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Abstract: To address the extended development cycle, high costs, and maintenance difficulties as-
sociated with existing microgravity simulation methods, this study has developed a semi-physical
simulation platform for robotic arms tailored to different gravity environments and loading condi-
tions. The platform represents difficult-to-model joints as physical objects, while the easily modeled
components are simulated based on principles of similarity. In response to the strong coupling,
nonlinearity, and excess force disturbance issues in the electric variable load loading system, a
fractional-order linear active disturbance rejection control algorithm was employed. The controller
parameters were tuned using an improved particle swarm algorithm with modified weight coeffi-
cients, and experimental results demonstrate that a fractional-order linear active disturbance rejection
control improves response speed and disturbance rejection performance compared to linear sliding
mode control. The study investigated the differences in the drive force of joint motors in space robotic
arms under varying gravity environments and loading conditions. Experimental results indicate that
load torque is the primary influencing factor on joint motor drive force, while radial force serves as a
secondary influencing factor. Additionally, when the axis of the joint motor is perpendicular to the
ground, it can, to some extent, simulate microgravity conditions on the ground.

Keywords: space manipulator; semi-physical simulation; fractional-order linear self-adaptive distur-
bance rejection; motor driving force

1. Introduction

Joints, serving as pivotal components of robotic arms, play a direct role in determining
the kinematics, dynamics, and control performance of the robotic arm. A typical joint is
composed of various structures, including motors, reducers, encoders, and brakes, resulting
in an exceptionally complex transmission system. Particularly in harmonic gear reducers,
the flexspline undergoes deformation under varying loads, leading to uncertainty in model
parameters and posing challenges to the establishment of accurate joint dynamic models
using theoretical methods [1]. Moreover, the disparities in dynamics between gravitational
and microgravity environments for space robotic arms necessitate substantial investments
in funding, manpower, and facilities for conducting full-scale physical experiments using
suspension, air flotation, or water flotation methods [2].

With the rapid advances in science and technology, semi-physical simulation tech-
nology has emerged as a potent tool for system development, offering advantages such
as enhanced system development quality, shortened development cycles, and reduced
development costs [3]. Consequently, the development of a semi-physical simulation device
for robotic arms, the establishment of a semi-physical simulation system for robotic arms,
simulation of the variation in gravitational and microgravity loads, differential analysis of
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joint drive forces, and related control research hold significant importance for enhancing
the overall motion performance of robotic arms in operational environments.

Semi-physical simulation involves substituting challenging models with physical
components and establishing a real-time loop between simulation and physical components
to form a semi-physical simulation system. Initially, this method was predominantly
applied in the development and testing of military equipment, such as missiles, nuclear
weapons, and fighter jets. As computer control technology has become widely integrated
into electromechanical systems, the application of semi-physical simulation has expanded
across multiple fields, including aviation, aerospace, automotive, nuclear power, and
robotics, garnering broad recognition and playing a pivotal role in the advancement of
semi-physical simulation technology [4].

The widespread application of semi-physical simulation technology is evident. Ref-
erence [5] developed the EPOS2.0 semi-physical simulation platform for testing the six-
degrees-of-freedom dynamics of two satellites in relative motion, contact dynamics during
the capture and docking process of the two satellites, sensor-guided methods for measuring
space rays and background environment, and guidance. Reference [6] introduced the STVF
semi-physical simulation test system, which validated some critical contact collision tasks
on SPDM before its space mission. Reference [7] employed a 6-DOF serial robot to simulate
the floating base of the operating arm, using a few-degrees-of-freedom robot and motion
base on the client side to simulate the motion of client satellites. This simulation is primarily
aimed at exploring the application of robotics, visual systems, and automatic control theory
in future on-orbit services. Reference [8] designed a semi-physical experimental platform
combining robots and air flotation, successfully achieving the free-floating motion of the
target during the capture and contact process on a two-dimensional air flotation plane,
effectively demonstrating the dynamic motion process of the captured target. Reference [9]
addressed safety concerns in industrial robot force/position hybrid control applications
and proposed a practical robot collision detection algorithm, verified through semi-physical
simulation experiments to achieve effective collision detection.

Reference [10] developed a test system loading platform for ground verification of
space robotic arm control algorithms, capable of verifying the stable control effect of space
robotic arms when moving heavy loads in vacuum, high- and low-temperature environ-
ments, and microgravity conditions. Simulation and experimental results validated the
effectiveness of the stable control algorithm for space robotic arms. Reference [11] designed
and constructed a semi-physical simulation test platform based on the solid lubrication
of mechanical arm joints as the main executive mechanism, integrating physical objects
into mathematical simulation and modifying joint contact forces based on experimental
results to obtain a joint contact force model suitable for different gravity environments.
Reference [12] conducted research on comprehensive, sufficient, and effective testing and
verification of space large-scale robotic arms on the ground, proposing a testing and verifi-
cation system combining semi-physical simulation and physical verification to address the
issue of incomplete single-test verification. Reference [13] proposed a fully physical ground
simulation test method for space robotic arms, addressing the feasibility issue of on-orbit
capture design solutions in a ground environment where space robotic arms cannot support
their own weight, thus improving the consistency between ground and orbit experiments.
Reference [14] established an experimental platform based on a simulated four-degrees-
of-freedom humanoid robotic arm, revealing that the driving torque of the space robotic
arm in the ground phase is significantly related to the angular position, whereas in the
space phase, the driving torque is less influenced by the angular position. Reference [15]
conducted experiments in a ground gravity environment, ground simulated microgravity
environment, and drop tower microgravity environment using a single-joint driven robotic
arm test device, demonstrating the elimination of gravity influence in the ground environ-
ment by aligning the motion axis parallel to the direction of gravity, approximating the
space microgravity environment.
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This paper addresses the challenges of conducting comprehensive physical exper-
iments in simulated microgravity environments on Earth. It proposes a semi-physical
simulation platform for space robotic arms tailored to different gravity environments
and loading conditions. The approach involves using physical joints that are difficult to
establish accurate mathematical models for and applying equivalent simulations based
on the principle of similarity to the parts that are easier to model. The subsequent sec-
tions unfold as follows: Section 2 presents the mechanical structure and measurement
and control system design of the semi-physical simulation platform for space robotic
arms, provides the mathematical model of the electrically variable load system, designs
a fractional-order sliding mode controller, and uses particle swarm optimization for pa-
rameter tuning. Section 3 presents experimental results and analysis, while Section 4 offers
conclusions and suggestions for future work.

2. Materials and Methods

The semi-physical simulation platform for space robotic arms is composed of a joint
motor attitude control unit, an electric variable load system, and an upper computer UI
interface. The joint motor attitude control unit comprises a servo motor and a hollow
turntable. The servo motor operates in absolute position mode, enabling the hollow
turntable to achieve joint motor attitude control. The electric variable load system includes
a radial force loading unit and a load torque loading unit. The radial force loading unit
utilizes a servo electric cylinder to extend or retract the front spring mechanism and tension
sensor for closed-loop control to implement radial force loading. The load torque loading
system employs a torque motor and torque sensor for closed-loop control to simulate load
torque loading. Subsequent sections will offer a comprehensive overview of the mechanical
structure, operational principles of each component, and the hardware and software design
of the semi-physical simulation platform for space robotic arms.

The physical depiction of the space robotic arm semi-physical simulation platform is
illustrated in Figure 1, showcasing the complete experimental setup on the right side and
the upper computer, controller, power supply, and servo drive on the left side.

Figure 1. Physical diagram of the semi-physical simulation platform for space robotic arms.

2.1. Mechanical Structure

The semi-physical simulation platform for space robotic arms is designed to treat
joints, which poses challenges in establishing precise mathematical models as physical
entities. Meanwhile, the easily modelable components are simulated based on the principle
of similarity. The equivalent simulation encompasses three main units: the joint attitude
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control unit, radial force loading unit, and load torque loading unit, as depicted in Figure 2.
This simulation platform employs the joint attitude control system to replicate variations in
joint attitudes under operational conditions, the radial force loading unit to mimic changes
in radial forces acting on the joints, and the load torque loading unit to simulate variations
in load torques applied to the joints. It can be utilized for conducting research on joint
transmission system testing, joint model identification, refinement of robotic arm dynamics
modeling, and analysis of dynamic disparities of robotic arms in diverse environments.

Figure 2. Composition of the mechanical structure.

The radial force loading unit comprises servo motors, servo drives, servo electric
cylinders, spring mechanisms, and tension sensors. The workpiece on the joint motor
shaft serves as the load object for the radial force loading unit. This workpiece contains
bearings to mitigate the impact of radial forces on the rotational motion of the joint motor.
The radial force is applied perpendicular to the axis of the joint motor. The servo motor
operates in absolute position mode and is outfitted with software limits to prevent servo
motor overload.

The load torque loading unit consists of a torque motor and torque sensor, connected
through a coupling. The joint motor of the space robotic arm on the left side of the figure
serves as the load object for the load torque loading unit connected to the torque sensor via
a coupling.

The joint attitude control unit is composed of servo motors, servo drives (SV660N,
Huichuan Company, Wenzhou, China), and hollow turntables. The servo motor has a rated
power of 400 W and features a power-off brake function to ensure the safe operation of
the experimental platform. Operating in absolute position mode, the servo motor achieves
a control accuracy of up to 0.01◦. Through computation, the target joint attitude angles
are converted into servo motor position pulse signal numbers, which are then input to the
servo drive to control the servo motor in generating corresponding displacements, thereby
steering the hollow turntable to achieve joint attitude angle control.

2.2. Measurement and Control System

The measurement and control system of the semi-physical simulation platform for
space robotic arms is depicted in Figure 3. The upper computer orchestrates the radial force
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loading unit, load torque loading unit, and joint motor while also recording and storing
the current passing through the joint motor, torque sensor, and tension sensor. The upper
computer feeds the desired radial force to the controller, which, in turn, regulates the radial
force loading unit to apply the corresponding radial force waveform. Subsequently, the
microcontroller transmits the tension data back to the upper computer.

Figure 3. Hardware components of the measurement and control system.

The input to the radial force loading unit is the desired radial force. The controller
compares the desired force with the current radial force, sending this deviation to the radial
force loading system’s controller. After processing, the controller transmits the control
signal, i.e., the position command, to the servo drive (SV660A, Huichuan Company, China).
This action prompts the motor to rotate, with the servo electric cylinder transforming
the rotary motion into linear motion by stretching or compressing the spring mechanism
to generate the appropriate tension. Feedback from the tension sensor (DY500, Dayang
Sensing Systems Engineering Co., Ltd., Bengbu, China) at the spring mechanism’s forefront
enables closed-loop control of the radial force. The control schematic of the radial force
loading unit is outlined in Figure 4.

Figure 4. Radial force loading control diagram.

The operational principle of the load torque loading unit is as follows: by adjusting
the input current of the torque motor (60AIM25, Hangzhou Yizhi Technology Co., Ltd.,
Hangzhou, China), the output torque is modified. This adjustment is made through
the alteration of the torque motor’s maximum static output register, with closed-loop
control implemented via feedback from the torque sensor (HLT-171, Shenzhen Hualiteng
Technology Co., Ltd., Shenzhen, China). As the torque motor functions in speed mode
at zero velocity setting, it will be back-driven by the joint motor (LSG-17-70-50, Shanghai
Taixin Intelligent Technology Company, Shanghai, China), leading to a power generation
state. Accordingly, the experiment duration should be limited to prevent undue strain. The
joint motor should operate at low speeds to avert coupling slippage or damage to other
components. The control schematic of the load torque loading unit is depicted in Figure 5.

To meet the experimental requisites of the semi-physical simulation platform for space
robotic arms, the upper computer’s user interface encompasses sensor data retrieval, joint
motor and torque motor control, data uploading and storage, and waveform visualization.
The upper computer is primarily divided into sections for communication configuration,
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variable load management, joint motor orientation setup, joint motor control, and data
waveform presentation.

Figure 5. Load torque loading system control diagram.

2.3. Modeling of Electrically Variable Load Loading System

The equivalent circuit of the servo motor is illustrated in Figure 6.

Figure 6. Equivalent circuit diagram of the servo motor.

The voltage balance equation of the servo motor is:

U = iR + L
di
dt

+ E (1)

The back electromotive force of the motor is:

E = Keω (2)

The torque balance equation of the motor is:

Tm = J
dω

dt
+ Bω + Tl (3)

The electromagnetic torque can be expressed as:

Tm = KTi (4)

where U is the armature voltage of the motor; i is the armature current of the motor; R is
the total resistance in the armature circuit; E is the back electromotive force of the motor; Ke
is the back electromotive force coefficient of the motor; ω is the rotational angular velocity
of the motor; Tm is the electromagnetic torque of the motor; J is the rotational inertia on the
motor shaft; B is the damping coefficient of the motor; Tl is the output torque on the motor
shaft; KT is the torque coefficient of the motor.

By organizing Equations (1)–(4) and performing Laplace transformation, the transfer
function of the servo motor model can be obtained as:

G0(s) =
ω(s)
U(s)

=
KT

LJs2 + (LB + RJ)s + BR + KeKT
(5)
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The angular displacement of the servo motor is obtained by integrating the angular
velocity of the servo motor:

θ(t) =
∫ t

0
ω(t)dt (6)

The transmission mechanism of the radial force loading system is a servo electric
cylinder, and the linear distance of the output shaft of the servo electric cylinder is:

y =
θh
2π

(7)

Since the deformation of the tension/compression force sensor is small, it is neglected.
The tension or compression force output by the spring mechanism is:

F = Kxy (8)

where h is the lead of the ball screw; Kx is the spring stiffness coefficient.
Combining Equations (5)–(8), the open-loop transfer function of the experimental

loading system is given by:

G(s) =
F(s)
U(s)

=
KTK f h

2π[LJs3 + (LB + RJ)s2 + (RB + KeKT)s]
(9)

When the torque motor is uniformly driven, a force analysis of the joint motor yields:

Tl1 = KT2i2 + J2
dω

dt
+ B2ω + Tr f (10)

where Tl1 is the load of the joint motor; KT2 is the torque coefficient of the torque motor; J2
is the moment of inertia converted on the torque motor shaft; B2 is the damping coefficient
of the torque motor; Tr f is the excess torque.

Based on the above equation, the model block diagram of the load torque loading
system is depicted in Figure 7. The load on the joint motor, affected by the electromagnetic
torque, rotational inertia, friction, and surplus torque of the torque motor, can be controlled
by adjusting the output electromagnetic torque of the torque motor and implementing
closed-loop control feedback through the torque sensor.

Figure 7. Model diagram of the load torque loading system.

2.4. Fractional Order Active Disturbance Rejection Controller Design

LADRC effectively resolves the contradiction between response speed and overshoot.
By employing an extended state observer (ESO) to estimate unmodeled components and ex-
ternal disturbances, it enhances the system’s disturbance rejection performance. To further
enhance the control performance of LADRC on the electric variable load loading system,
considering the delicacy and information memory characteristics of fractional calculus,
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along with the increased number of controller parameters to be tuned, the controller’s
adjustment range is expanded, thereby improving the system’s dynamic performance [16].
FOLADRC effectively combines the advantages of LADRC and fractional calculus, as
depicted in the schematic diagram in Figure 8.

Figure 8. Fractional order active disturbance rejection control principle diagram.

FOLADRC comprises a tracking differentiator (TD), an ESO, and a fractional order
proportional-derivative (PD) controller. By integrating the TD and ESO of LADRC, FO-
LADRC effectively tracks the reference signal, enhances disturbance rejection performance,
and introduces fractional calculus to broaden the controller’s adjustment range, increasing
its flexibility and improving control effectiveness.

The role of the TD is to process the input signal for smooth transitions, enhancing
system speed while reducing overshoot. The expression of the TD is given by:{ .

v1 = v2.
v2 = −aR2(v1 − v0)− aRv2

(11)

where R denotes the sampling time, and a is a positive coefficient.
The ESO treats unmodeled components and external disturbances as total disturbances,

compensating them into the electric variable load loading system to reduce internal and
external disturbances and improve disturbance rejection performance. The expression of
the ESO is: 

e = z1 − y
.
z1 = z2 − β1e
.
z2 = z3 − β2e + b0u
.
z3 = −β3e

(12)

where [β1, β2, β3] is the key parameter of the extended state observer, and appropriate
parameter settings can improve the tracking performance of the system. The parameter
setting can be carried out by the pole assignment method [17]. According to the engineering
experience, the pole can be set as the primary root ω0. [β1, β2, β3] = [3ω0, 3ω0

2, ω0
3], where

ω0 is the bandwidth of the observer; increasing the bandwidth can improve the fast
performance and control accuracy of the system, but this results in too large amplification
noise, causing system vibration. b0 is the output gain.

When the system observation error approaches 0, the state variable estimated by ESO
can be approximated as the actual state variable of the system. Therefore, the observer can
accurately estimate the state variables of the system.

When fractional calculus is added to linear combination, the digital realization of
fractional differential is infinite dimensional, which needs to be approximated by finite
dimensional differential equation in a certain frequency range. The time domain approxi-
mation of fractional calculus operator obtained according to G-L definition [18] is:

t0
Dβ

t f (t) ≈ t−LDβ
t f (t) ≈ h−β

M(t)

∑
j=0

wβ
j f (t − jh) (13)
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where L is the memory length; M(t) = min
{
[ t

h ][
L
h ]
}

, where smaller h and larger L means
the approximate calculus effect is more accurate.

The state error feedback of FOLADRC is transformed into a discrete time series
equation and obtained as:

u0(k) = Kpe1(k) + Kde2(k) (14)

where the discretization expressions for e1 and e2 are as follows:
e1(k) = x1(k)− z1(k)

e2(k) = −h−µ
k
∑

j=0
wµ

j z2(k − j) (15)

where j = 1, 2 . . . , k, ω is the weight coefficient, and the derivation formula is as follows:

ω
µ
0 = 1, ω

µ
j = (1 − 1 + µ

j
)ω

µ
j−1 (16)

In addition to the two parameters of TD, FOLADRC requires the tuning of five
additional parameters. The tuning of controller parameters is challenging, and only by
selecting appropriate parameters can the desired control effect be achieved. Therefore, the
particle swarm optimization algorithm is employed for controller parameter tuning.

The particle swarm optimization algorithm, proposed by Eberhart and Kennedy, simu-
lates the way birds seek food during flight and is a type of swarm intelligence optimization
algorithm. Nowadays, the particle swarm algorithm has been widely applied in various
research endeavors [19].

The basic principle of particle swarm optimization [20]: suppose a D-dimensional
space is taken as the target search space, N particles are taken as a particle swarm population
in the space; suppose the position and velocity of the i particle are xi = (xi1, xi2, · · ·, xiD)
and vi = (vi1, vi2, · · ·, viD), respectively, and the optimal position sought by this particle
in the whole target search process is recorded as the individual extreme value pbest =
(pi1, pi2, · · ·, piD) of this particle. The optimal position sought by the whole N parti-
cle population in the process of target search is recorded as the global extreme value
gbest =

(
pg1, pg2, · · ·, pgD

)
of the whole particle population. In the iteration process, the

particle updates its speed and position according to the individual extreme value and global
extreme value until the iteration termination condition is met. The speed and position
iteration formula of the particle swarm algorithm is as follows:{

vk+1
id = ωvk

id + c1r1(Pk
id − xk

id) + c2r2(pk
gd − xk

id)

xk+1
id = xk

id + vk+1
id

(17)

where i (i = 1, 2, . . ., N) is the population number; d (d = 1, 2, . . ., D) is the spatial dimension;
k is the current number of iterations; c1 and c2 are weight coefficients; r1 and r2 are both
random numbers distributed in the interval [0, 1]; ω is the inertia weight, which determines
the global and local search capability of the algorithm. When the inertia weight is larger,
the global search ability of the particle swarm is improved; when the particle swarm is
smaller, the local search ability of the particle swarm is improved. Usually, ωmax = 0.9,
ωmin = 0.4; when the weight coefficient is taken, the algorithm has the best performance,
the ability to find the global optimal value in a reasonable number of iterations is better,
and the number of iterations required is the least [21]. At present, the commonly used
inertia weight formula is:

ω = ωmax −
(ωmax − ωmin)t

tmax
(18)

where tmax is the maximum number of iterations; t is the current iteration times.
Although ω is no longer a fixed value through this formula, the global search ability is

enhanced in the early stage of iteration, and the local search ability is enhanced in the later
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stage, but the change rate of ω is a fixed value, and it may not be better to seek the optimal
value under strong search conditions.

In practical applications, there are many uncertainties. The change rate of ω in the
above formula is a fixed value, and the optimal value may not be obtained under strong
search conditions. Inspired by the literature [22], this paper introduces the 1/4 period of
sine function and improves the weight factor, making w as follows:

a = t/tmax
b = sin[π/2 · (a − 1)] + 1
ω = ωmax · (1 − b3) + ωmin · rand · b3

(19)

The improvement of ω introduces stochastic function to increase randomness in
particle swarm iteration. ω changes slowly in the early stage of particle swarm iteration
and takes a large value, so the global search ability of particle swarm is strong. In the later
stage, the change is fast, the value is small, and the local search ability of PSO is strong,
which is conducive to preventing PSO from falling into the local optimal and obtaining the
controller parameters with better control effect.

ITAE integral evaluation function was used as fitness function:

ITAE =
∫ ∞

0
t|e(t)|dt (20)

where e(t) is the error.
When PSO is used to adjust the linear active disturbance rejection parameters, the

large fitness selection is conducive to reducing system overshoot, but it will reduce the fast
performance. Small fitness selection is conducive to improving the fast performance of the
system, but it will increase the overshoot of the system and even produce shock, so the
appropriate fitness should be selected.

Conventional ω and improved ω were used to adjust FOLADRC controller parameters,
respectively. The change curves of their adaptation values are shown in Figure 9. It can be
seen that improved ω tuning parameters can find better controller parameters faster.

Figure 9. Adaptation value variation curve.

In order to explore the influence of the improved ω particle swarm optimization algo-
rithm on this experiment, the parameters adjusted by the improved ω and the conventional
ω were simulated. The tracking and error curves of sine wave signal load with input
pressure load amplitude of 5 N and period of 8 s are shown in Figure 10.
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Figure 10. Particle swarm algorithm optimized sine wave tracking curve. (a) Tracking curve;
(b) error curve.

It can be seen from Figure 10a that both kinds of ω optimization have obtained better
tracking effects, and from the error curve in Figure 10b, it can be seen that the error after
the optimization with improved ω is small, especially the error near the zero point of the
sine wave.

3. Experiments

To investigate the control performance of FOLADRC in practical systems, experiments
were conducted on an electric variable load loading system under both stationary and
rotating joint motor conditions. Real-time data from tension and compression force sensors
were collected by the host computer, and waveform plots were generated. Constant, square
wave, triangular wave, and sinusoidal waveforms were used as input signals for variable
load loading experiments. Real-time storage of experimental data was performed, and
corresponding load tracking curves and error curves were plotted based on the stored data.
During dynamic loading, the motor speed was set to 50 r/min, simulating the introduction
of external disturbances when the joint motor rotates.

Figure 11 shows the load tracking curves and error curves of the electric variable load
loading system under a square wave signal with a peak load of 250 N, a valley load of 50 N,
and an 8-s period. Panels (a) and (b) represent the system without external disturbance,
while panels (c) and (d) depict the system with external disturbance introduced during
joint motor rotation.

From Figure 11, it can be observed that without external disturbances, both methods
exhibit good control performance, achieving no overshoot. FOLADRC demonstrates
a faster response speed, with a reduction in rise time of approximately 0.12 s. When
external disturbances are introduced, the response speeds of both methods are similar, but
FOLADRC exhibits smaller oscillations after stabilization, indicating stronger disturbance
rejection capability.

Figure 12 shows the load tracking curves and error curves of the electric variable load
loading system under a triangular wave signal with a peak load of 250 N, a valley load of
50 N, and an 8-s period. Panels (a) and (b) represent the system without external distur-
bance, while panels (c) and (d) depict the system with external disturbance introduced.

From Figure 12, it can be observed that in the absence of external disturbance, the
tracking error of the electric variable load loading system is smaller with FOLADRC
compared to LADRC, and both show some error at the peaks. When an external disturbance
is present in the system, FOLADRC exhibits smaller tracking errors compared to LADRC
but displays oscillations.
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Figure 11. Square wave loading experiment curve. (a) Joint motor tracking curve when stationary.
(b) Error curve of joint motor when stationary. (c) Joint motor tracking curve during rotation. (d) Error
curve of joint motor during rotation.

The data analysis from the above simulations and experiments indicates that FO-
LADRC, by introducing a fractional-order differential factor compared to LADRC, re-
duces overshoot, enhances system disturbance rejection capabilities, and improves re-
sponse speed.

Loading experiments were conducted on the load torque loading system of a semi-
physical simulation platform for space manipulator arms, employing a constant waveform.
Real-time data acquisition was utilized to capture and store experimental data, enabling
the generation of corresponding tracking and error curves based on the stored experimen-
tal data.

Figure 13 illustrates the load tracking curves and error curves of the load torque
loading system under a constant signal load of 3 Nm, controlled by traditional PID and
LADRC methods.

From the figure, it is evident that both LADRC and PID exhibit commendable tracking
performance when following constant value signals. The PID controller demonstrates
a smaller tracking error compared to LADRC, highlighting its superior performance in
practical applications, especially in disturbance rejection. Consequently, PID control will be
implemented for regulating the loading torque in the upcoming experiments.

In order to investigate the effects of different gravity environments and loading meth-
ods on the drive current of joint motors, the control algorithm discussed above was applied
to the electric variable load loading system. Joint motor drive force experiments were
conducted through the upper computer UI interface. Detailed experimental descriptions
will follow.
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Figure 12. Triangle wave loading experiment curve. (a) Joint motor tracking curve when stationary.
(b) Error curve of joint motor when stationary. (c) Joint motor tracking curve during rotation. (d) Error
curve of joint motor during rotation.

Figure 13. Constant load experiment curve. (a) Tracking curve; (b) error curve.

The joint posture angle is set to 0◦ when the joint motor axis is parallel to the horizontal
plane, representing the ground gravity environment, and 90◦ when the joint motor axis
is perpendicular to the horizontal plane, representing the ground simulated microgravity
environment, as shown in Figure 14.
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Figure 14. Experimental platform with different joint posture angles. (a) The posture angle is 0◦

(gravity environment). (b) The posture angle is 90◦ (simulated microgravity environment).

Figure 15 illustrates the curves of joint motor drive current and load torque under a
joint posture of 0◦ and no-load condition. The joint motor drive current fluctuates with
the variation of load torque, with the fluctuation being attributed to the unstable speed
of the joint motor. Meanwhile, the fluctuation in joint motor drive current is caused by
the instability of the load, which is primarily due to the influence of excess torque and the
unstable speed of the joint motor.

Figure 15. Current waveform diagram of unloaded joint motor drive.

With the joint motor posture angles at 0◦ and 90◦, different loads of torque are applied
axially. When there is no radial load, the joint motor drive current fluctuates, as shown
in Figure 16. It can be observed that the larger the axial load torque, the larger the drive
current, indicating that the load torque is the main factor affecting the joint motor drive
current. The difference between (a) and (b) shows that the drive current at a joint angle of
90◦ is relatively smaller than at 0◦, but the data comparison is not significant enough and
will be further described.

When the joint motor posture angle is set to 0◦, meaning the joint motor axis is parallel
to the ground, with axial load being zero (static output of torque motor is maximum), and
applying constant and peak values of 250 N and valley values of 50 N with 8-s period
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square wave, triangular wave, and sine wave radial forces, the resulting joint motor drive
current waveform is shown in Figure 17.

Figure 16. Different load joint motor drive current waveforms. (a) The attitude angle is 0◦. (b) The
attitude angle is 90◦.

Figure 17. Under constant value waveform loading with different amplitudes, the joint motor drive
current waveforms.

When the load torque is 2 Nm, the resultant force direction generated by equally
loaded radial forces in the X and Y directions is in the Z direction. Radial forces of 250 N
each are loaded in the X and Y directions, with 250 N loaded in the Z direction achieved
through loading 176.8 N in the X and Y directions, respectively. The current waveform of the
joint motor is shown in Figure 18, with average driving currents of 1339.7 mA, 1335.3 mA,
and 1335.9 mA for the joint motor. It is illustrated that when the same magnitude of load
torque and radial force are applied, the driving current of the joint motor is essentially
independent of the direction of the radial force.

Setting the joint motor posture angle to 0◦, meaning the axis of the joint motor is
parallel to the ground, with axial load unloaded (maximum static output torque of the
motor is 0), a constant radial force of 250 N, a peak value of 250 N, a valley value of 50 N,
and periodic square wave, triangular wave, and sinusoidal wave radial forces with a period
of 8 s, the waveform of the joint motor driving current is shown in Figure 19.



Sensors 2024, 24, 4354 16 of 19

Figure 18. The waveform of joint motor drive current when loading constant waveforms in different
radial directions.

Figure 19. Current waveforms of joint motor drive under different radial force loadings. (a) Constant
load and driving current. (b) Square wave load and driving current. (c) Triangle wave load and
driving current. (d) Sine wave load and driving current.

It can be observed that the joint motor driving current exhibits similar trends with
the variations in the radial force waveform. However, the fluctuation in the joint motor
driving current caused by the radial force fluctuation is relatively smaller compared to the
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fluctuation caused by the load torque, further proving that the radial force is a secondary
influencing factor on the joint motor driving current.

It can be seen that the joint motor drive current fluctuates in the same trend as the
radial force waveform changes, but the fluctuation in the drive current caused by radial
force is relatively smaller compared to that caused by load torque fluctuation, further
confirming that radial force is a secondary factor affecting the joint motor drive current.

The current waveform of the joint motor under different joint posture angles is shown
in Figure 20, where (a) and (b) represent the motor drive current waveform with axial loads
of 2 Nm and 3 Nm, respectively, and no radial load at different joint motor postures. In
(a), the average motor drive current at a joint posture angle of 0◦ is 1306.8 mA, and at 90◦,
it is 1289.7 mA; in (b), the average motor drive current at a joint posture angle of 0◦ is
1558.3 mA, and at 90◦, it is 1534.9 mA. It indicates that without radial load, when the same
load torque is applied, the joint motor drive current in the simulated ground microgravity
environment is smaller compared to the gravity environment.

Figure 20. Joint motor drive current waveforms at different joint pose angles. (a) The load torque is
2 Nm with radial free load. (b) The load torque is 3 Nm with radial free load. (c) The load torque is
2 Nm with a radial force of 250 N. (d) The load torque is 3 Nm with a radial force of 250 N.

Figure 20c,d show the motor drive current waveform with axial loads of 2 Nm and
3 Nm, respectively, and a radial force of 250 N. In (c), the average motor drive current at a
joint posture angle of 0◦ is 1343.2 mA, and at 90◦, it is 1298.8 mA; in (d), the average motor
drive current at a joint posture angle of 0◦ is 1568.0 mA, and at 90◦, it is 1547.3 mA. It can
be observed that when the same load is applied, the joint motor drive current at a posture
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angle of 90◦ is smaller compared to 0◦, indicating that in the simulated ground microgravity
environment, the motor drive current is lower than in the gravity environment.

4. Conclusions

This study introduces the development of a semi-physical simulation platform tailored
for robotic arms in various gravity environments and loading conditions. It elaborates
on the mechanical structure, design of measurement and control systems, as well as the
operational principles of the experimental platform. To tackle issues like strong coupling,
nonlinearity, and excessive force disturbance in the electric variable load loading system,
fractional calculus is incorporated into LADRC to derive FOLADRC. The parameters of
the FOLADRC controller are fine-tuned using an enhanced particle swarm algorithm with
adjusted weight coefficients. Results demonstrate that compared to LADRC, FOLADRC
reduces the static rise time by approximately 0.12 s and displays reduced susceptibility
to external disturbances such as joint motor rotation during dynamic tracking, thereby
significantly minimizing errors and improving disturbance rejection performance. The
research explores the impact of diverse gravity environments and loading conditions on
the drive force of joint motors in space robotic arms. Experimental findings reveal that with
increasing load torque, the drive force of joint motors also increases, with load torque being
the primary influencing factor on joint motor drive force. Variations in drive force occur
when different waveforms of radial force are applied. Radial force alters joint motor drive
force by modifying the friction torque of the joint motor, acting as a secondary influencing
factor. Radial forces of equivalent magnitude but different directions consistently affect
joint motor drive force. Furthermore, under identical loading conditions, when the axis of
the joint motor is perpendicular to the ground, the drive force of the joint motor relative to
the gravity environment diminishes, thereby partially emulating microgravity conditions
on Earth.

To address the subpar tracking performance of triangular wave signals by the electric
variable load loading system, forward compensation methods will be integrated into the
current solution to enhance the tracking accuracy of triangular wave peaks. Furthermore,
future efforts will involve comparative analysis utilizing different control schemes.
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