In Situ Preparation of Metallic Copper Nanosheets/Carbon Paper Sensitive Electrodes for Low-Potential Electrochemical Detection of Nitrite
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemical Reagent
2.2. Pre-Treatment of Carbon Paper
2.3. Preparation of Cu/CP-Sensitive Electrodes
2.4. Characterization and Electrochemical Testing
3. Results and Discussion
3.1. Characterization of Cu/CP-Sensitive Electrodes
3.2. Electrochemical Behaviors of Cu/CP
3.3. Electrochemical Determination of Nitrite
3.4. Sensitive Determination of Nitrite
3.5. Anti-Interference, Stability and Reproducibility of Cu/CP
3.6. Actual Sample Testing
4. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Li, D.; Wang, T.; Li, Z.; Xu, X.; Wang, C.; Duan, Y. Application of graphene-based materials for detection of nitrate and nitrite in water—A review. Sensors 2019, 20, 54. [Google Scholar] [CrossRef] [PubMed]
- Dong, H.; Fang, Z.; Yang, T.; Yu, Y.; Wang, D.; Chou, K.C.; Hou, X. Single crystalline 3C-SiC whiskers used for electrochemical detection of nitrite under neutral condition. Ionics 2016, 22, 1493–1500. [Google Scholar] [CrossRef]
- Saha, P.; Akter, R.; Shaheen Shah, S.; Mahfoz, W.; Aziz, M.A.; Saleh Ahammad, A.J. Gold nanomaterials and their composites as electrochemical sensing platforms for nitrite detection. Chem.–Asian J. 2022, 17, e202200823. [Google Scholar] [CrossRef] [PubMed]
- Zi, Y.Q.; Ling, C.F. Determination of trace nitrite by four wavelength negative absorption-catalytic spectrophotometry. Chin. J. Anal. Chem. 2004, 32, 1039–1042. [Google Scholar]
- Yue, Q.; Song, Z. Assay of femtogram level nitrite in human urine using luminol–myoglobin chemiluminescence. Microchem. J. 2006, 84, 10–13. [Google Scholar] [CrossRef]
- IDA, S. Purification to homogeneity of spinach nitrite reductase by ferredoxin-sepharose affinity chromatography. J. Biochem. 1977, 82, 915–918. [Google Scholar] [CrossRef] [PubMed]
- Budanova, N.; Fourest, B.; Maslennikov, A. Capillary electrophoresis determination of nitrate and nitrite in high-salt perchlorate solutions for the UC dissolution study. J. Radioanal. Nucl. Chem. 2009, 281, 597–602. [Google Scholar] [CrossRef]
- Liu, L.; Cui, H.; An, H.; Zhai, J.; Pan, Y. Electrochemical detection of aqueous nitrite based on poly (aniline-co-o-aminophenol)-modified glassy carbon electrode. Ionics 2017, 23, 1517–1523. [Google Scholar] [CrossRef]
- Zhe, T.; Li, M.; Li, F.; Li, R.; Bai, F.; Bu, T.; Wang, L. Integrating electrochemical sensor based on MoO3/Co3O4 heterostructure for highly sensitive sensing of nitrite in sausages and water. Food Chem. 2022, 367, 130666. [Google Scholar] [CrossRef]
- Zhang, J.; Zhang, T.; Yang, J.H. Precious metal nanomaterial-modified electrochemical sensors for nitrite detection. Ionics 2022, 28, 2041–2064. [Google Scholar] [CrossRef]
- Hu, Y.; He, F.; Chen, C.; Zhang, C.; Liu, J. Facile Controlled Synthesis of Pd-ZnO Nanostructures for Nitrite Detection. Molecules 2022, 28, 99. [Google Scholar] [CrossRef] [PubMed]
- Xi, R.; Zhang, S.H.; Zhang, L.; Wang, C.; Wang, L.J.; Yan, J.H.; Pan, G.B. Electrodeposition of Pd-Pt nanocomposites on porous GaN for electrochemical nitrite sensing. Sensors 2019, 19, 606. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Zhang, X.; Gao, J.; Zhao, C.; Suo, H. Electrochemical surface functionalization engineering of carbon cloth for ultrasensitive electrochemical detection of nitrite. Microchem. J. 2024, 197, 109795. [Google Scholar] [CrossRef]
- Zhang, J.; Sun, B.; Zhang, X.; Gao, J.; Zhang, L.; Zhao, C.; Suo, H. Simple and ultrasensitive self-supporting electrochemical sensor for nitrite based on cobalt oxide grafted carbon cloth. Mater. Chem. Phys. 2023, 303, 127763. [Google Scholar] [CrossRef]
- Zhang, J.; Sun, B.; Zhang, X.; Gao, J.; Zhang, L.; Zhao, C.; Suo, H. In situ fabrication of copper oxide nanoparticles decorated carbon cloth for efficient electrocatalytic detection of nitrite. Microchem. J. 2023, 194, 109302. [Google Scholar] [CrossRef]
- Rameshkumar, P.; Ramaraj, R. Electroanalysis of nitrobenzene derivatives and nitrite ions using silver nanoparticles deposited silica spheres modified electrode. J. Electroanal. Chem. 2014, 731, 72–77. [Google Scholar] [CrossRef]
- Wang, H.; Yang, P.H.; Cai, H.H.; Cai, J. Constructions of polyaniline nanofiber-based electrochemical sensor for specific detection of nitrite and sensitive monitoring of ascorbic acid scavenging nitrite. Synth. Met. 2012, 162, 326–331. [Google Scholar] [CrossRef]
- Deng, C.; Chen, J.; Nie, Z.; Yang, M.; Si, S. Electrochemical detection of nitrite based on the polythionine/carbon nanotube modified electrode. Thin Solid Films 2012, 520, 7026–7029. [Google Scholar] [CrossRef]
- Teng, M.; Ye, J.; Wan, C.; He, G.; Chen, H. Research progress on Cu-based catalysts for electrochemical nitrate reduction reaction to ammonia. Ind. Eng. Chem. Res. 2022, 61, 14731–14746. [Google Scholar] [CrossRef]
- Gao, F.; Tu, X.; Yu, Y.; Gao, Y.; Zou, J.; Liu, S.; Lu, L. Core–shell Cu@ C@ ZIF-8 composite: A high-performance electrode material for electrochemical sensing of nitrite with high selectivity and sensitivity. Nanotechnology 2022, 33, 225501. [Google Scholar] [CrossRef]
- Wan, Y.; Zheng, Y.F.; Yin, H.Y.; Song, X.C. Au nanoparticle modified carbon paper electrode for an electrocatalytic oxidation nitrite sensor. New J. Chem. 2016, 40, 3635–3641. [Google Scholar] [CrossRef]
- Li, Y.; Deng, D.; Wang, H.; Huan, K.; Yan, X.; Luo, L. Controlled synthesis of Cu-Sn alloy nanosheet arrays on carbon fiber paper for self-supported nonenzymatic glucose sensing. Anal. Chim. Acta 2022, 1190, 339249. [Google Scholar] [CrossRef]
- Yu, Y.; Sun, D.; Liu, Y.; Zhao, Q.; Qin, Y.; Zhang, J. A novel electrochemical paper sensor for low-cost detection of 5-methyltetrahydrofolate in egg yolk. Food Chem. 2021, 346, 128901. [Google Scholar] [CrossRef]
- Wang, G.; Gao, J.; Sun, B.; He, D.; Zhao, C.; Suo, H. Enhanced ammonia sensitivity electrochemical sensors based on PtCu alloy nanoparticles in-situ synthesized on carbon cloth electrode. J. Electroanal. Chem. 2022, 922, 116721. [Google Scholar] [CrossRef]
- Sahoo, S.; Sahoo, P.K.; Sharma, A.; Satpati, A.K. Interfacial polymerized RGO/MnFe2O4/polyaniline fibrous nanocomposite supported glassy carbon electrode for selective and ultrasensitive detection of nitrite. Sens. Actuators B Chem. 2020, 309, 127763. [Google Scholar] [CrossRef]
- Vilian, A.T.E.; Umapathi, R.; Hwang, S.K.; Huh, Y.S.; Han, Y.K. Pd–Cu nanospheres supported on Mo2C for the electrochemical sensing of nitrites. J. Hazard. Mater. 2021, 408, 124914. [Google Scholar] [CrossRef]
- Nguyen, L.D.; Doan, T.C.D.; Huynh, T.M.; Dang, D.M.T.; Dang, C.M. Thermally reduced graphene/nafion modified platinum disk electrode for trace level electrochemical detection of iron. Microchem. J. 2021, 169, 106627. [Google Scholar] [CrossRef]
- Chen, Y.; Waterhouse, G.I.N.; Qiao, X.; Sun, Y.; Xu, Z. Sensitive analytical detection of nitrite using an electrochemical sensor with STAB-functionalized Nb2C@ MWCNTs for signal amplification. Food Chem. 2022, 372, 131356. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Lei, Q.; Li, J.; Hong, C.; Zhao, Z.; Xu, H.; Hu, J. Synthesis and enhanced electrochemical properties of AuNPs@ MoS2/rGO hybrid structures for highly sensitive nitrite detection. Microchem. J. 2022, 172, 106904. [Google Scholar] [CrossRef]
- Sundaresan, P.; Lee, T.Y. Facile synthesis of exfoliated graphite-supported cobalt ferrite (Co1.2Fe1.8O4) nanocomposite for the electrochemical detection of diclofenac. Microchem. J. 2022, 181, 107777. [Google Scholar] [CrossRef]
- Li, R.; Li, F.; Zhe, T.; Li, M.; Liu, Y.; Wang, L. Three-dimensional (3D) hierarchical structure engineering of AuNPs/Co (OH) 2 nanocomposite on carbon cloth: An advanced and efficient electrode for highly sensitive and specific determination of nitrite. Sens. Actuators B Chem. 2021, 342, 130061. [Google Scholar] [CrossRef]
- Hatamluyi, B.; Es’ haghi, Z.; Zahed F, M.; Darroudi, M. A novel electrochemical sensor based on GQDs-PANI/ZnO-NCs modified glassy carbon electrode for simultaneous determination of Irinotecan and 5-Fluorouracil in biological samples. Sens. Actuators B Chem. 2019, 286, 540–549. [Google Scholar] [CrossRef]
- Xu, K.; Chen, Q.; Zhao, Y.; Ge, C.; Lin, S.; Liao, J. Cost-effective, wireless, and portable smartphone-based electrochemical system for on-site monitoring and spatial mapping of the nitrite contamination in water. Sens. Actuators B Chem. 2020, 319, 128221. [Google Scholar] [CrossRef]
- Çelebi, N.; Temur, E.; Doğan, H.Ö.; Yüksel, A.K. The electrochemical fabrication of Cu@ CeO2-rGO electrode for high-performance electrochemical nitrite sensor. Diam. Relat. Mater. 2024, 143, 110907. [Google Scholar] [CrossRef]
- Xi Ma, J.; Ning, Y.; Yang, L.; Feng, Y.; Liu, Y. Preparation of reduced graphene oxide decorated with Cu-Co Oxide Electrode and its application for Sensitive Determination of Nitrite in Food Samples. Int. J. Electrochem. Sci. 2021, 16, 211255. [Google Scholar]
- Zhang, Y.; Nie, J.; Wei, H.; Xu, H.; Wang, Q.; Cong, Y.; Wu, X. Electrochemical detection of nitrite ions using Ag/Cu/MWNT nanoclusters electrodeposited on a glassy carbon electrode. Sens. Actuators B Chem. 2018, 258, 1107–1116. [Google Scholar] [CrossRef]
- Zhang, G.; Pan, P.; Yang, Z.; Niu, H.; Liu, J.; Zhang, C.; Liao, Z. Rapid synthesis of cypress-like CuO nanomaterials and CuO/MWCNTs composites for ultra-high sensitivity electrochemical sensing of nitrite. Microchem. J. 2020, 159, 105439. [Google Scholar] [CrossRef]
- Li, Y.; Wang, T.; Wang, T.; Li, L.; Gong, J.; Zhang, L.; Chen, W. Copper oxide nanoleaves covered with loose nickel oxide nanoparticles for sensitive and selective non-enzymatic nitrite sensors. Mater. Res. Bull. 2022, 149, 111712. [Google Scholar] [CrossRef]
- Chen, H.; Yang, T.; Liu, F.; Li, W. Electrodeposition of gold nanoparticles on Cu-based metal-organic framework for the electrochemical detection of nitrite. Sens. Actuators B Chem. 2019, 286, 401–407. [Google Scholar] [CrossRef]
- Majidi, M.R.; Saadatirad, A.; Alipour, E. Pencil lead electrode modified with hemoglobin film as a novel biosensor for nitrite determination. Electroanalysis 2013, 25, 1742–1750. [Google Scholar] [CrossRef]
Electrode Materials | Sensitivity (μA mM−1cm−2) | Linear Range (μM) | LOD (μM) | Detection Potential (V) | Reference |
---|---|---|---|---|---|
Cu@CeO2-rGO | 1963.2 | 10–2000 | 0.0101 | 0.8 V (vs. SCE) | [34] |
Cu-Co oxide NPs | 74.36 | 100–2800 | 0.5 | 0.75 V (vs. Ag/AgCl) | [35] |
Ag/Cu/MWNTs/GCE | 380.9 | 1–1000 | 0.2 | 0.85 V (vs. Ag/AgCl) | [36] |
CuO NPs/CC | 1656 | 0.5–3000 | 0.043 | 0.8 V (vs. SCE) | [15] |
CuO/MWCNTs/SPE | 501 | 0.1–6500 | 0.039 | 0.85 V (vs. Ag/AgCl) | [37] |
CuO/NiO/FTO | 496.6 | 1–1800 | 0.013 | 1 V (vs. SCE) | [38] |
Cu-MOF/Au | 17 | 0.1–4000 | 0.082 | 0.8 V (vs. SCE) | [39] |
PANI-NF | 845 | 0.2–3500 | 0.05 | 0.4 V (vs. SCE) | [17] |
Hb/PLE | 2047 | 10–220 | 5 | −1.75 V (vs. Ag/AgCl) | [40] |
Cu/CP | 2140 | 10–1000 | 0.079 | −0.05 V (vs. Hg/HgO) | This work |
Actual Samples | Initial (μM) | Added (μM) | Found (μM) | Recovery (%) | RSD (%, n = 3) |
---|---|---|---|---|---|
Drinking water | 0 | 10 | 9.87 | 98.7 | 1.06 |
20 | 19.24 | 96.2 | 1.44 | ||
50 | 50.78 | 101.6 | 1.89 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, X.; Zhou, G.; Qin, S.; Zhang, J.; Wang, G.; Gao, J.; Suo, H.; Zhao, C. In Situ Preparation of Metallic Copper Nanosheets/Carbon Paper Sensitive Electrodes for Low-Potential Electrochemical Detection of Nitrite. Sensors 2024, 24, 4247. https://doi.org/10.3390/s24134247
Zhao X, Zhou G, Qin S, Zhang J, Wang G, Gao J, Suo H, Zhao C. In Situ Preparation of Metallic Copper Nanosheets/Carbon Paper Sensitive Electrodes for Low-Potential Electrochemical Detection of Nitrite. Sensors. 2024; 24(13):4247. https://doi.org/10.3390/s24134247
Chicago/Turabian StyleZhao, Xing, Guangfeng Zhou, Sitao Qin, Jingwen Zhang, Guanda Wang, Jie Gao, Hui Suo, and Chun Zhao. 2024. "In Situ Preparation of Metallic Copper Nanosheets/Carbon Paper Sensitive Electrodes for Low-Potential Electrochemical Detection of Nitrite" Sensors 24, no. 13: 4247. https://doi.org/10.3390/s24134247
APA StyleZhao, X., Zhou, G., Qin, S., Zhang, J., Wang, G., Gao, J., Suo, H., & Zhao, C. (2024). In Situ Preparation of Metallic Copper Nanosheets/Carbon Paper Sensitive Electrodes for Low-Potential Electrochemical Detection of Nitrite. Sensors, 24(13), 4247. https://doi.org/10.3390/s24134247