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Abstract: With the transformation and development of the automotive industry, low-cost and
seamless indoor and outdoor positioning has become a research hotspot for modern vehicles equipped
with in-vehicle infotainment systems, Internet of Vehicles, or other intelligent systems (such as
Telematics Box, Autopilot, etc.). This paper analyzes modern vehicles in different configurations and
proposes a low-cost, versatile indoor non-visual semantic mapping and localization solution based on
low-cost sensors. Firstly, the sliding window-based semantic landmark detection method is designed
to identify non-visual semantic landmarks (e.g., entrance/exit, ramp entrance/exit, road node). Then,
we construct an indoor non-visual semantic map that includes the vehicle trajectory waypoints,
non-visual semantic landmarks, and Wi-Fi fingerprints of RSS features. Furthermore, to estimate
the position of modern vehicles in the constructed semantic maps, we proposed a graph-optimized
localization method based on landmark matching that exploits the correlation between non-visual
semantic landmarks. Finally, field experiments are conducted in two shopping mall scenes with
different underground parking layouts to verify the proposed non-visual semantic mapping and
localization method. The results show that the proposed method achieves a high accuracy of 98.1%
in non-visual semantic landmark detection and a low localization error of 1.31 m.

Keywords: indoor localization; multi-sensor fusion; non-visual semantic landmark; semantic
map construction

1. Introduction

As the automotive industry evolves, modern vehicles have transformed into intelligent
transportation units. For continuous localization and navigation in indoor and outdoor
environments, indoor location-based services (ILBSs) based on indoor mapping and local-
ization have become a focal point of research in academia and the industry [1]. However,
traditional indoor mapping approaches require human labor, low informatization level,
time consumption, and high cost. Moreover, they are often restricted by various factors
(e.g., privacy and vested interests) [2], making it challenging to obtain digital models of
buildings. Consequently, integrating data from multiple sensors from smart devices for
indoor mapping has gained favor among experts and scholars.

In recent years, indoor mapping and localization methods based on multi-sensor
fusion have rapidly developed. With the assistance of a variety of sensors (e.g., cameras [3],
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Light Detection and Ranging (LiDAR) [4], inertial measurement unit (IMU) [5], Wireless
Fidelity (Wi-Fi) [6], and ultra-wideband (UWB) [7]), innovative mobile platforms, includ-
ing mobile robots, smartphones, and intelligent vehicles/autonomous vehicles, exhibit
strong environmental perception capabilities. They can capture the distribution of features,
such as semantic markers and wireless signals in unknown indoor environments since
a user’s trajectory is related to many types of information, including visual landmarks,
Wi-Fi/Bluetooth fingerprints, and more. To reduce the defects of a single sensor, a variety
of multi-sensor fusion-based indoor mapping solutions have been proposed by experts
and scholars.

Currently, the widely used simultaneous localization and mapping (SLAM) approaches
include LiDAR-based SLAM [4], vision-based SLAM [8], and feature-based SLAM [6]. Al-
though LiDAR-based and vision-based SLAM have promising mapping results in previous
research works, they are based on the assumption that the scenes are static or the dynamic
elements constitute only a small proportion of the scenes [9]. However, underground
parking environments are filled with ever-changing dynamic elements, such as pedestrians,
vehicles, cargo, lighting conditions, etc. These dynamic elements vary in size, shape, and
speed. This usually leads to feature-matching errors, which affect the localization accu-
racy [8,10,11]. In addition, LiDAR SLAM or visual SLAM not only has strict requirements
for sensors and computing power but also cannot be used across platforms. Fingerprinting-
based indoor localization methods (e.g., Wi-Fi and Bluetooth) play a crucial role in assessing
landmark similarity [12,13]. Still, because some indoor environments may not have signals
and the localization accuracy needs to be improved, fingerprinting-based methods cannot
be used as a standalone method for high-precision localization. Nevertheless, low-level
feature-matching localization algorithms are time-consuming and have poor real-time
performance. Therefore, it is necessary to construct semantic venue maps suitable for
localization using high-level semantics.

With the development of sensors, mobile communication, and Internet of Things
(IoT) technology, modern vehicles have become increasingly powerful in computation,
interaction, communication, and perception. Now, most modern vehicles come equipped
with a variety of sensors with essential localization functions, including an Accelerometer
(ACC), Gyroscope (GYRO), Wi-Fi, Bluetooth, Global Navigation Satellite System (GNSS),
and more. With the widespread use of modern vehicles, especially for accessing indoor
parking facilities, mapping and localization methods based on modern vehicles have
become a valuable research direction. The indoor mapping and localization method can be
widely applied in indoor road navigation, autonomous driving (such as automated valet
parking and vehicle summoning), emergency response, and other fields [14].

Currently, there are indoor map construction and localization methods based on
visual and LiDAR, but these methods are only suitable for intelligent vehicles equipped
with high-precision sensors such as cameras and LiDAR, lacking general applicability.
Considering the impact of dynamic factors in indoor environments and the diversity of
sensors equipped on modern vehicles, this paper proposes a low-cost indoor non-visual
semantic map construction method based on ordinary modern vehicles. This method aims
to solve modern vehicles’ mapping and localization in unknown indoor environments; the
constructed non-visual semantic map can be used in future crowdsourcing mapping and
also to meet the location service needs of smartphones within the indoor environment in
the future. The non-visual semantic landmarks in this work are innovatively defined as
the meaningful waypoints on the vehicle’s trajectory, such as entry/exit, slope entry/exit,
and road node (i.e., intersection points of roads). Then, a sliding window-based semantic
detection method is introduced to detect the non-visual semantic landmarks. This method
uses the mileage as the window size, extracts multidimensional signal features from sensors,
and detects the non-visual semantic landmark according to the signal features and their
changes at window joint points (i.e., points where two sliding windows connect) or in
the window. We use a sliding window-based fusion algorithm to process Wi-Fi signals to
improve the confidence and stability of Wi-Fi fingerprints. Finally, we associate semantic
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landmarks and Wi-Fi fingerprints with waypoints to construct a lightweight trajectory
non-visual semantic map of the venue.

To estimate the vehicle’s position in the venue map (i.e., the constructed trajectory
non-visual semantic map), we propose a landmark matching-based localization method
assisted with graph optimization. The novel landmark matching approach uses the geom-
etry relationship between non-visual semantic landmarks to iteratively match semantic
landmarks between the new trajectory map (i.e., the new trajectory map built online for
positioning) and the venue map. Then, the matching relationship of map components in
the map optimization window is used to update the location of each component in the
new trajectory map on the venue map, and the graph optimization algorithm is applied to
enhance the localization performance further.

In summary, the main contributions of this paper are as follows:

(1) For mapping in unknown indoor environments with a modern vehicle, a non-visual
semantic landmark detection and non-visual semantic map construction method is
proposed. The lightweight semantic map consists of waypoints, Wi-Fi fingerprints,
and non-visual semantic landmarks.

(2) To accurately estimate the location of modern vehicles on the venue map, a feature-
matching-based localization method is proposed. The geometry relationship between
non-visual semantic landmarks is used for iterative landmark matching. The graph
optimization algorithm is utilized to enhance the positioning accuracy of modern
vehicles on indoor semantic maps.

(3) The proposed non-visual semantic map construction and localization methods are
experimentally validated, demonstrating their effectiveness in addressing low-cost
indoor localization and navigation issues for modern vehicles, especially in scenarios
of indoor parking lots.

2. Related Works
2.1. Semantic Detection and Map Construction

Sensor data for environmental perception are essential in constructing semantic
maps [15]. Currently, sensors such as LiDAR and cameras in single-device platforms
are commonly used to build semantic maps. The widely used cameras include monocular
cameras, stereo cameras, and RGB-D cameras. LiDAR provides high-frequency, long-range,
and centimeter-level high-precision measurements, unaffected by lighting conditions, and
requires relatively low computational performance. The main LiDAR-based SLAM ap-
proaches include filter-based SLAM (such as particle filters and extended Kalman filters
(EKFs)) [16–20], and graph optimization-based SLAM (such as least squares, factor graphs,
and so on) [21–23]. However, LiDAR-based SLAM is unsuitable for large open environments
and utilizes high-cost sensors. Moreover, the constructed maps lack semantic information.

Compared to LiDAR, visual-based SLAM can extract more semantic information from
images and is applicable to a wider range of scenarios, while the sensors used in these
methods are relatively low-cost. For example, the visual SLAM can form grayscale or
color images compared to the point cloud acquired by the LIDAR SLAM [21]. Main visual
SLAM methods include direct method [24] (e.g., DSO [25,26], SVO [27], VIO [28]) and
feature-based methods (e.g., DP-SLAM [8], ORB-SLAM2 [29]). In our team’s prior research,
Chai et al. presented a vanishing point-assisted VI-SLAM in 2021, utilizing vanishing
points to reduce drift errors of the SLAM system and improve the pedestrian’s trajectory
estimation accuracy [30]. Subsequently, Li et al. proposed VI-SLAM based on deep learning
and spatial constraints in [31], aiming to distinguish dynamic and static semantic targets in
the scene. However, visual SLAM is inherently affected by the limitations of visual sensors.
Firstly, monocular, stereo, and depth camera systems are sensitive to environmental lighting
and optical textures. Secondly, captured images may lack texture and can become blurry
when the platform moves at high speeds [32,33]. Moreover, the visual SLAM does not
need depth information but does require powerful GPU support. These weaknesses often
limit the industrial application of visual SLAM. In 2019, Chai et al. proposed methods to
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identify and update non-visual semantic landmarks on the vehicle’s trajectory (also known
as trajectory landmarks) for the first time and published the corresponding patents [34,35];
the related technology has already been applied in some new types of intelligent vehicles
to assist indoor automated valet parking.

2.2. Indoor Localization

As a core component of location-based services (LBSs), indoor localization garnered
significant attention from scholars worldwide. Many researchers advocated combining
Recurrent Neural Networks (RNNs) with sensor data to address indoor positioning chal-
lenges. In reference [36], the magnetic-based localization approach was viewed as an
approximation problem of recursive functions. They trained Long Short-Term Memory
Networks (LSTMs) using time-series magnetic field data created through dual-sliding
windows to determine the user’s location. Shu [37] introduced directional information in
the fingerprint construction and localization process, achieving accurate positioning results
using multiscale RNNs and ensemble learning mechanisms. However, collecting magnetic
feature datasets or sequences of magnetic field signals in advance entails substantial human
and time costs, making it less feasible for large-scale deployment.

Wi-Fi-based localization methods could achieve meter-level location accuracy in in-
door environments with high adaptability and low cost. This approach comprises two main
methods: triangulation and fingerprinting [38,39]. Triangulation relies on pre-acquiring
the coordinates of Wi-Fi transmitters, and it is sensitive to environmental factors. Conse-
quently, the fingerprinting approach became the mainstream approach, such as nearest
neighbor techniques [40,41] (e.g., K-nearest neighbor, WKNN) and maximum likelihood
probability techniques. In previous research by our team, Chai presented a landmark
matching location method that fuses Wi-Fi, PDR, and visual semantic information [42].
This method achieved low positioning error (less than half a meter) in office building
scenes for a single-trajectory semantic map. Moreover, the graph optimization algorithm
was introduced in our work [43] to further enhance localization accuracy. Reference [44]
proposed a novel location method based on local and global node similarity, aiming to
reduce storage space while preserving node information.

Inspired by the work described in [42–44], this paper constructs a lightweight se-
mantic map that includes non-visual semantic landmarks, Wi-Fi fingerprints, and way-
points. Based on this foundation, a landmark (non-visual semantic and Wi-Fi fingerprints)
matching-based graph optimization localization algorithm is proposed.

3. Semantic Map Construction and Indoor Localization

The map construction and localization system proposed in this paper is illustrated
in Figure 1. The first part involves multi-sensor-assisted non-visual landmark detection,
utilizing IMU measurements, GNSS data, light sensor data, and odometer data as inputs.
This paper employs a sliding window-based non-visual semantic landmark detection algo-
rithm to identify non-visual semantic landmarks. The second part focuses on constructing a
single-trajectory semantic map, encompassing waypoints, non-visual semantic landmarks,
and Wi-Fi fingerprints. The third part introduces a landmark matching-based localization
method assisted with graph optimization, enabling the intelligent vehicle to determine its
position in the preconstructed semantic map.

3.1. Non-Visual Semantic Landmark Detection

The partial landmark information used for constructing trajectory maps needs to be
identified by using motion and localization sensors. These landmarks are known as non-
visual semantic landmarks and serve as crucial references for subsequent vehicle trajectory
matching and location. As non-visual semantic landmark is associated with real-time
mapping and localization, it must meet the following criteria:

i. It should be reproducible during localization and navigation in the mapping venue;
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ii. It can be detected by low-cost inertial and localization sensors with low computational
requirements;

iii. The quantity and quality of non-visual semantic landmarks should be sufficient for
mapping and localization.
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Figure 1. An illustration of the proposed system structure. I. Non-visual semantic detection, II. map
construction, and III. matching and localization (the black, red and cyan dots represent the waypoint,
non-visual semantic Landmark and Wi-Fi fingerprint, and the green lines represent the matching
relationship of non-visual semantics between the venue map and the trajectory map).

To achieve the above criteria, we analyzed widely used sensors mounted on modern
vehicles, such as ACC, GYRO, GNSS receiver, light sensor, and odometer. As a result,
we classified non-visual semantic landmarks as entry/exit, slope entry/exit, and road
node. The corresponding sensors, key features, and auxiliary features used for non-visual
semantic landmark detection are summarized in Table 1.

Table 1. The corresponding sensors, key features, and auxiliary features used for non-visual semantic
landmark detection.

Type Key Features Auxiliary Features Sensors

entry/exit GSV Light intensity GNSS receiver,
light sensor

slop entry/exit Pitch angle ACC GYRO, ACC

road node Yaw angle Curvature, scale GYRO, ACC

3.1.1. Data Preprocessing

Before semantic landmark detection, this paper preprocesses raw measurements
collected by the inertial sensors (GYRO and ACC), GNSS receiver, odometer, and light
sensor. Specifically, to standardize the data format, all data are synchronized using a time
synchronization table to unify the time to Coordinated Universal Time (UTC) and assign
the odometer data for synchronized data. The speed estimated by the vehicle odometer
is used as an external observation to correct the speed estimation of IMU, producing the
accurate vehicle dead reckoning (VDR) trajectory. Additionally, data from the ACC, GYRO,
light intensity, and Global Satellite Visibility (GSV) are extracted to reduce data redundancy.
It is important to note the processing and extraction of GSV data. Since vehicles typically
receive signals from multiple satellites during operation, further processing is necessary
for accurate entrance and exit identification. Elevation angles and signal strength data of
each satellite in each frame of the GSV signal are extracted. Satellites with elevation angles
exceeding a predetermined threshold (high elevation angles) are selected as valid satellite
data. The composite signal strength (snrjj,m) for each frame is then calculated by weighted
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averaging the signal strengths snrjj,ii from the valid satellites. The formula for snrjj,m is
defined as follows:

snrjj,m =
∑
(
snrjj,ii × sin

(
elvjj,ii

))
∑ sin

(
elvjj,ii

) (1)

In (1), snrjj,ii and elvjj,ii represent the signal strength and corresponding elevation
angle of the (ii)th valid satellite in the (jj)th frame, respectively.

3.1.2. Semantic Landmark Detection

To detect entry/exit and slope entry/exit, this paper introduces the concept of joint
points within sliding windows, as illustrated in Figure 2. To maintain the spatial consistency
of various signal features and to meet the detection needs of different non-visual semantics,
multiple sliding windows are created with distance scale. The signal features within each
sliding window are computed. When joint points between windows are generated, they
are extracted, and the changes in various features between the two windows adjacent to
the joint points are calculated. These feature change values are then input into a Spark
logical regression model that has been trained with various semantic features and labeled
data. The model calculates the confidence level of the joint points as potential semantic
landmarks. Based on a predefined confidence threshold, candidate joint points for different
types of landmarks are initially selected. Subsequently, landmark selection windows are
extracted according to the positions of all candidate joint points in the trajectories. Within
these windows, the candidate with the highest confidence is chosen as the specific type of
trajectory landmark, and landmark data (e.g., type, attributes, and mileage) are computed.
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The detection of road nodes varies slightly from the semantic detection described
above. The detection of road nodes primarily depends on the changes in heading angle
△ψ, trajectory curvature κ, and the aspect ratio γ of triangles (formed by the start, middle,
and end points of a sliding window) within a sliding window. The midpoint of the window
serves as the candidate point for node landmarks. The diagram of the road node’s features
in a sliding window is shown in Figure 3.

∆ψ = mean(ψA−C)− mean(ψC−B);
κ =

lA−C×lB−C×lA−B
S∆ABC

;

γ =
lA−B
lA−C

(2)
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In (2), ψA−C and ψC−B, respectively, represent the heading angles of each waypoint
between point A and point C and from point C to point B.

3.2. Single-Trajectory Semantic Map Detection
3.2.1. Wi-Fi Fingerprint Collection

Wi-Fi fingerprints are collected simultaneously when the vehicle is moving along the
trajectory of mapping or localization. To mitigate the impact of non-line-of-sight propaga-
tion, co-channel interference, and mobile access points on the received signal strength of
an access point (AP), this paper employs a sliding window-based Wi-Fi fingerprint fusion
method to enhance the stability of Wi-Fi fingerprints [42]. The timestamp of fused Wi-Fi
fingerprints is updated as the mean of all the fingerprints within the sliding window. The
maturity of fused APs is the number of occurrences of that AP in the sliding window. The
received signal strength (RSS) of fused AP is calculated as the average of that AP within
the sliding window. The fused APs are sorted by the RSS.

3.2.2. Map Construction

The single-trajectory semantic map serves as a prerequisite for subsequent vehicle local-
ization. This map consists of feature units (e.g., waypoints, non-visual semantic landmarks,
and Wi-Fi fingerprints) and their feature information, including maturity, confidence, signal
strength, coordinate, and heading angle. Figure 4 illustrates the relationships among these
feature units in a single-trajectory semantic map. In the constructed single-trajectory seman-
tic map, waypoints are associated with Wi-Fi fingerprints through UTC, while trajectory
semantic landmarks are linked to waypoints according to mileage features. However, due
to the lack of strong direct associations between non-visual semantic landmarks and Wi-Fi
fingerprints, they cannot be directly associated. To reduce data redundancy and achieve
map lightweight, only waypoints, non-visual semantic landmarks, and Wi-Fi fingerprints
are retained in the map file.
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Figure 4. The association relationship among the waypoints, non-visual semantic landmarks, and
Wi-Fi fingerprints in a single-trajectory semantic map.

3.3. Localization
3.3.1. Landmark Matching

A single-trajectory semantic map of a specific scene is constructed and used as a
venue map for localization. When the intelligent vehicle is near the parking area, it starts
to acquire sensor data. The real-time construction of the trajectory map for a modern
vehicle is achieved using the mapping method. To achieve continuous outdoor and indoor
localization, this paper utilizes a landmark matching-based localization method assisted
with graph optimization to estimate the vehicle’s location in the built venue map. The
proposed localization algorithm includes two phases: initial matching localization and
secondary matching localization.

In the initialization matching phase, if there are semantic landmarks in the sliding
window of the trajectory map, preliminary matching of non-visual semantic landmarks is
performed according to their types. Otherwise, only Wi-Fi fingerprinting is conducted. Mul-
tiple semantic landmarks in the venue map may correspond to the unmatched landmarks
in the trajectory map. Therefore, one-to-one correspondence of the non-visual semantic
landmarks between the trajectory and venue map is realized by Wi-Fi fingerprinting. It is
important to note that this phase needs to complete the matching for landmarks since it
serves in the secondary matching localization.

In this phase, the landmark matching quality ScoreM is defined as follows:

ScoreM = (µN × DisN−N + µW × DisW−W)−1 (3)

In (3), DisN−N and DisW−W denote the distances of matched non-visual semantic
landmarks and Wi-Fi fingerprints between the new trajectory map and the scene map. µN
and µW represent the weights. DisW−W directly reflects the degree of Wi-Fi fingerprint
matching and is composed of a weighted combination of the Euclidean distance (Diseuc)
and sequence distance (Disseq) of Wi-Fi fingerprints, and it is defined as follows:

DisW−W = ωeuc × Diseuc + ωseq × Disseq (4)

In the secondary matching localization phase, non-visual semantic landmark matching
becomes the primary method since Wi-Fi equipment may be absent in indoor underground
parking areas. The rules for non-visual semantic matching in this phase rely on the
correlation between the semantic landmarks to be matched and the already matched
semantic landmarks, primarily considering height, angle, and distance relationships.
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Assuming that there are V non-visual semantics in the scene map, and there are
already m(m ≥ n) semantics matched between the new trajectory map and the venue map,
St,i and Sv,i represent the (i)th matched non-visual semantics in the trajectory map and
the venue map, respectively. The matching rule for the (m + 1)th non-visual semantic
landmark is defined as follows:

min


ςP

(
m
∑

i=m−n+1
(Pt,m+1 − Pt,i)−

m
∑

i=m−n+1

(
Pv,j − Pv,j

))
+

ςθ

(
m
∑

i=m−n+1
(θt,m+1 − θt,i)−

m
∑

ii=m−n+1

(
θv,j − θv,j

))
+

ςh

(
m
∑

i=m−n+1
(ht,m+1 − ht,i)−

m
∑

i=m−n+1

(
hv,j − hv,j

))

, (j ∈ V) (5)

In (5), P, θ, and h represent the position, angle, and height of the non-visual semantic
landmarks, respectively, and ςP, ςθ and ςh are the corresponding weights, respectively.

3.3.2. Graph Optimization-Based Localization

While ensuring the association relationship between components (non-visual semantic
landmarks, Wi-Fi fingerprints, and waypoints) in each map and matching relationship
between maps, we employ a graph optimization-based method to maximize the alignment
between the trajectory map and venue map, thereby reducing location errors. When
constructing the graph optimization model, this paper uses associations as edges and
considers waypoints, non-visual semantic landmarks, and Wi-Fi fingerprints as vertices.
We find a matrix β f through the association relationship and the matching relationship,
which minimizes the loss function ferr, and then the Gauss–Newton method is used to
achieve the optimization purpose:

β f+1 = β f − H−1 ∗ ∇ ferr (6)

In (6), ∇ ferr represents the gradient vector of the loss function ferr at β f , and H is the
Hessian matrix of the loss function ferr.

During localization, the landmarks within the optimization window of the trajectory
map are used as target landmarks to match with the venue map. This process calculates
the rotation and translation matrix and updates the positions of waypoints, semantic
landmarks, and Wi-Fi landmarks on the map using the graph optimization method. After
the rotation and translation, the position Pt of the intelligent vehicle platform on the indoor
semantic map is defined as follows:

Pt = TtPE (7)

In (7), Tt represents the rotation and translation matrix of the local map, and PE repre-
sents the original position coordinates of the intelligent mobile platform on the local map.

4. Experiments

This section first describes the experimental equipment and test fields and then
presents the results of the field experiments.

4.1. Experiments Setup

To verify the effectiveness of the mapping and localization system proposed in the
previous sections, we selected the AITO M5 Standard Edition intelligent vehicle platform
as the test device, which is equipped with a BOSCH SMI240 IMU, a u-blox NEO-M8Q-10A
GNSS module, an Espressif ESP32-S2 Wi-Fi module, and an ams-osram SFH 5711-2/3-Z
light sensor. The basic parameters of the SMI240 IMU are range: ±300◦/s (Ω), ±16 g
(a); gyro offset error: ±5◦/s. The experiments were conducted in two shopping malls
located in Shanghai as shown in Figure 5. The tester drove the modern vehicle from the
outdoors, entering the indoor parking lot through the same entrance, simulating the typical
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user experience of navigating within an indoor parking lot. Subsequently, they exited
through the same exits. This experiment was conducted six times, with three repetitions
for each scene. The intelligent vehicle traveled distances of 1091.7 m in mall 1 and 1136.7 m
in mall 2. While the routes in each scene remained consistent, there were variations in
driving time and vehicle speed. Due to the differences in the sensors configured in different
types of modern vehicles, to realistically simulate the system’s performance across various
types of modern vehicles, we used the odometer-optimized vehicle’s trajectory map as
the venue map for both scenes and did not use the odometer-optimized trajectory map
for localization.
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Figure 5. A schematic diagram of the experimental scene. (a) is a schematic of the floor B3 in the mall
1 scene and (b) is a schematic of the floor B4 in the mall 2 scene.

4.2. Non-Visual Semantic Landmark Detection Result

The choice of the sliding window size significantly impacts the effectiveness and
precision of non-visual semantic landmark detection. Therefore, the selection of the window
scale should meet two criteria: (i) the precision requirements for detection and (ii) the
recognition needs of different types of non-visual semantic landmarks. Thirty sets of data
were respectively employed to train Spark logistic regression models for the recognition of
entry/exit, slop entry/exit, and road node. The semantic detection rate and precision were
determined by contrasting them with video image timestamps. The results of the semantic
detection effectiveness, compared with the ground truth, are presented in Table 2.

Table 2. Detection effect of non-visual semantic landmarks in two mall scenes.

Mall False Rate Miss Rate Error of Location (m)

mall 1 1.90% 1.90% 1.39
mall 2 0.00% 7.61% 1.89

4.3. Localization in Venue Map

To estimate the vehicle’s location in the constructed map and validate the effect of
the proposed landmark matching-based graph optimization localization method in the
underground parking, this paper set the requirement to complete the matching of the first
4 semantics in the trajectory map during the initialization location phase. The non-visual
semantic matching result between the trajectory map and the venue map is shown in
Figure 6. The black line indicates the venue map, the blue line indicates the trajectory map,
and the green line indicates the matching relationship between the non-visual semantics.
Figure 7 shows the final localization result based on landmarks matching. Please note
that due to factors such as errors in trajectory estimation and mapping during the map
construction, there are slight misalignments between the semantic map and the background
map provided by AMAP.
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Figure 6. Non-visual semantic landmark matching results between the trajectory map and the venue
map in two mall scenes. (a,b) represent the results of non-visual semantic landmark matching in mall
1 and mall 2. Red star represents road node, green and red triangle represent slop entry/exit, green
and red square represent entry/exit. Black line indicates the waypoints of the constructed scene map,
the blue line indicates the waypoints of the new localization map, and the cyan line represent the
matching relationship of non-visual semantics between the venue map and the new localization map.
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Figure 7. The localization results based on non-visual semantic landmark matching. (a,b) represents
a schematic diagram of 2D and 3D localization results in mall 1. (c,d) represents a schematic diagram
of 2D and 3D localization results in mall 2. The blue line indicates the constructed scene map, and the
green line indicates the new localization map.

The approximate locations of the trajectory map relative to the semantic landmarks in
the non-visual semantic map were compared to the ground truth locations, and cumulative
distribution functions (CDFs) of localization errors were calculated. Compared with the
Wi-Fi fingerprinting-based localization, the landmark matching-based localization method
has higher localization accuracy, as shown in Figure 8. From the mall 1 scene, the average
localization error of the proposed landmark matching-based localization method is 1.41 m.
Meanwhile, the average localization error of the Wi-Fi fingerprinting-based localization
method is 2.62 m. Additionally, in the mall 2 scene, the average localization error of
the proposed landmark matching-based localization method is 1.34 m, representing an
improvement of 59.64% compared to the Wi-Fi fingerprinting-based localization method.
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5. Conclusions

This paper proposes a map construction and location system for unknown indoor
environments. The system relies on the IMU, odometer, light sensor, Wi-Fi receiver, and
GNSS receiver equipped with the modern vehicle. To reduce the adverse impact of dynamic
factors on the semantic map, this paper uses the novel non-visual semantic landmark
based on fixed position to build a semantic map, uses a sliding window-based method to
detect the non-visual semantic landmark, and then builds a lightweight indoor non-visual
semantic map that includes waypoints, semantic landmarks, and Wi-Fi fingerprints. To
estimate the position of the modern vehicle in the venue map, the localization method
realizes the matching of non-visual semantic landmarks between the trajectory map and
the venue map by using the relationship of non-visual semantic landmarks. On this basis,
the graph optimization method is used to further improve the localization accuracy. Finally,
the performance is verified in two underground parking scenes with different layouts.
The results show that the proposed method can be used to address the lost-cost indoor
localization problems of various modern vehicles.

However, the single-trajectory non-visual semantic map often cannot cover all areas
of the indoor scene; it is necessary to fuse a number of single-trajectory maps from multiple
vehicles to build a complete indoor non-visual semantic map, namely crowdsourced
mapping, which is also our current research direction. In addition, crowdsourced mapping
can further enhance the maturity of Wi-Fi fingerprints and reduce detection and location
errors of non-visual landmarks.
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