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Abstract: Huge waves caused by typhoons often induce severe disasters along coastal areas, making
the effective prediction of typhoon-induced waves a crucial research issue for researchers. In recent
years, the development of the Internet of Underwater Things (IoUT) has rapidly increased the
prediction of oceanic environmental disasters. Past studies have utilized meteorological data and
feedforward neural networks (e.g., BPNN) with static network structures to establish short lead
time (e.g., 1 h) typhoon wave prediction models for the coast of Taiwan. However, sufficient lead
time for prediction remains essential for preparedness, early warning, and response to minimize the
loss of lives and properties during typhoons. The aim of this research is to construct a novel long
lead time typhoon-induced wave prediction model using Long Short-Term Memory (LSTM), which
incorporates a dynamic network structure. LSTM can capture long-term information through its
recurrent structure and selectively retain necessary signals using memory gates. Compared to earlier
studies, this method extends the prediction lead time and significantly improves the learning and
generalization capability, thereby enhancing prediction accuracy markedly.

Keywords: IoUT; typhoon waves; typhoon parameters; Long Short-Term Memory; long lead time
prediction

1. Introduction

The Internet of Things (IoT) is a network system composed of interconnected devices,
including computing devices, machines, and digital mechanism equipment, without requir-
ing additional interaction between humans or between humans and devices. IoT allows
the exchange of information among IoT devices through cloud connectivity. IoT devices
can often collect information via small single-board computers’ sensors and share the data
after edge computing and data analysis [1]. The Internet of Underwater Things (IoUT) is a
network structure composed of several interconnected sensors that can be used to achieve
underwater detection, environmental monitoring, and oceanic disaster prediction [2].

Taiwan is located on the path of typhoons in the northwest Pacific Ocean and is
affected by an average of three to four typhoons yearly. Long-period waves are generated as
typhoons with strong winds and massive energy pass over the ocean surface. As typhoons
approach land, the waves are shoaling due to the influence of the topography, and the
wave height further increases. This process causes flooding in low-lying coastal areas and
may damage seawalls and lead to coastal erosion, resulting in a loss of lives and properties.
In recent years, global warming has intensified climate change, increasing the frequency
and intensity of extreme weather events and raising the risk of typhoon disasters [3–5].
Collecting typhoon information and developing rapid analysis and prediction tools have
become important challenges in coastal engineering protection [6,7].

In general, typhoon wave prediction methods can be divided into the following three
types: (1) empirical methods based on statistics regression or experience used for rapid
initial predictions, such as the SMB method [8]; (2) hydrodynamic models based on physical
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principles, for example, the SWAN model [9,10] and WW3 model [11]; and (3) data-driven
models (e.g., neural networks) [12–14]. Empirical methods utilize parameters related to
typhoons, such as the maximum wind speed, forward speed, equivalent fetch length, and
radius of the typhoon, to estimate the maximum significant wave height that may occur
within the wind field [8,15,16]. Regression analysis can provide simple and rapid estimates
of typhoon-induced waves. However, these methods can only roughly describe possible
wave heights and periods. Furthermore, the formula needs to be adjusted in different water
depth conditions, which also require empirical accumulation and judgment.

Hydrodynamic models constructed from a physical perspective are primarily used
for broad-scale wave estimation, such as the Wave Analysis Model (WAM) based on the
wave energy balance equation (WAMDI Group). Subsequent research incorporated physi-
cal evolution mechanisms into the balance equations to more comprehensively describe
the changes in wave shoaling and dissipation near shorelines, resulting in the SWAN
model [9,10]. Numerical models can provide more information, such as wave height,
period, and direction at various depths. However, they require numerous input parameters,
and adjustments to relevant parameters are necessary when applied in different marine
areas, increasing the complexity of typhoon wave estimation and reducing computational
efficiency.

Data-driven models involve learning from experience the single or multiple influenc-
ing parameters to obtain the prediction results of typhoon waves at the study location of
interest. It contains various branches, but artificial neural networks have been the most
popular method in the past 20 years, mimicking the human brain in learning complex rules
from abundant data [17]. Such methods overcome the limitations of regression empirical
models in describing nonlinear data and, due to not requiring detailed spatial informa-
tion, offer computational benefits over traditional hydrodynamic wave models, providing
them an alternative method for typhoon wave prediction [12,13,18–20]. Although artificial
neural network models have these advantages, their static network structure is limited in
handling time-dependent data. The practice process of the network model in each data
point is independent, meaning that the network parameters are reset after processing each
data point [21,22]. This presents challenges in accurately representing time-dependent
atmospheric and oceanic conditions, such as typhoon waves [23–26].

Deep learning methods have been rapidly developed in recent years, among which
recurrent neural networks (RNN) with circular structures can capture the relevance of
sequential information in oceanic and atmospheric conditions prediction (such as significant
wave height) better than traditional artificial neural networks (ANNs) results [27,28]. Long
Short-Term Memory (LSTM) is a method that adds two additional memory gate cells to
the original RNN structure, handling the issue of forgetting previous information after
long-term learning in RNN [29,30]. This method allows researchers to improve time series
prediction results in hydraulic and oceanic engineering [27,31–33].

Previous research has identified two challenges in data-driven models: (1) the selec-
tion of input parameters and (2) the limited prediction lead time for predictions. Building
upon the authors’ experience in typhoon-induced surge prediction models [34], this study
carefully selects typhoon parameters as inputs. It utilizes LSTM to establish an accurate
and long lead time typhoon wave prediction model. By leveraging the time-dependent
structure of LSTM, this approach aims to improve the accuracy of typhoon-induced wave
prediction and extend the prediction lead time. The results of the comparison between the
backpropagation neural network (BPNN) and the LSTM methods to evaluate the effective-
ness of the LSTM method in prediction improvement will be presented in the subsequent
sections. The study area and data collection will be described in Section 2. Section 3
will introduce the structures of LSTM and BPNN. A comparison of the prediction results
between deep learning methods and backpropagation neural network methods, along with
the improvement performance, will be presented in Section 4. Finally, conclusions will be
presented in Section 5.
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2. Study Site and Data Collection

Taiwan’s government proposed the policy of ‘Nuclear-Free’ in September 2016, vigor-
ously promoting energy transition. It plans to install over 1000 offshore wind turbines on
the western coasts of Taiwan (e.g., Hsinchu and Changhua counties). However, it faces a
crucial challenge from natural disasters, particularly typhoons. Owing to their propagation
track in the northwest Pacific, numerous typhoons would affect or even invade Taiwan
every summer and autumn and may cause severe damage to people and property. When
typhoons approach the coastline, nearshore waves are affected by their intense wind shear
stress and strengthened by the shallowing of the topography, leading to enormous waves
being generated. This poses a severe threat to offshore wind turbines, as evidenced by the
damage caused during Typhoon Soudelor in 2015, which resulted in the destruction of six
turbines and a loss of NTD 7.8 billion.

In recent years, the Zhunan offshore area has been selected as a site for offshore wind
power development. Therefore, this study chose the nearby Hsinchu station as the research
area. Typhoon information was collected from the Central Weather Administration (CWA)
database from 2006 to 2017. Among the typhoon paths that most significantly affect the
Hsinchu area is No. 2, as shown in Figure 1. This study utilized nine typhoon events
(detailed in Table 1). The collected data revealed several severe extreme wave events,
defined as significant wave heights exceeding 6 m. The most noteworthy was during
Typhoon Jangmi in 2008, with a maximum significant wave height reaching 12.45 m. Table 1
lists the characteristics of all typhoon events, including minimum central pressure (Pc),
10-min maximum average wind speed (Vc), typhoon radius (R7), and maximum significant
wave height (Hs). The parameters were collected from the CWA typhoon warning report.
Moreover, it also provided the latitude and longitude information of the typhoon center,
and the distance (L) and relative angle (θc) could be determined by the before-and-after
moment (i.e., the interval time step is one hour). Finally, the forward speed (UF) and angle
(θF) were also calculated.
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Table 1. Central pressure (Pc), maximum wind speed (Vc), and radius (R7) of typhoons, as well as
maximum significant wave heights (Hs) in historical events.

Name Year Path Pc
(hPa)

Vc
(m/s)

R7
(km)

Max. Hs
(m)

Bilis 2006 2 978 25 300 3.34
Krosa * 2007 2 925 51 300 8.94

Kalmaegi 2008 2 970 33 120 2.29
Sinlaku 2008 2 925 51 250 3.54
Jangmi 2008 2 925 53 280 12.45
Saola 2012 2 960 38 220 4.76

Soulik * 2013 2 925 51 280 5.78
Dujuan 2015 2 925 51 220 8.07
Nesat 2017 2 955 40 180 3.41

* indicates validation events.

The wave data mentioned above were collected by marine meteorological data buoys
established by the CWA. These buoys rely on observation techniques and data quality
control from NOAA to create a localized observation system in Taiwan [35,36]. With a
diameter of approximately 2.5 m (as shown in Figure 2), each buoy is equipped with a
TRIAXYS wave sensor from the TRIAXYS company and a helical anemometer for wind
measurement. The main parameters observed include waves, wind, air temperature, air
pressure, and sea surface temperature. The wave parameters were calculated from the
observed raw data from the Accelerometer–Tilt–Compass (ATC) sensors. The specifications
and analysis techniques of the wave sensors were presented by Dong et al. and Lin
et al. [37,38]. Power is provided by solar panels stored in batteries, and data are primarily
transmitted in real time via wireless radio, GSM, GPRS, and satellite equipment.
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Figure 2. Oceanographic data buoy of Central Weather Administration, Taiwan (source: Central
Weather Administration, Taiwan).

3. Long Short-Term Memory and Backward Propagation Neural Network

The driving force of typhoon waves mainly comes from the wind shear stress and
central pressure. Effective input parameter selection is crucial for typhoon wave prediction.
Earlier studies have used the maximum wind speed of the typhoon and the angle between
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the typhoon and the data buoy as training factors for artificial neural networks, yielding
results with prediction lead times of 1 to 3 h [12]. However, with increasing prediction lead
time, more effective factors are considered to describe the correlation between the typhoon
center and the data buoy to avoid reducing the training effectiveness.

In prior research, the author attempted to use the typhoon’s central pressure and
maximum wind speed as driving forces and also employed the distance and relative angle
between the typhoon center and the data buoy to describe their relationship. Additionally,
the forward speed and angle of the typhoon, as well as the radius of maximum winds,
were used to present the changes in the typhoon’s impact on the data buoy at each moment.
These factors were used as input parameters, resulting in a good performance in long lead
time prediction (t + 12 h) of typhoon storm surges [34]. However, compared to storm surges,
the process of generating typhoon waves is more stochastic due to weather influences,
posing a more significant challenge for training neural network systems [18,39]. It implies
that it may be more challenging for traditional static network models (such as BPNN) to
describe this process effectively [40]. In addition, the topography and friction disrupt the
eyewall and structure of typhoons as they propagate across the Central Mountain Range
(CMR), causing the lower-level center of the typhoon to weaken gradually. This study
attempts to improve typhoon wave prediction results using LSTM.

The following sections will introduce the network structures of BPNN and LSTM, two
data-driven modeling approaches.

3.1. Long Short-Term Memory Method

Long Short-Term Memory is a type of recurrent neural network (RNN) that includes
three gates controlling the network’s learning content: the input gate, output gate, and
forget gate, as depicted in Figure 3a. The forget gate primarily determines data retention or
forgetting by setting a threshold value. As recurrent networks have only one hidden state,
they suffer from severe problems of vanishing gradients and exploding gradients. LSTM
addresses this issue by adding a cell state structure to the recurrent network, allowing long-
term data retention. This feature highlights LSTM’s powerful memory capacity, improving
prediction accuracy when dealing with large amounts of oceanic and atmospheric data [41].

First, the memory cell stores an initial value called C. Upon inputting new data
Zi(t − 1), the latest value g(Zi(t)) can be obtained through multiplication with the hyper-
bolic activation function. The flow of new information into the memory cell is controlled
by the input gate. Subsequently processed by the input gate, the latest data (C′) can be
expressed as follows:

C′ = g(Zi(t − 1)) f (wi) (1)

where wi controls whether the gate is open, and f(x) is the sigmoid activation function.
When f(wi) = 1, the memory cell is updated to 0. Otherwise, no update occurs.

The forget gate, implemented as a sigmoid layer, determines which information in
the memory cell state should be retained or discarded. It considers the previous cell state
(C) and the current input Zi(t) to generate a forget gate output between 0 and 1 for each
component of the cell state. If Cf(Zi(t)) equals 1, then C is maintained; otherwise, it is
neglected. Subsequently, the renewed memory cell state is presented as follows:

C′ = g(Zi(t − 1)) f (wi) + C f (Zi(t)) (2)

Following that, C′ is kept in the memory cell and marked as C. Before the output gate
processing, C′ is subjected to multiplication by the hyperbolic tangent function (tanh(x)) to
yield tanh(C′). The next hidden state is determined through the output gate, i.e., the filtered
version memory cell state. It is shared with the next time step. And it also incorporates the
previous cell state, the present Zo(t), and candidate cell state C′ to yield a value between 0
and 1. Upon processing by the output gate, the output value y can be expressed as follows:

y = h(C′) f (Zo(t)) (3)
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The study utilized a powerful programming, MATLAB R2018a, to construct the
prediction model using deep learning structures. The model employed the Adam optimizer
with a batch size of 27 and 235 iterations. The initial parameters, such as the maximum
gradient and dropout rates, were set to 1 and 0.0055 to avoid gradient explosion and
overfitting. Detailed LSTM model parameters are listed in Table 2.

Table 2. Hyperparameters of LSTM.

Hyperparameters Value

Learning Functions Adam
Max. Epoch 235

Min. Batch Size 27
Dropout 0.0055

Hidden Layers 10
Number of Neurons in the Hidden Layer 100
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3.2. Back Propagation Neural Network

Backpropagation neural networks have been widely used in shallow learning networks
over the past two decades, consisting of input, hidden, and output layers (see Figure 3b).
By defining the maximum and minimum values of input data as +1 and −1, all input data
can be normalized within this range. Each hidden or output layer receives a weighted sum
of inputs from the previous layer, which is then transformed into temporary or final output
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signals through activation functions. This study used a hidden layer with 12 neurons to
balance the prediction results and avoid overfitting.

Hn = f
(
wHn,m

)
·Im + BHn or Ol = f

(
wOl,n

)
·Hn + BOl (4)

where Im represents the normalized input for neuron m, Hn is the temporary signal of
neuron n, and Ol is the final output signal of neuron l. wHn,m , wOl,n , BHn , and BOl represent
the weight and bias matrices of neurons in the hidden and output layers, respectively. They
utilize the hyperbolic tangential sigmoid function and linear transfer function, denoted as
f (x) = [2/(1 + e−2x)] − 1 and f (x) = x.

The training process of artificial neural networks involves continuously updating
the weights and biases through error backpropagation (i.e., el = Tl − Ol, where Tl is the
target value) to minimize the cost function CNN (detailed in Equation (5)) until reaching the
maximum number of iterations or meeting the accuracy requirement.

CNN =
1
P

P

∑
P=1

L

∑
=1

e2
l (P) (5)

where P represents the total number of inputs. The Levenberg–Marquardt learning algo-
rithm combines the Gauss–Newton method and gradient descent approaches to achieve
the fastest (2nd order) convergence [42].

Finally, the prediction results of typhoon waves are evaluated using the root mean
square error (RMSE), correlation coefficient (CC), and mean absolute error (MAE).

RMSE =

√√√√ 1
N

N

∑
i=1

[(Hm)i − (Ho)i]
2 (6)

CC =
∑N

i=1
[
(Hm)i − Hm

][
(Ho)i − Ho

]√
∑N

i=1
[
(Hm)i − Hm

]
∑N

i=1
[
(Ho)i − Ho

] (7)

MAE =
1
N

N

∑
i=1

|(Ho)i − Hm | (8)

where N is the total number of data points, Hm and Ho represent the predicted and observed
values of the typhoon waves, respectively, and the overline denotes the mean value.

4. Results

This section presents the model constructed using Long Short-Term Memory along
with eight effective typhoon parameters to predict the variation in typhoon waves at the
Hsinchu data buoy in northwestern Taiwan. It compares the results with those built using
traditional static networks (i.e., BPNN). Over the past 20 years, nine typhoon events have
primarily affected this area (as described in Table 1). Typhoon Krosa (2007) and Typhoon
Soulik (2013) were selected as verification cases in this study for the data-driven model,
which is characterized by the severe impacts of typhoon waves, while the other typhoon
events are used for model training. Due to space limitations in this article, Typhoon
Jangmi and Typhoon Krosa were selected as representatives for the training and validation
cases, respectively. The main reason for this is that the model theoretically undergoes
comprehensive training during model training by including all No. 4 typhoon path events
with varying intensities from light to strong since 2006. Therefore, the two most significant
wave height typhoon events were selected as representatives; if the prediction performance
is good, other typhoon events can also achieve reasonable and accurate results.

The prediction lead time for typhoon waves ranges from 1 to 8 h. Section 4.1 presents
the training and validation results for one prediction lead time. Due to space limitations,
the following sections only present cases representing severe waves (Hs > 8.0 m): Typhoon
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Jangmi (training) and Typhoon Krosa (verification). Section 4.2 compares the performance
of LSTM and BPNN in predicting typhoon waves for long prediction lead times. Section 4.3
shows the prediction performance of each method and discusses the results.

4.1. One Hour Lead Time Prediction Results

Figure 4 shows the time-series variation in typhoon factors for training events. In
Figure 4a, the forward speed and angle of the typhoon are described; Figure 4b displays the
relative relationship between the typhoon center and the data buoy, including distance and
storm radius; Figure 4c illustrates the maximum wind speed and relative angle; Figure 4d
represents the pressure deviation between the atmospheric pressure and the central of the
typhoon. The variation in Hs during Typhoon Jangmi is also shown in Figure 4e. At first
(see Figure 1), the typhoon was located approximately 600 km southeast of the Hsinchu
data buoy (i.e., at a relative angle of approximately 300◦). The central pressure of Typhoon
Jangmi was 925 hPa (i.e., ∆P = 1013 − Pc = 88 hPa), with maximum wind speeds reaching
53 m/s and a storm radius of 280 km. When Typhoon Jangmi moved northwestward
and approached Taiwan, its trajectory oscillated near the Central Mountain Range before
turning to the northwest side (i.e., around 5:00 p.m. on 28 September 2008). During this
period, the structure of Typhoon Jangmi was disrupted, leading to a decrease in the wind
speed and pressure intensity at the typhoon center. When the distance between the typhoon
center and the data buoy was less than the storm radius, the typhoon effects raised the
wave height at the nearshore. When Typhoon Jangmi was approximately 87 km from the
Hsinchu data buoy, typhoon waves exceeding 12 m were generated. Later, the typhoon
waves gradually weakened. The LSTM (red line) and BPNN (blue line) methods exhibit
considerable consistency with the observed values in the 1 h lead time prediction, with
RMSE values of 0.343 and 0.423 m, CC values of 0.989 and 0.983, and MAE values of 0.257
and 0.291 m, respectively.
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Figure 5 depicts the results of Typhoon Krosa (validation), similar to the training
events. The central pressure, maximum wind speed, and storm radius of Typhoon Krosa
were 925 hPa, 51 m/s, and 300 km, respectively. Unlike Typhoon Jangmi, Typhoon Krosa
had a similar intensity but generated a more minor wave height (8.94 m). Due to the longer
distance between the center of Typhoon Krosa and the data buoy (107 km) compared to the
training events, the maximum wind speed of Typhoon Krosa was slightly higher (53 m/s).
In the one hour lead time prediction, both well-trained dynamic neural network models
(LSTM) and traditional static neural network methods (BPNN) demonstrated an excellent
predictive performance, with RMSE values of 0.486 m and 0.499 m, CC values of 0.959 and
0.943, and MAE values of 0.272 and 0.302 m, respectively.
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4.2. Long Lead Time Prediction Results

Figures 6 and 7 present the prediction results and corresponding performance index
of typhoon waves during Typhoon Jangmi (training) with long lead times (t + 2 to t + 8),
respectively. The prediction results of the BPNN method can capture the variations at
t + 2 h (see the blue line in Figure 6), with the statistical index of RMSE, CC, and MAE being
0.787 m, 0.941, and 0.520 m, respectively (see Table 2). The LSTM method (red line) more
accurately describes typhoon waves’ time series and peak values than the BPNN method,
with RMSE, CC, and MAE being 0.603 m, 0.969, and 0.431 m, respectively. As the lead time
for typhoon wave prediction increases, both the BPNN and LSTM methods are affected in
estimating the peak values of typhoon waves. Remarkably, the performance of the BPNN
method decreases by 10% to 30% as the prediction time increases, compared to the LSTM
method (refer to Table 2). As the prediction lead time reaches t + 8 h, the results of the
BPNN method can only roughly describe the changing trend of typhoon waves, showing a
significant underestimation in peak values, with RMSE, CC, and MAE being 1.578 m, 0.742,
and 0.903 m, respectively. The LSTM method performs significantly better in predicting
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peak values of typhoon waves than the BPNN results, with RMSE, CC, and MAE being
1.121 m, 0.742, and 0.714 m, respectively.
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The long lead time predictions for the validation results (Typhoon Krosa) are presented
in Figures 8 and 9. The BPNN methods can effectively describe the variations in peak
typhoon waves only at t + 2 h, with RMSE, CC, and MAE being 0.876 m, 0.864, and 0.719 m,
respectively. The performance of LSTM is slightly better than BPNN (i.e., RMSE, CC, and
MAE are 0.713 m, 0.940, and 0.448 m, respectively). As the prediction lead time increases,
the prediction results of the BPNN method begin to deteriorate rapidly and even fail to
capture the trend of temporal variations. In contrast, the LSTM method can capture the
changes in peak typhoon waves until t + 6 h. When the lead prediction time reaches t + 8 h,
the BPNN’s prediction of peak typhoon waves shows a delayed phenomenon (see the
blue line in Figure 8d), with RMSE, CC, and MAE being 164.45 cm, 0.325, and 1.293 m,
respectively. Although the LSTM method’s ability to describe peak values starts to decline
(with the statistical metrics of RMSE, CC, and MAE being 1.251 m, 0.639, and 1.001 m,
respectively), it still captures the trend of impending uplift just before the peak values. (See
Tables 3 and 4).
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Table 3. Assessment of different lead time typhoon wave predictions during the Jangmi event
(training).

Lead Time (h)

2 4 6 8

RMSE CC MAE RMSE CC MAE RMSE CC MAE RMSE CC MAE

LSTM 0.603 0.969 0.431 0.822 0.959 0.506 1.020 0.928 0.768 1.121 0.890 0.714

BPNN 0.787 0.941 0.520 0.965 0.921 0.580 1.193 0.862 0.776 1.578 0.742 0.903

Unit: m.
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Table 4. Assessment of different lead time typhoon wave predictions during the Krosa event (validation).

Lead Time (h)

2 4 6 8

RMSE CC MAE RMSE CC MAE RMSE CC MAE RMSE CC MAE

LSTM 0.713 0.940 0.448 0.911 0.923 0.673 1.101 0.744 0.900 1.251 0.639 1.001

BPNN 0.876 0.864 0.719 1.279 0.650 0.951 1.452 0.463 1.075 1.645 0.325 1.293

Unit: m.

4.3. Discussion on Prediction Performance Improvement

This section discusses the prediction performance and improvement between the
LSTM and BPNN methods in the training and validation case (shown in Figures 10 and 11)
regarding typhoon waves. Here, the BPNN method serves as the baseline for comparison
(blue bars), while the improvement magnitude of the LSTM method (red bars) compared
to BPNN across different prediction lead times is examined.

In both the training and validation events, the performance of the BPNN method
decreases as the prediction lead time increases. For instance, from Figure 10a, it can be
observed that RMSE reduces gradually from 0.423 m to 0.903 m. Similarly, in Figure 11a, for
the validation event, RMSE drops significantly from 0.499 m at t + 1 h to 1.645 m at t + 8 h.
Its accuracy is generally better at short prediction lead times (within t + 2 h), consistent
with previous research findings [34,43,44]. The prediction model established using LSTM
shows notable improvements compared to the BPNN model as the prediction lead time
increases. In the training and validation events, these improvements range from 15% to
29% and 2% to 29%, respectively.



Sensors 2024, 24, 4305 13 of 16

Sensors 2024, 24, x FOR PEER REVIEW 14 of 17 
 

 

 
Figure 10. The performance (BPNN: blue bar; LSTM: red bar) and improvement (black line) of pre-
diction in terms of (a) RMSE; (b) CC; and (c) MAE for all the training events. 

 
Figure 11. The performance (BPNN: blue; LSTM: red) and improvement (black line) of prediction 
in terms of (a) RMSE; (b) CC; and (c) MAE for all the validation events. 

5. Conclusions 
This study utilized Long-Short-Term Memory and backpropagation neural network 

methods to develop a typhoon waves prediction model with a long prediction lead time 
of 8 h. The study area was selected at the Hsinchu Buoy Station, and nine historical ty-
phoon events were considered for model training and validation. Regarding the predic-
tion performance of the models, evaluations were conducted using three indices: root 
mean square error (RMSE), correlation coefficient (CC), and mean absolute error (MAE). 

Figure 10. The performance (BPNN: blue bar; LSTM: red bar) and improvement (black line) of
prediction in terms of (a) RMSE; (b) CC; and (c) MAE for all the training events.

Sensors 2024, 24, x FOR PEER REVIEW 14 of 17 
 

 

 
Figure 10. The performance (BPNN: blue bar; LSTM: red bar) and improvement (black line) of pre-
diction in terms of (a) RMSE; (b) CC; and (c) MAE for all the training events. 

 
Figure 11. The performance (BPNN: blue; LSTM: red) and improvement (black line) of prediction 
in terms of (a) RMSE; (b) CC; and (c) MAE for all the validation events. 

5. Conclusions 
This study utilized Long-Short-Term Memory and backpropagation neural network 

methods to develop a typhoon waves prediction model with a long prediction lead time 
of 8 h. The study area was selected at the Hsinchu Buoy Station, and nine historical ty-
phoon events were considered for model training and validation. Regarding the predic-
tion performance of the models, evaluations were conducted using three indices: root 
mean square error (RMSE), correlation coefficient (CC), and mean absolute error (MAE). 

Figure 11. The performance (BPNN: blue; LSTM: red) and improvement (black line) of prediction in
terms of (a) RMSE; (b) CC; and (c) MAE for all the validation events.



Sensors 2024, 24, 4305 14 of 16

In terms of the performance of the correlation coefficient (CC) (displayed in Figures 10b
and 11b), it is observed that LSTM’s improvement compared to BPNN is not particularly
outstanding in the training event, reaching a maximum improvement of only 20% at t + 8 h.
However, LSTM shows notable improvements in the validation event, with a maximum
improvement of nearly 96% as the prediction lead time increases. This is mainly because
the BPNN method can only roughly describe the temporal variations in typhoon events
during training. However, during the validation event, BPNN needs to effectively reflect
the information on typhoons affected by the central mountain range in predicting typhoon
waves as the prediction time increases. LSTM, due to its recurrent structure, can compare
previous data points and thus performs better in prediction.

Regarding the mean absolute error (MAE) coefficient performance in Figures 10c
and 11c, it generally shows similar results to the RMSE coefficient. Although BPNN’s
performance could be better in longer prediction lead times (t + 4 h and above), it has
successfully extended the prediction of sea conditions in northwestern Taiwan from 1 to
3 h to 4 h. The LSTM method, with its recurrent structure and memory gates controlling
input from previous temporal sequences, further extends the prediction lead time to t + 8 h
and improves the prediction results beyond BPNN. However, the crucial challenge of
predicting oceanic conditions at the data buoy in western Taiwan during typhoon events
is the structure of typhoon damage caused by the Central Mountain Range as typhoons
move from the Pacific Ocean to the Taiwan Strait, resulting in a lower prediction accuracy
compared to the data buoy in eastern Taiwan [34]. Although LSTM has dramatically
improved the shortcomings of static networks, further improvements in extending the
prediction lead time may require using Bidirectional Long Short-Term Memory (Bi-LSTM),
which considers the influence of previous time and incorporates future influences.

5. Conclusions

This study utilized Long-Short-Term Memory and backpropagation neural network
methods to develop a typhoon waves prediction model with a long prediction lead time of
8 h. The study area was selected at the Hsinchu Buoy Station, and nine historical typhoon
events were considered for model training and validation. Regarding the prediction
performance of the models, evaluations were conducted using three indices: root mean
square error (RMSE), correlation coefficient (CC), and mean absolute error (MAE).

For the prediction results with a lead time of one hour, both the LSTM and BPNN
methods exhibited an excellent performance in the training event (Typhoon Jangmi), with
RMSE values of 0.343 m and 0.423 m, CC values of 0.989 and 0.983, and MAE values of
0.257 m and 0.291 m, respectively. Similarly, in the validation event (Typhoon Krosa), they
showed a consistent prediction performance (RMSE values of 0.486 m and 0.499 m, CC
values of 0.959 and 0.943, and MAE values of 0.272 m and 0.302 m for LSTM and BPNN,
respectively).

In terms of long lead time prediction, BPNN was able to capture peak values in the
training event at t + 2 h. However, the prediction performance declined rapidly as its
prediction lead time increased. Particularly at t + 8 h, the statistical indicators for BPNN
were RMSE = 1.578 m, CC = 0.742, and MAE = 0.903 m. In contrast, the LSTM method,
compared to BPNN, was more accurate in describing the temporal sequence and variations
in peak values. When the prediction lead time increased to t + 8 h, its performance was
significantly better than BPNN’s (with RMSE = 1.121 m, CC = 0.742, and MAE = 0.714 m).

Regarding the improvement in model prediction, the LSTM prediction model outper-
formed the BPNN method in typhoon wave prediction as the prediction lead time increased
to 8 h. In both training and validation events, the improvement percentages for RMSE were
15–29% and 2–29%; for CC, they were 1–20%; and for MAE, they were 1–20% and 10–40%,
respectively.

Overall, this study utilized the LSTM method, which has a recurrent structure and
memory gates to control the input from previous time sequences, to improve the results of
shortfalls and poor prediction accuracy in the static network architecture (BPNN). However,
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the prediction of typhoon wave conditions in the western Taiwan data buoy is affected
by the disruption of the wind field structure caused by the Central Mountain Range,
resulting in a lower prediction accuracy than predictions in eastern Taiwan. This model
can be effectively applied to predict significant wave heights for future events of the No. 4
typhoon path. In the future, to further increase prediction time and accuracy, the use of
Bidirectional Long Short-Term Memory (Bi-LSTM), which considers both past and future
influences, may be necessary for refinement. In addition, the real-time prediction model
would be planned and constructed. The numerical atmospheric forecast models would be
applied as input to predict the possible outcomes for the next 1 to 6 h, and once the real-time
typhoon wave information is obtained, the model can be adjusted with new parameters.
Finally, the real-time prediction and adjustment method would construct the early warning
system.
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