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Abstract: To improve the signal-to-noise ratio (SNR) of vibration signals in a phase-sensitive optical
time-domain reflectometer (Φ-OTDR) system, a principal component analysis variable step-size
normalized least mean square (PCA-VSS-NLMS) denoising method was proposed in this study. First,
the mathematical principle of the PCA-VSS-NLMS algorithm was constructed. This algorithm can
adjust the input signal to achieve the best filter effect. Second, the effectiveness of the algorithm was
verified via simulation, and the simulation results show that compared with the wavelet denoising
(WD), Wiener filtering, variational mode decomposition (VMD), and variable step-size normalized
least mean square (VSS-NLMS) algorithms, the PCA-VSS-NLMS algorithm can improve the SNR to
30.68 dB when the initial SNR is −1.23 dB. Finally, the PCA-VSS-NLMS algorithm was embedded into
the built Φ-OTDR system, an 11.22 km fiber was measured, and PZT was added at 10.19–10.24 km to
impose multiple sets of fixed-frequency disturbances. The experimental results show that the SNR
of the vibration signal is 8.77 dB at 100 Hz and 0.07 s, and the SNR is improved to 26.17 dB after
PCA-VSS-NLMS filtering; thus, the SNR is improved by 17.40 dB. This method can improve the SNR
of the system’s position information without the need to change the existing hardware conditions,
and it provides a new scheme for the detection and recognition of long-distance vibration signals.

Keywords: PCA-VSS-NLMS; Φ-OTDR; optical fiber sensing; SNR

1. Introduction

The distributed fiber-optic sensor known as the Φ-OTDR system primarily measures
phase changes resulting from fiber vibration or stress [1]. This system boasts a long detec-
tion range, exceptional sensitivity, and a rapid response time [2], making it a popular choice
for applications such as monitoring oil and gas pipelines [3], assessing the structural health
of buildings [4], ensuring perimeter security [5], monitoring power and communication
safety [6], sensing rail transit systems [7,8], and monitoring engineering geology [9,10].

Utilizing the Φ-OTDR system involves examining the Rayleigh backscattering (RBS)
phase alterations within optical fibers. This RBS, being a feeble signal of minimal inten-
sity [11], becomes susceptible to various environmental disturbances, such as polarization
fading from the laser itself, interference fading, and external noise. The resulting accumula-
tion of noise within the phase signal, coupled with a diminished signal-to-noise ratio (SNR),
ultimately impedes the precision and range capabilities of the sensing operation [12].

One way to enhance hardware design was suggested by Zhu et al. in 2015. These
authors introduced an active compensation approach using laser frequency scanning and
cross-correlation calculation to mitigate the impact of light source frequency drifting (LSFD).
This method effectively detected disturbances at a frequency of 0.5 Hz up to a distance
of 5 km along the sensing fiber [13]. Subsequently, in 2016, Baker C et al., proposed
a technique utilizing sinusoidally modulated optical signals (SMOSs) to produce high
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extinction analog pulses. This innovation minimized noise in the backscattering trajectory
of the fiber-under-test (FUT) pulses, thus enhancing the signal-to-noise ratio (SNR) of the
Φ-OTDR system [14]. Furthermore, Wang et al., presented a novel approach in 2019 that
implemented linearization and Golay pulse coding for heterodyne Φ-OTDR. Through
experimental validation, they achieved submeter-level measurement accuracy and nano-
strain resolution with a sensing range of 10 km [15]. In 2020, Chen et al., proposed a
technique involving forced carrier recombination to enhance the extinction ratio (ER) of
the semiconductor optical amplifier (SOA). This resulted in a 5.2 dB increase in the SNR
of the Φ-OTDR system [12]. Lastly, Li et al., proposed a strategy in 2023 that integrated
multi-mode fiber (MMF) and optimized the “n” elastomer to enhance the Φ-OTDR system.
This method led to improvements of 10.51 dB and 13.38 dB in position and frequency SNR
enhancement, respectively [16].

One way to improve the Φ-OTDR system is to enhance data processing efficiency.
Wavelet denoising methods were initially introduced by Qin et al., in 2012 [17], which was
followed by the implementation of continuous wavelet transform denoising techniques
in the Φ-OTDR system [18]. Wu et al. introduced a trajectory denoising approach for the
Φ-OTDR system in 2015 that leveraged multi-scale wavelet decomposition [19]. Moreover,
He et al., made strides in 2017 with an adaptive image restoration algorithm employing
two-dimensional bi-lateral filtering to boost the SNR of the Φ-OTDR system. By applying
this approach to a 27.6 km sensing fiber, the SNR for position information of a signal
with an original SNR of 6.43 dB notably increased by more than 14 dB [20]. Lv et al.,
made further advancements in 2019 by introducing the empirical mode decomposition
(EMD) method to address phase drift issues. Notably, when faced with low-frequency
external vibrations at 0.5 Hz or 0.3 Hz, the SNR post-phase signal elimination reached
impressive levels of 55.58 dB and 44.44 dB [21]. Building upon these innovations, He
et al. presented the complete ensemble empirical mode decomposition with adaptive noise
(CEEEMDAN) algorithm in 2020, which achieved a significant 52.11 dB increase in the SNR
of disturbed positions [22]. In 2021, Jiang et al., introduced a signal enhancement technique
for the Φ-OTDR system utilizing deep learning, resulting in an increase in the mean
SNR from 13.4 dB to 42.8 dB [23]. Similarly, in 2021, Ma et al., proposed the VSS-NLMS
denoising method which enabled the detection of five sets of vibration events ranging
from 100 Hz to 500 Hz at the 10.14 km sensing fiber location. The position information
SNR for the VSS-NLMS noise reduction approach was enhanced to 59.31 dB, 46.81 dB,
50.14 dB, 34.00 dB, and 67.09 dB [24]. A method based on kurtosis parameter statistical
analysis (k-parameter) was introduced by He et al. in 2022, resulting in an improvement in
the SNR at 11.9 km on a 12 km fiber to 5.61 dB [25]. Lastly, Liu et al., proposed a genetic
least mean square (GLMS) method in 2023, which demonstrated a notable improvement in
the SNR ranging from 14.37 dB to 23.60 dB during monotone-scale audio signal testing at
60~1000 Hz. Nevertheless, this method faces challenges such as a low SNR and limited
adaptability, leading to subpar denoising effects [26]. In 2023, Turov et al., proposed to
present a nonlinear two-dimensional processing method for distributed acoustic sensor
data in both time and frequency domains, with an 8-fold increase in operation speed and
an improvement in signal-to-noise ratio of 3.7 dB when used alone, and 10.8 dB when used
in combination with moving averaging–moving differential (MA-MD) [27].

In order to further improve the vibration signal SNR of the Φ-OTDR system, we
proposed a noise reduction algorithm based on PCA-VSS-NLMS to filter the background
noise of the heterodyne coherent Φ-OTDR system. In this study, the mathematical principle
of the PCA-VSS-NLMS algorithm was constructed in detail, and simulation experiments
were performed to verify the filtering effect of the algorithm. The simulation results show
that, compared with the WD, Wiener, VMD, and VSS-NLMS algorithms, the PCA-VSS-
NLMS algorithm can increase the SNR to 30.68 dB when the initial SNR is −1.23 dB.
The proposed algorithm was embedded into the Φ-OTDR system, an 11.22 km fiber was
measured, and multiple sets of fixed-frequency disturbances were imposed by adding PZT
at 10.19 to 10.24 km. At 100 Hz and 0.07 s, the SNR of the vibration signal is 8.77 dB. After
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PCA-VSS-NLMS filtering, the SNR is improved to 26.17 dB; thus, the SNR is improved
by 17.40 dB. We verified the feasibility of the proposed method from the perspectives of
theoretical research, simulation analysis, and laboratory construction and experimentation.
By applying the proposed algorithm, the SNR of vibration signals can be improved without
changing the existing hardware conditions, which provides a new idea for long-distance
vibration signal recognition.

2. Working Principle of PCA-VSS-NLMS

An automatically adaptive filter can adjust its parameters based on the input signal’s
characteristics to accommodate signal fluctuations. This enhances its ability to process sig-
nals that are not consistent over time [28]. When comparing their structures, the normalized
LMS (NLMS) algorithm mirrors the standard LMS algorithm [29]. As depicted in Figure 1,
both are finite impulse response (FIR) filters, with the weight controller mechanism being
the distinguishing factor. The output signal M × 1 generated by the input signal x(n) of
the y(n) tap will be subtracted from the expected signal d(n) to obtain the error signal
e(n). In response to the combined action of the input signal x(n) and error signal e(n),
weight adjustment to the weight controller is applied to the FIR filter. In a large number of
adaptive loops, the weight vector of the filter is adjusted repeatedly until the filter reaches
a steady state.
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The basic principle of the NLMS algorithm is that ŵ(n) represents the old weight
vector of the filter during the adaptive cycle n and ŵ(n + 1) represents the new weight
vector of the filter during the adaptive cycle n + 1. Then, the design criterion of the NLMS
algorithm can be expressed as a constrained optimization problem [30]:

δŵ(n + 1) = ŵ(n + 1)− ŵ(n) (1)

ŵH(n + 1)x(n) = d(n) (2)

where the superscript H stands for conjugate transpose.
We use the method of Lagrange multipliers. For the general case of complex data, the

cost function is estimated as follows:

J(n) = ∥δŵ(n + 1)∥2 + Re
[
λ∗

(
d(n)− ŵH(n + 1)x(n)

)]
(3)

where λ is the complex Lagrange multiplier and ∗ is the complex conjugate; Re[·] represents
the operation of taking the natural part, and the constraint’s contribution to the cost function
is real-valued; ∥δŵ(n + 1)∥2 represents the square operation of the Euclidean norm, and
the result is also real-valued. Thus, the cost function J(n) is a real-valued quadratic function
ŵ(n + 1) and can be expressed as follows:

J(n) = (ŵ(n + 1)− ŵ(n))H(ŵ(n + 1)− ŵ(n)) + Re
[
λ∗

(
d(n)− ŵH(n + 1)x(n)

)]
(4)

In order to find the most updated weight vector with the smallest cost function J(n),
the following steps are taken:
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Take the derivative of the cost function J(n) with respect to ŵH(n + 1).

∂J(n)
∂ŵH(n + 1)

= 2(ŵ(n + 1)− ŵ(n))− λ∗x(n) (5)

Set it to zero, and the optimal solution is

ŵ(n + 1) = ŵ(n) +
1
2

λ∗x(n) (6)

Bring (6) into (2) and solve for the unknown multiplier λ.

λ =
2e(n)

∥x(n)∥2 (7)

e(n) = d(n)− ŵH(n)x(n) (8)

From (6) and (7),

δŵ(n + 1) = ŵ(n + 1)− ŵ(n) =
1

∥x(n)∥2 x(n)e∗(n) (9)

To control the incremental change of the tap weight vector from one adaptive loop
to the next without changing the direction of the vector, a positive real scale factor µ̃ is
introduced. The increment is defined as follows:

δŵ(n + 1) = ŵ(n + 1)− ŵ(n) =
µ̃

∥x(n)∥2 x(n)e∗(n) (10)

ŵ(n + 1) = ŵ(n) +
µ̃

∥x(n)∥2 x(n)e∗(n) (11)

When the tap vector is small, the smaller square norm ∥x(n)∥2 has to be divided by µ̃,
which may cause numerical difficulties. To overcome this problem, (11) is revised to read
as follows:

ŵ(n + 1) = ŵ(n) +
µ̃

∥x(n)∥2 + c
x(n)e∗(n) (12)

where c is a small positive integer.
The traditional NLMS algorithm uses a fixed step size, which cannot be dynamically

adjusted according to the characteristics of the current signal and has poor adaptability
to the signal’s dynamic characteristics. The VSS-NLMS algorithm can solve this problem
very well [24]. We use the step-size update equation in the literature [31], as shown in
Equation (13):

µ̃(n) = β
(

1 − exp
(
−α|e(n)|2

))
(13)

where µ̃(n) is the step size of the n iteration; α is a constant to control the step-size range;
and β is another constant to adjust the speed of the step length. Usually, α > 0 and β > 0.

In the VSS-NLMS algorithm, the expected signal d(n) plays an important role, and
the selection of this signal will directly affect the convergence speed, stability, and filtering
effect. However, in practical applications, we usually do not know the real expected signal
of a noisy signal. Currently, an input signal or its variant is often used as the expected
signal of the filtering system [24].

The vibration signals of the sensing fiber obtained by the Φ-OTDR system are shown
in Figure 2. Among them, the detection fiber was 11.22 km, the PZT parameters were set,
the output waveform was set to a sine wave, the amplitude value was the peak-to-peak
value (VPP) of the signal set to 10 V. We designed a PCA-VSS-NLMS filtering algorithm,
which uses PCA to extract the position information features of the sensing fiber instead
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of the expected signals in VSS-NLMS and then splices the extracted main features with
the data processed via PCA-VSS-NLMS filtering. The detailed algorithm flow is shown in
Figure 3.

Sensors 2024, 24, x FOR PEER REVIEW 5 of 18 
 

 

very well [24]. We use the step-size update equation in the literature [31], as shown in 
Equation (13): 

( ) ( )( )( )2
1 expn e nμ β α= − −  (13) 

where ( )nμ  is the step size of the n iteration; α  is a constant to control the step-size 

range; and β  is another constant to adjust the speed of the step length. Usually, 0α >  
and 0β > . 

In the VSS-NLMS algorithm, the expected signal ( )d n  plays an important role, and 
the selection of this signal will directly affect the convergence speed, stability, and filtering 
effect. However, in practical applications, we usually do not know the real expected signal 
of a noisy signal. Currently, an input signal or its variant is often used as the expected 
signal of the filtering system [24]. 

The vibration signals of the sensing fiber obtained by the Φ-OTDR system are shown 
in Figure 2. Among them, the detection fiber was 11.22 km, the PZT parameters were set, 
the output waveform was set to a sine wave, the amplitude value was the peak-to-peak 
value (VPP) of the signal set to 10 V. We designed a PCA-VSS-NLMS filtering algorithm, 
which uses PCA to extract the position information features of the sensing fiber instead of 
the expected signals in VSS-NLMS and then splices the extracted main features with the 
data processed via PCA-VSS-NLMS filtering. The detailed algorithm flow is shown in Fig-
ure 3. 

  
(a) (b) 

Figure 2. Vibration signals acquired by the Φ-OTDR system: (a) a 100 Hz vibration signal was ap-
plied from 10.19 to 10.24 km; (b) signals taken in absolute value after applying 100 Hz vibration 
normalization at 10.19 to 10.24 km. 

Figure 2. Vibration signals acquired by the Φ-OTDR system: (a) a 100 Hz vibration signal was
applied from 10.19 to 10.24 km; (b) signals taken in absolute value after applying 100 Hz vibration
normalization at 10.19 to 10.24 km.
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The sample matrix X is represented as follows:

X =

x11 · · · x1l
· · · · · · · · ·
xt1 · · · xtl

 (14)

where t represents the sampling time, l represents the spatial position of the sampling point,
and xtl represents the amplitude of the phase signal at the l point at time t.

The sample matrix is normalized as follows:

Xij =
xij − xj

si
(i = 1, 2, . . . , t; j = 1, 2, . . . , l) (15)
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s2
j =

t
∑

i=1

(
xij − xj

)
t − 1

, xj =

t
∑

i=1
xij

t
(16)

where Xij represents the standardized data matrix, xij represents the standardized value
of the jth index of the ith sample, si represents the standard deviation, s2

j represents the
variance, and xj represents the mean value.

The covariance matrix Σ is calculated as follows:

Σ =
1
t
(
Xij

)T(Xij
)

(17)

The eigenvalue decomposition is performed on the given covariance matrix Σ. This
will yield eigenvalues r1, r2, . . . , rn and their corresponding eigenvectors v1, v2, . . . , vn,
where n is the number of features in the data. The eigenvalues are arranged in descending
order. The top k eigenvalues are selected along with their corresponding eigenvectors.
These eigenvectors will form the columns of the projection matrix W. Let us denote the se-
lected eigenvectors as v1, v2, . . . , vk. The selected eigenvectors are then arranged as columns
in the projection matrix W. Thus, W = [v1, v2, . . . , vk], where v1, v2, . . . , vk are the top k
eigenvectors obtained from the eigenvalue decomposition. The original data matrix X is
multiplied by the projection matrix W, resulting in the following:

Xpcanew = X · W (18)

where Xpcanew denotes the newly generated data matrix that can be used as the expected
signal of the principal component analysis expectation variable step normalized least mean
square (PCA-d-VSS-NLMS) filter.

In the Φ-OTDR system, we pay more attention to the amplitude change of the phase
signal. To further improve the SNR of the signal, we perform feature splicing of the feature
data points in each row of Xpcanew with the filtered matrix Xpca−d−vss−nlms row by row.

Xpcanew =


xpn1 1 xpn1 2 · · · xpn1 l
xpn2 1 xpn2 2 · · · · · ·

...
...

...
xpnt 1 xpnt 2 · · · xpnt l

 (19)

Xpca−d−vss−nlms =


xpdvn1 1 xpdvn1 2 · · · xpdvn1 l
xpdvn2 1 xpdvn2 2 · · · · · ·

...
...

...
xpdvnt 1 xpdvnt 2 · · · xpdvnt l

 (20)

Assuming the data at the position of the 800th column of the 1st row in the Xpcanew
matrix are the feature data points, the data at xpn1 800 are replaced with the data at xpdvn1 800
to obtain the final filtered matrix Xpca−vss−nlms.

Filter feature data by setting a threshold to remove noisy data with small absolute
values of amplitude. Only the peaks exceeding the set threshold are retained as feature
data. In this paper, we utilize the statistical properties of noise to set the adaptive threshold
for feature point extraction, assuming that the noise obeys a Gaussian distribution, and
calculate the adaptive threshold:

T = µn + kt · σn (21)

where T is the adaptive threshold, µn is the estimated noise mean, σn is the estimated noise
standard deviation, and kt is the scale factor. In this paper, kt = 2 is set.
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3. Experimental Section
3.1. Simulation Experiments and Results

The SNR calculation is defined as follows:

SNR = 20 log10

( Asignal

Anosie

)
(22)

where Asignal and Anosie are the signal and noise amplitudes, respectively, and we calculate
the root mean square of the noise signal as Anosie.

According to Figure 4 brought into Equation (19), the SNR for each stage of the
proposed algorithm in this paper is calculated as:

SNRraw = 20 log10

( Asignal_raw
Anosie_raw

)
= 15.25 dB

SNRpca = 20 log10

( Asignal_pca
Anosie_pca

)
= 23.41 dB

SNRpca−d−vss−nlms = 20 log10

( Asignal_pdvn
Anosie_pdvn

)
= 1.36 dB

SNRpca−vss−nlms = 20 log10

( Apca−vss−nlms
Apca−vss−nlms

)
= 30.33 dB

(23)
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The SNR is improved by 8.16 dB from the original signal to PCA processing, and
15.08 dB from the original signal to PCA-VSS-NLMS processing.

We performed simulation experiments to verify the effectiveness of the algorithm and
compared its performance with other algorithms. First, the unit pulse signal was used as
the expected signal, with 2000 sampling points, 0.9 at the 1900th sampling point and 0 at
the rest. Gaussian white noise was added to the unit pulse signal as the filter input signal,
as shown in Figure 5a. The SNR was 7.74 dB.
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When comparing the performance of various filtering algorithms, the wavelet basis
function of the WD algorithm was sym8, the wavelet order was 2, and the SNR after
filtering was 7.78 dB, as shown in Figure 5b. The Wiener algorithm could not find feature
points after filtering, as shown in Figure 5c. In the VMD algorithm, the penalty parameter
was 24, the number of modal components was 4, and the SNR after filtering was 6.69 dB, as
shown in Figure 5d. In the VSS-NLMS filtering algorithm, the step-size update equation α
was 8, β was 0.01, the filter order was 100, and the SNR after filtering was 7.83 dB, as shown
in Figure 5e. In the proposed PCA-VSS-NLMS filtering algorithm, the step-size update
equation α was 8; β was 0.01; the filter order was 100; the number of retained principal
components was 6; k = 1 feature vectors were selected as the principal components, and
the selected feature vectors were arranged into a projection matrix by column; and the
SNR after filtering was 27.29 dB, as shown in Figure 5f. To further verify the effectiveness
of the algorithm, Gaussian white noise with different SNRs was added to the unit pulse
signal to compare the SNR enhancement effects of the WD, Wiener, VMD, VSS-NLMS, and
PCA-VSS-NLMS algorithms, as shown in Table 1.

Table 1. Comparison of the filtering effects of SNR algorithms with different noise signals.

Noisy Signal SNR
Filtering

Algorithm −1.23 dB 4.88 dB 7.74 dB 10.24 dB 12.51 dB 14.96 dB 17.19 dB 19.82 dB

WD No signal No signal 7.88 12.72 15.36 17.85 19.87 22.73
Wiener No signal No signal No signal 8.32 10.41 13.23 16.79 21.64
VMD No signal No signal 6.69 6.46 9.67 12.41 14.18 17.18

VSS-NLMS No signal 5.04 7.86 10.39 12.85 15.09 17.24 19.78
PCA-VSS-NLMS 30.68 26.65 27.29 27.89 28.49 29.60 30.62 31.55

The results presented in Table 1 demonstrate the impact of various filtering algorithms
on noise SNRs. The data indicate that the PCA-VSS-NLMS algorithm outperforms other
algorithms in terms of SNR enhancement across different noise levels. In particular, at
an SNR of −1.23 dB, the PCA-VSS-NLMS algorithm successfully preserves a signal with
an SNR of 30.68 dB, while other algorithms fail to do so. These findings suggest that the
filtering algorithm introduced in this study effectively enhances the SNR and mitigates
noise interference.

3.2. Experimental Setup and Results

Figure 6 shows the construction of the Φ-OTDR system. A laser with a narrow
linewidth of 1550.12 nm central wavelength and a 3 kHz linewidth is used to split the light
into two channels of 90% and 10% using coupler-1. Through an acousto-optic modulator
(AOM), 90% of the light is converted into a 200 MHz frequency shifted optical pulse, which
is then amplified by an erbium-doped fiber amplifier (EDFA) before entering an optical
circulator (OC). At coupler two, the RBS light from the sensing fiber interferes with the
local light to produce beat light. The output signal from the beat light is detected by a
balanced photodetector (BPD), which transfers it to the computer via a data acquisition
card (DAQ) for phase signal extraction.
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We use the I/Q quadrature demodulation method proposed in the literature [20] to
demodulate Rayleigh’s backscattered light amplitude and phase signals.

The beat frequency signals acquired by the Φ-OTDR system are as follows:

P(t) = ER(t)ELO(t) cos[2π∆ f t + Φ(t) + Φ0] (24)

where ER is the backward Rayleigh scattered light, ELO is the reference light, ∆ f is the
AOM frequency shift, Φ(t) is the phase change due to the vibration signal, and Φ0 is the
phase change due to the noise signal.

y1 = cos(2π∆ f t + Φr) (25)

y2 = sin(2π∆ f t + Φr) (26)

where Φr is the phase noise, multiplying Equation (24) by Equations (25) and (26), respec-
tively, yields:

I(t) = ER(t)ELO(t) cos[2π∆ f t + Φ(t) + Φ0] cos(2π∆ f t + Φr)
= 1

2 ER(t)ELO(t)[cos[4π∆ f t + Φ(t) + Φ0 + Φr] + cos[Φ(t) + Φ0 − Φr]]
(27)

Q(t) = ER(t)ELO(t) cos[2π∆ f t + Φ(t) + Φ0] sin(2π∆ f t + Φr)
= 1

2 ER(t)ELO(t)[cos[4π∆ f t + Φ(t) + Φ0 + Φr]− sin[Φ(t) + Φ0 − Φr]]
(28)

The orthogonal signals I(t) and Q(t) are obtained after low-pass filtering.

I(t) =
1
2

ER(t)ELO(t) cos[Φ(t) + Φ0 − Φr] (29)

Q(t) = −1
2

ER(t)ELO(t) sin[Φ(t) + Φ0 − Φr] (30)

As ∝
√

I(t)2 + Q(t)2 (31)

Φ(t) = −arctan
Q(t)
I(t)

(32)

where Φ0 − Φr is the phase noise, As is the signal amplitude, and Φ(t) is the phase change
due to the vibration signal.

We connected the Φ-OTDR system to an 11 km G 652D single-mode fiber. The
experimental setup is shown in Figure 7. The optical outlet of the Φ-OTDR system was
connected to the first 5 km disc fiber, whose end was fused to the second 5 km disc fiber; the
second 5 km disc fiber was connected to the PZT device INPUT, and then the PZT device
OUTPUT was connected to a 1 km disc fiber. The actual length of the fiber measured by the
OTDR was 11.22 km, the PZT inner winding used a 50 m fiber, and the vibration position
was 10.19–10.24 km. The Φ-OTDR system parameters were set as follows: the detection
range was set to 11 km, and the spatial resolution was set to 10 m. The PZT parameters are
set as follows: the output waveform is set as a sinusoidal waveform, and the amplitude
value is the peak-to-peak value of the signal VPP, which is set to 10 V. The frequencies of
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100 Hz, 200 Hz, 300 Hz, 400 Hz, 500 Hz, 600 Hz, 700 Hz, 800 Hz, and 900 Hz were set to
compare the effects of the filtering algorithms. The experimental results of the PCA-VSS-
NLMS algorithm proposed in this paper are shown in Figure 8. System components, PZT,
are procured from Nanjing Fiber Photonics Technology Co., Ltd, Nanjing, Jiangsu Province,
China. It was accessed on 12 June 2024 at http://www.fib-tech.com/.
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The experiment was repeated 10 times for each fixed-frequency signal under the same
conditions, and the average SNR at 0.07 s was recorded. The comparison data of filtering
effects are shown in Table 2. As can be seen from Table 2, which is much higher than that of
the other filtering algorithms.

Table 2. Comparison of filtering effects of different filtering algorithms at different frequencies.

Filtering
Algorithm

100 Hz
SNR/dB

200 Hz
SNR/dB

300 Hz
SNR/dB

400 Hz
SNR/dB

500 Hz
SNR/dB

600 Hz
SNR/dB

700 Hz
SNR/dB

800 Hz
SNR/dB

900 Hz
SNR/dB

Unfiltered 8.77 9.36 9.93 10.03 11.16 9.27 7.70 10.44 7.91
WD 11.47 10.40 12.18 11.79 11.82 12.67 10.88 13.59 10.36

Wiener 6.02 7.69 7.97 8.17 9.31 7.52 5.07 9.44 5.28
VMD 6.61 6.34 7.34 8.76 8.37 9.46 6.08 9.24 8.57

VSS-NLMS 8.92 9.03 9.95 9.95 10.92 9.19 7.58 10.20 7.27
PCA-VSS-NLMS 26.17 26.40 25.52 24.52 26.92 25.39 28.35 26.01 26.92

A three-dimensional (3D) spatio-temporal diagram was drawn for the PZT vibration
signal frequency at 100 Hz, as shown in Figure 8. In this figure, Figure 8a is the 3D spatio-
temporal diagram of the unfiltered measured data; Figure 8b shows the 3D spatio-temporal
diagram of the filtered data after applying the PCA-VSS-NLMS algorithm; Figure 8c shows
the top view of the 3D spatio-temporal diagram of the unfiltered measured data; and
Figure 8d shows the top view of the 3D spatio-temporal diagram of the filtered data after
applying the PCA-VSS-NLMS algorithm. It can be seen from Figure 8 that the vibration
position is consistent with the actual position at 10.19–10.24 km. The proposed PCA-
VSS-NLMS algorithm can effectively filter out the background noise and highlight the
characteristics of vibration signals.

The time-domain signal at the fixed position in Figure 8 is selected, as shown in
Figure 9. The red solid line is the curve after PCA-VSS-NLMS processing, and the black
dashed line is the curve of the measured data, where Figure 9a is the comparison of the
vibration signal before and after the filtering at the vibration position of PZT at 10.23 km.
From Figure 9a, it can be seen that the features of the vibration signal are well preserved,
and Figure 9b is the comparison before and after filtering of the background noise at
10.00 km. From Figure 9b, it can be seen that the background noise is well suppressed.
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Figure 9. Fixed-position time-domain signal plots: (a) before and after filtering at 10.23 km; (b) before
and after filtering at 10.00 km.

The PZT vibration frequency is 100 Hz, and the time-frequency domain diagram at
10.23 km of the fiber is shown in Figure 10, where Figure 10a is the time-frequency domain



Sensors 2024, 24, 4340 13 of 17

diagram before filtering; Figure 10b is the time-frequency domain diagram after filtering.
A comparison of the spectra of Figure 10a and Figure 10b shows that the low-frequency
component is effectively suppressed after filtering.
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Figure 10. Time-frequency domain plot of PZT vibration at 100 Hz, 10.23 km from the optical fiber:
(a) Time-frequency domain plot before filtering; (b) Time-frequency domain plot after filtering.

For the dual-point vibration experiment, the Φ-OTDR system was connected to a
12 km G 652D single-mode fiber. The schematic diagram of the dual-point position vibration
Φ-OTDR system is shown in Figure 11. The actual length of the fiber measured by OTDR is
12.25 km, and the Φ-OTDR system and PZT parameter settings are the same as in Figure 6.
A 100 Hz frequency vibration is applied at 10.19–10.24 km and a 100 Hz frequency vibration
is applied at 12.20–11.25 km, respectively. The experimental results of the PCA-VSS-NLMS
algorithm proposed in this paper are shown in Figure 12, where Figure 12a is the 3D spatio-
temporal map of the unfiltered measurement data, Figure 12b is the 3D spatial-temporal
plot of the PCA-VSS-NLMS filtered data, Figure 12c is the unfiltered vibration signal at
0.07 s, and Figure 12d is the PCA-VSS-NLMS filtered vibration signal at 0.07 s. The 100 Hz
vibration point SNR was raised from 9.05 dB to 22.26 dB, a mention of 13.21 dB. The SNR
of the second 100 Hz vibration point increased from 8.57 dB to 22.23 dB, an improvement
of 13.66 dB.
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To further verify the practical application effect of the algorithm proposed in this
study, on 14 April 2024, we embedded the PCA-VSS-NLMS algorithm into the Φ-OTDR
system and installed the system in the communication room of the 500 kv Station A of
Tongliao City, Inner Mongolia Province of China, as part of the state grid. We measured a
90 km optical fiber composite overhead ground wire (OPGW) as the optical cable line. The
Φ-OTDR system parameters were set as follows: the detection range was set to 90 km, and
the spatial resolution was set to 100 m. The installation and analysis results are shown in
Figure 13.

Where Figure 13a is a schematic diagram of the OPGW cable’s location; Figure 13b
is the installation diagram of the Φ-OTDR system in the station; Figure 13c shows the top
view of the 3D spatial spectrum of unfiltered measured vibration data from the 90 km
OPGW fiber-optic cable; and Figure 13d shows the top view of the 3D spatial spectrum
of vibration data filtered by PCA-VSS-NLMS from the 90 km OPGW cable. As shown in
Figure 13c,d, the proposed filtering algorithm can effectively filter out the background
noise and highlight the vibration signal position. As can be seen in Figure 13d, there is a
strong vibration signal at a distance of 46–49 km, which can be viewed as a multi-point
vibration. It was verified that the 46–49 km line was in a level 2 dance zone and that the
meteorological data for that day were a southerly wind at level 5.
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4. Conclusions

In this study, we enhanced the position information SNR of the Φ-OTDR system by
introducing a filtering algorithm based on PCA-VSS-NLMS. The mathematical foundation
of the PCA-VSS-NLMS algorithm was elucidated, and its effectiveness was established
through simulation experiments. The results from the simulation experiments show that
the PCA-VSS-NLMS algorithm achieves a significant improvement in SNR, reaching up to
30.68 dB when the initial SNR is only −1.23 dB. It outperforms existing algorithms such as
WD, Wiener, VMD, and VSS-NLMS, highlighting the potential of the proposed algorithm
in enhancing the performance of the Φ-OTDR system. The PCA-VSS-NLMS algorithm
was embedded into the built Φ-OTDR system, an 11.22 km fiber was measured, and PZT
was added at 10.19–10.24 km to impose multiple sets of fixed-frequency disturbances. The
experimental results show that the SNR of the vibration signal is 8.77 dB at 100 Hz and
0.07 s, and the SNR is improved to 26.17 dB after PCA-VSS-NLMS filtering; thus, the SNR
is improved by 17.40 dB. In addition, we carried out practical application measurements
to monitor the vibration of a 90 km OPGW as an optical cable line of the 500 kv Station A
in Tongliao City, Inner Mongolia Province of China, as part of the state grid, effectively
reducing the background noise. The measurement results are consistent with the actual
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situation. The proposed algorithm can improve the SNR of the Φ-OTDR system’s position
information without changing the existing hardware conditions and provides a new scheme
for the detection and recognition of long-distance vibration signals.
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