results (author’s research).

Metrics Neural Network Integration Median Recursive Filter Recursive Filter Median Filter

MSE 0.000992 0.00255 0.00912 0.0116
MAE 0.0079 0.0403 0.0763 0.1622

R2 0.9495 0.7358 0.6892 0.5171
PNSR 40.02 dB 25.91 dB 20.38 dB 13.80 dB
SNR 39.35 dB 25.25 dB 19.72 dB 13.13 dB

r 0.9761 0.6519 0.4219 0.2740
RMSE 0.0315 0.0505 0.0955 0.1077
MAPE 0.8615% 1.365% 4.250% 17.50%
MRE 0.00861 0.0436 0.0825 0.1750
CCC 0.9756 0.6009 0.4998 0.1097

NMSE 0.505 1.299 2.641 4.121
SQR 0.9960 0.9766 0.9656 0.9207

The results obtained (see Table 6) confirm that neural network signal integration
based on the filtering method is the best in all metrics, demonstrating minimal errors
and maximum correspondence to the true signal. Meanwhile, applying the median filter
is the worst, showing maximum errors and minimum compliance. Table 7 shows the
improvement in the neural network quality metrics signal integration results based on the
filtering method with traditional filters.

Table 7. The neural network signal integration improvement degree calculating results based on the
filtering method with traditional filters (author’s research).

Metrics The Improvement Compared to
the Median Recursive Filter

The Improvement Compared
to the Recursive Filter

The Improvement Compared
to the Median Filter

MSE 2.571 9.194 11.694
MAE 5.101 9.658 20.532

R2 1.290 1.378 1.836
PNSR 1.545 1.964 2.900
SNR 1.558 1.995 2.997

r 1.497 2.314 3.562
RMSE 1.603 3.032 3.419
MAPE 1.584 4.933 20.313
MRE 5.064 9.582 20.325
CCC 1.624 1.952 8.893

NMSE 2.572 5.230 8.160
SQR 1.020 1.031 1.082

4.3. Results of a Trained Neural Network with Traditional Filtering Methods Comparison

To compare the trained neural network model (Figure 6) for each layer data with
the traditional filtering method (for example, using a median-recursive filter), each step
results, followed by checking each hidden layer design’s actual effectiveness. The following
algorithm is used in the work.

The training samples’ data (Tables 2–4) are divided into signals and noise to apply
traditional filtering methods, followed by the results’ analysis at each step. In this case,
Sclean = {x1, x3, x5} is a pure signals’ set (x1 is the gas–generator rotor rpm nTC signal; x3 is
the gas temperature in the compressor turbine T∗

G signal front; and x5 is the free turbine
rotor speed nFT signal), and Nnoice = {x2, x4, x6} is the noise’s set (x2 is the gas–generator
rotor rpm nTC noice; x4 is the gas temperature in the compressor turbine T∗

G noise front;
and x6 is the free turbine rotor speed nFT noise). As a result, two sets are obtained: one
containing pure signals and the other containing their corresponding noise.
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Next, the traditional filtering method performs each step on the prepared data. In this
case, signals are sequentially filtered from interference, dynamic changes are compensated,
and sequential filtering is carried out to reduce noise and highlight useful signals.

After this, the prepared data are passed through a trained neural network, followed
by saving each hidden layer output: the 1st hidden layer outputs (summing signals with
noise) are the h1, h2, h3; the 2nd hidden layer outputs (dynamic compensation) are the z1,
z2, and z3; the 3rd hidden layer outputs (filtering first stage) are the f 1, f 2, and f 3; the 4th
hidden layer outputs (filtering second stage) are the g1, g2, and g3; and the output layer is
the y.

The following is a direct comparison:

1. The summing signals with noise results by the traditional method are compared with
the neural network’s 1st hidden layer results.

2. The dynamic compensation results by the traditional method are compared with the
neural network’s 2nd hidden layer results.

3. The filtering 1st stage results by the traditional method are compared with the neural
network’s 3rd hidden layer results.

4. The filtering 2nd stage results by the traditional method are compared with the neural
network’s 4th hidden layer results.

In a computational experiment, clear signals and noise interference were identified
from the training samples data (Tables 2–4), which are shown in Tables 8–10.

Table 8. The training sample fragment for nTC gas–generator rotor rpm with the separation of clean
signal and noise interference (author’s research).

Number 1 2 . . . 37 . . . 84 . . . 115 . . . 172 . . . 202 . . . 256

Sclean 0.922 0.962 . . . 0.923 . . . 0.935 . . . 0.942 . . . 0.944 . . . 0.912 . . . 0.956
Nnoice 0.021 0.020 . . . 0.025 . . . 0.022 . . . 0.020 . . . 0.030 . . . 0.023 . . . 0.025

Table 9. The training sample fragment for T∗
G gas temperature in the compressor turbine front with

the separation of clean signal and noise interference (author’s research).

Number 1 2 . . . 29 . . . 73 . . . 109 . . . 164 . . . 200 . . . 256

Sclean 0.903 0.933 . . . 0.955 . . . 0.895 . . . 0.898 . . . 0.875 . . . 0.880 . . . 0.922
Nnoice 0.029 0.031 . . . 0.020 . . . 0.031 . . . 0.020 . . . 0.030 . . . 0.022 . . . 0.031

Table 10. The training sample fragment for nFT-free turbine rotor speed with the separation of clean
signal and noise interference (author’s research).

Number 1 2 . . . 32 . . . 80 . . . 105 . . . 181 . . . 207 . . . 256

Sclean 0.907 0.913 . . . 0.888 . . . 0.911 . . . 0.921 . . . 0.936 . . . 0.903 . . . 0.952
Nnoice 0.022 0.020 . . . 0.021 . . . 0.021 . . . 0.020 . . . 0.019 . . . 0.023 . . . 0.021

Table 11 shows the data processing results (Tables 8–10) using a neural network.
Table 12 uses traditional filtering methods according to stages.
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Table 11. Data processing results from training samples using a neural network (author’s research).

Stage
Number Stage Name Results

1 1st hidden
layer

Parameters h1, h2, h3 are calculated according to (10). The final values are h1 = 0.898, h2 = 0.875,
h3 = 0.880.

2 2nd hidden
layer

The accepted weight and bias matrices are: W =

0.5 0.3 0.2
0.4 0.6 0.1
0.3 0.3 0.4

, b =

0.1
0.2
0.1

. Using the

Smooth ReLU activation function, the parameters z1, z2, z3 are calculated according to (11). The
final values are z1 = 0.988, z2 = 1.172, z3 = 0.984.

3 3rd hidden
layer

By applying the Smooth ReLU activation function to the linear combinations zi, the parameters
f 1, f 2, f 3 are calculated according to (12). The final values are f 1 = 1.143, f 2 = 1.396, f 3 = 1.142.

4 4th hidden
layer

By applying the Smooth ReLU activation function to the linear combinations fi, the parameters g1,
g2, g3 are calculated according to (13). The final values are g1 = 1.319, g2 = 1.609, g3 = 1.319.

5 Output layer The accepted weight and bias matrices are v =

0.4
0.3
0.3

,c = 0.5. The neural network output signal

is calculated according to (14). The final value is y = 1.907.

Table 12. Data processing results from training samples using a traditional filtration method (author’s
research).

Stage
Number Stage Name Results

1 Summation of signals
with their noise

The summation of signals with their noise is carried out in the same way as in the

neural network method (Table 11). The final values are n(1)
TC = 0.898, T∗(1)

G = 0.875, and

n(1)
FT = 0.880, similar to h1 = 0.898, h2 = 0.875, and h3 = 0.880.

2 Dynamic
compensation

Signals and interference are adjusted using coefficients for each parameter. For a
median-recursive filter, according to [70], it is advisable to use the following coefficients:
0.8 for the nTC parameter, 1.2 for the T∗

G parameter, and 0.9 for the nFT parameter. Then:
Corrected(nTC) = 0.8·Clear(nTC) + Noice(nTC),

Corrected
(
T∗

G
)
= 1.2·Clear

(
T∗

G
)
+ Noice

(
T∗

G
)
,

Corrected(nFT) = 0.9·Clear(nFT) + Noice(nFT),

Total values n(2)
TC = 0.932, T∗(2)

G = 1.007, and n(2)
FT = 0.918, similar to z1, z2, and z3.

3 Filtration 1st stage Signals and interference are adjusted using coefficients for each parameter. For a
median-recursive filter, according to [71], it is advisable to use the following coefficients:
0.75 for the nTC parameter, 1.05 for the T∗

G parameter, and 0.85 for the nFT parameter.
Then:

Filtered(nTC) = 0.75·Corrected(nTC),
Filtered

(
T∗

G
)
= 1.05·Corrected

(
T∗

G
)
,

Filtered(nFT) = 0.85·Corrected(nFT),

Total values n(3)
TC = 0.699, T∗(3)

G = 1.057, and n(3)
FT = 0.780, similar to f 1, f 2, and f 3.

4 Filtration 2nd stage Signals and interference are adjusted using coefficients for each parameter. For a
median-recursive filter, according to [72], it is advisable to use the following coefficients:
0.65 for the nTC parameter, 0.70 for the T∗

G parameter, and 0.60 for the nFT parameter.
Then:

Filtered(nTC) = 0.65·Corrected(nTC),
Filtered

(
T∗

G
)
= 0.70·Corrected

(
T∗

G
)
,

Filtered(nFT) = 0.60·Corrected(nFT),

Total values n(3)
TC = 0.454, T∗(3)

G = 0.740, and n(3)
FT = 0.507, similar to f 1, f 2, and f 3.

5 Final result The output signal is calculated as:

y = n(4)
TC + T∗(4)

G + n(4)
FT = 1.701.

The output parameter value obtained in the neural network for each layer is signifi-
cantly higher than the values obtained using traditional filtering methods, consisting of
summing signals with their noise, dynamic compensation, and the first and second filtering
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stages (see Table 13). This is because neural networks can train and adapt to data complex
and nonlinear relations, allowing them to compensate for interference and improve signal
quality more effectively. Having the Smooth ReLU activation function allows the neural
network to ignore negative values that may represent noise and emphasize positive values,
thereby improving the output signal quality. However, higher output values indicate a
cleaner and more amplified signal, which is important for improving the overall system
accuracy and reliability.

Table 13. The obtained data comparison results (author’s research).

Stage
Number Method Type Stage Name Output Variable Value Comparison Results

1

Neural
network

1st hidden
layer

h1 0.898

The results obtained in the neural network’s
1st hidden layer are identical to the results
obtained using traditional filtering methods.

h2 0.875
h3 0.880

Traditional
filtration
method

Summation of
signals with
their noise

n(1)
TC

0.898

T∗(1)
G

0.875

n(1)
FT

0.880

2

Neural
network

2nd hidden
layer

z1 0.988
The results obtained in the neural network’s
2nd hidden layer are up to 44.1% higher than
the results obtained using traditional
filtering methods.

z2 1.172
z3 0.984

Traditional
filtration
method

Dynamic
compensation

n(2)
TC

0.932

T∗(2)
G

1.007

n(2)
FT

0.918

3

Neural
network

3rd hidden
layer

f 1 1.143
The results obtained in the neural network’s
3rd hidden layer are up to 44.1% higher than
the results obtained using traditional
filtering methods.

f 2 1.396
f 3 1.142

Traditional
filtration
method

Filtration 1st
stage

n(3)
TC

0.699

T∗(3)
G

1.057

n(3)
FT

0.780

4

Neural
network

4th hidden
layer

g1 1.319
The results obtained in the neural network’s
4th hidden layer are up to 68.5% higher than
the results obtained using traditional
filtering methods.

g2 1.609
g3 1.319

Traditional
filtration
method

Filtration 2nd
stage

n(4)
TC

0.454

T∗(4)
G

0.740

n(4)
FT

0.507

5
Neural

network Final result y 1.907 The output signal value obtained in the
neural network’s output layer is 10.8%
higher than its value obtained using
traditional filtering methods.

Traditional
filtration
method

Final result y 1.701

4.4. The I and II Type Errors Calculation

A type I error occurs when the null hypothesis H0 is rejected even though it is true,
and is defined at a given significance level as:

α = P(Reject H0|H0 is true). (54)

A type II error occurs when the null hypothesis H0 is not rejected even though the
alternative hypothesis H1 is true, and is defined as:

β = P
(
Don′t reject H0

∣∣H1 is true
)
. (55)
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As mentioned above, the paper set the significance level to 0.01, which means the type
I error probability (erroneously rejecting a true null hypothesis) is 1%; that is, if a statistical
test shows a significant result, there is only a 1% chance that this result is due to chance
and caused by noise or random variations in the data. The significance indicates a given
level of high requirements for the reliability of the results, which is especially important
for ensuring the helicopter TE thermogas-dynamic parameters sensor readings’ accuracy
and reliability.

For the given task, the null hypothesis is “The developed neural network (see Figure 6)
does not improve the helicopter TE thermogas-dynamic parameters from sensor signals
integration accuracy in comparison with traditional filters (median-recursive, recursive
and median filters)”, and the alternative hypothesis is “The developed neural network (see
Figure 6) significantly improves the helicopter TE thermogas-dynamic parameter sensor
signals integrating accuracy compared to traditional filters (median-recursive, recursive
and median filters)”.

Table 8 shows the 1st and 2nd types’ errors calculating results for neural network
integration of signals based on the filtering method with recursive [67], median [68] and
median-recursive [69] filters according to metrics (42)–(53).

The results (see Table 14) showed that the neural network signal integration based
on the filtering method used made it possible to reduce the 1st and 2nd types’ errors by
2.11 times compared with the use of a median-recursive filter, by 2.89 times compared with
the recursive filter use, and by 4.18 times compared with the recursive filter use. using a
median filter.

Table 14. The neural network signal integration based on the filtering method 1st and 2nd types
errors calculating results with traditional filters (author’s research).

Error Type Neural Network
Integration

Median
Recursive Filter Recursive Filter Median Filter

Type I error, % 0.86 1.82 2.49 3.60
Type II error, % 0.38 0.80 1.10 1.59

The neural network implementation approach in real helicopter operating conditions
faces challenges and advantages number. The main challenges include the need for signif-
icant computing resources to train and operate the neural network, difficulties adapting
to rapidly changing operating conditions, and interference of various types. In addition,
careful model tuning and validation of large amounts of data are required to avoid overfit-
ting and ensure that the system operates stably. However, this approach’s advantages are
significant: it provides helicopter TE parameters signal filtering with higher accuracy and
reliability through adaptive noise suppression and integration of dynamic compensation
methods. A neural network trained using a backpropagation algorithm with an adaptive
training rate allows you to balance between model accuracy and generalization ability,
preventing overfitting. As a result, this method improves the signal filtering efficiency
compared to traditional methods and reduces errors of the first and second types several
times, significantly increasing the helicopter TE performance and reliability control in real
operating conditions.

Thus, the research did not focus on creating a new helicopter or engine. At the same
time, it is focused on the sensors data analysis from a particular class of existing helicopter
TE thermogas-dynamic parameters (the TV3-117 engine was used in the work) and its
parameters (Tables 2–4 [40–42,59–61]), obtained in the Mi-8MTV helicopters flight opera-
tion. This aim is achieved by collecting data from sensors during engine operation, data
analysis obtained to identify deviations in engine operation, comparison of deviations with
benchmarks for a specific engine type, and determining the resulting deviations’ causes.

The prospect for further research is the recommendations for eliminating the identified
deviations of helicopter TE parameters from the reference values.
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5. Conclusions

The article develops a helicopter turboshaft engine’s thermogas-dynamic parameter
signals neural network integration method, which allows data to be effectively corrected
from sensors in real time, ensuring high accuracy and reading reliability:

1. The helicopter turboshaft engines’ thermogas-dynamic parameter signals neural
network integration method relevance is substantiated since this method provides
effective noise filtering, which makes it possible to increase the engine condition
monitoring accuracy.

2. An integrating signals scheme from helicopter turboshaft engine thermogas-dynamic
parameter sensors has been developed using a filtering method, which achieves
almost 100% (0.995 or 99.5%) accuracy and reduces the loss function to 0.005 (0.5%)
with 280 training epochs.

3. Based on the backpropagation algorithm, a neural network training method has
been developed for the helicopter turboshaft engine parameters integrating control
loops, which combines increasing accuracy on the validation sample and controlling
overtraining into a single criterion. This method minimizes the loss function and
considers the error dynamics on the validation set, preserving the model’s ability
to generalize. The adaptive training rate helps quickly adapt to data changes and
improves performance. In this case, to achieve the loss function minimum value
of 2.005, 280 training epochs are enough, after which the error begins to increase;
however, the loss function stabilizes immediately after 320 epochs and remains stable
for 1000 epochs.

4. It is proposed that a modified Smooth ReLU activation function be used, in which
accuracy reaches 0.995, and the loss function decreases from 0.025 to 0.005 in 280
epochs, while with ReLU it takes 490 epochs to achieve the same accuracy and loss,
and in 280 epochs the accuracy reaches only 0.972. Furthermore, losses are reduced
to 0.018.

5. It is mathematically substantiated that the neural network integration closed loops
used for regulating the helicopter turboshaft engine parameters using the filtering
method compared with traditional filters (median-recursive, recursive, median filter)
improves efficiency by 1.020. . .5.101 times compared to the median-recursive filter,
1.031. . .9.658 times compared to the recursive filter, and 1.082. . .20.325 times compared
to the median filter.

6. It is mathematically substantiated that the neural network signal integration use based
on the filtering method made it possible for the first and second types to reduce errors
by 2.11 times compared with the median-recursive filter use, by 2.89 times compared
with the recursive filter use, and by 4.18 times compared with the median filter use.
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