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Abstract: Accurate weed detection is essential for the precise control of weeds in wheat fields, but
weeds and wheat are sheltered from each other, and there is no clear size specification, making it
difficult to accurately detect weeds in wheat. To achieve the precise identification of weeds, wheat
weed datasets were constructed, and a wheat field weed detection model, YOLOv8-MBM, based on
improved YOLOv8s, was proposed. In this study, a lightweight visual converter (MobileViTv3) was
introduced into the C2f module to enhance the detection accuracy of the model by integrating input,
local (CNN), and global (ViT) features. Secondly, a bidirectional feature pyramid network (BiFPN)
was introduced to enhance the performance of multi-scale feature fusion. Furthermore, to address
the weak generalization and slow convergence speed of the CIoU loss function for detection tasks,
the bounding box regression loss function (MPDIOU) was used instead of the CIoU loss function
to improve the convergence speed of the model and further enhance the detection performance.
Finally, the model performance was tested on the wheat weed datasets. The experiments show
that the YOLOv8-MBM proposed in this paper is superior to Fast R-CNN, YOLOv3, YOLOv4-tiny,
YOLOv5s, YOLOv7, YOLOv9, and other mainstream models in regards to detection performance.
The accuracy of the improved model reaches 92.7%. Compared with the original YOLOv8s model,
the precision, recall, mAP1, and mAP2 are increased by 10.6%, 8.9%, 9.7%, and 9.3%, respectively. In
summary, the YOLOv8-MBM model successfully meets the requirements for accurate weed detection
in wheat fields.

Keywords: deep learning; wheat weeds; weed detection; MobileViTv3; BiFPN

1. Introduction

Wheat is a vital staple crop that fulfills the dietary and nutritional requirements of
human beings. China cultivates around 350 million mu of wheat annually, which represents
19.86% of the total area used for grain crops in the country. Wheat is the third most widely
grown crop in China, after corn and rice, and it plays a crucial role in the country’s
agricultural production and national economy. Nevertheless, the productivity of wheat is
limited by a range of factors, with weed infestation being notably significant. Based on the
survey, the predominant weeds found in wheat fields in Shandong are wheat Artemisia.
These weeds directly compete with wheat for essential resources such as soil nutrients,
water, and sunlight, thus significantly impeding the growth and development of wheat.
Failure to manage the growth of weeds alongside wheat may result in a decrease in wheat
production exceeding 34% [1,2]. Simultaneously, the presence of weeds can also amplify
the prevalence of wheat pests and diseases, resulting in substantial financial losses for
agricultural productivity. Early and mid-March (the green-up period) is a critical time for
weeding wheat. Therefore, it is particularly important to control the growth of weeds in
wheat fields during the green-up period.
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The most commonly used methods of weeding in wheat fields are manual weeding
and spraying herbicides [3,4]. Artificial weeding is a traditional way of weeding in wheat
fields. This method exhibits high labour intensity, high weeding cost, and is susceptible to
subjective influence. The efficiency of weeding is low, and it is difficult for this method to
meet the needs of large-scale agricultural production. Spraying herbicides is a convenient
and quick weeding method, and it can effectively control the growth of weeds in wheat
fields [5,6]. However, spraying herbicides has a negative impact on the environment and
crops, and can affect the health of farmers and consumers [7]. Computer vision technology
is increasingly being used for crop detection and weed management. The automated
weed detection technique utilizes computer vision technology to swiftly identify wheat
and weeds. However, wheat and weeds are densely distributed, with similar colours
and mutual occlusion. Thus, the crucial prerequisite for the successful implementation of
novel weed control techniques, like precision application, mechanical weeding, and laser
weeding, is the precision and accuracy of weed identification.

Both traditional machine vision and deep learning-based machine vision demonstrate
high performance in regards to weed detection [8]. Conventional machine vision techniques
require the extraction of feature information from the weed target, including its shape, color,
texture, etc. This information is then used by a classifier to identify and detect weeds [9–12].
Tang et al. [13] used the k-means algorithm to realize the automatic identification of weeds
in the field. Zhang et al. [14] proposed a weed species identification method based on
GrabCut and the adaptive fuzzy dynamic k-means algorithm. Experiments show that
compared with other weed identification methods, this method can automatically segment
the background and avoid the problem of local gradient disappearance. Bakhshipour
et al. [15] proposed a method of combining support vector machine and artificial neural
network models to identify weeds in sugar beet fields. Experiments show that the overall
classification accuracy of this method is 92.92%. Espejo-Garcia et al. [16] proposed a weed
recognition system based on a combination of convolutional networks and classifiers.
Experiments show that the F1 value of this method can reach more than 95%.

Traditional machine vision methods are complex, time-consuming, computationally
inefficient, and possess high model complexity, which are suitable for specific scenarios
and tasks, but show poor robustness in complex agricultural environments. Deep learning-
based methods automatically extract features from images through models such as con-
volutional neural networks (CNNs) and complete weed detection in wheat fields through
“end-to-end” training, which offers higher accuracy and robustness [17–21] Compared
with traditional machine vision methods, deep learning-based machine vision methods are
more suitable for complex and variable agricultural scenarios. Deep learning-based target
detection models are divided into two categories: one-stage models and two-stage models,
where the two-stage model first generates candidate regions and then performs further
classification and localisation on these candidate regions. Dang et al. [22] established 18
extensive benchmarks of YOLO target detection models for weed detection. Experiments
showed that the YOLO model has great potential for real-time weed identification. Wang
et al. [23] proposed a seedling detection method for Solanum rostratum Dunal, based on
the combination of YOLOv5 and an attention mechanism, and the real-time recognition
accuracy reached 94.65%. Ajayi et al. [24] proposed a performance evaluation of automatic
crop and weed classification on UAV images using the YOLOv5 model, and the combined
recognition accuracy of this method for sugarcane, banana tree, pineapple, chili, and weeds
can reach 78%. Zhu et al. [25] proposed a YOLOX weed recognition algorithm based
on a lightweight attention module, which achieves 92.45% recognition accuracy for corn
seedlings and 88.94% for weeds. Huang et al. [26] proposed a full convolutional network
based on UAV RGB images to achieve semantic segmentation of weeds, and the recognition
rate of weeds was 88.3%. Sudars et al. [27] compared different single-stage and two-stage
models on the public dataset DeepWeeds and obtained the highest detection accuracy
using Faster R-CNN, with ResNet101 as the feature extraction network. Gabriel Alberto
et al. [28] used Mask-RCNN to identify weeds in sugarcane crops, and the model achieved



Sensors 2024, 24, 4379 3 of 17

80.3% accuracy using ResNet—50 and ResNet—101 as backbone networks. This type of
method offers high accuracy, but a long detection time when compared to one-stage models,
whereas one-stage algorithms can be improved to increase the accuracy with a shorter
detection time, which is more in line with the requirements for the real-time identification
of weeds.

In summary, deep learning-based machine vision methods can achieve a certain degree
of accuracy in weed detection. However, in the complex wheat farmland environment,
problems such as similar colours of wheat crops and weeds and inconsistent size and
dimensions lead to lower accuracy of the detection model and easy loss of small targets.

In order to avoid the above problems, an improved model YOLOv8-MBM (YOLOv8s-
C2f_MobileViTv3-BiFPN-MPDIoU), based on YOLOv8s, is proposed to realize the target
detection of wheat weeds. In this study, the C2f module in the backbone feature extraction
network of YOLOv8s is improved. The lightweight visual converter (MobileViTv3) is
introduced into the C2f module, and the input, local (CNN), and global (ViT) features are
fused to improve the detection accuracy of the model. Secondly, a weighted bidirectional
feature pyramid network (BiFPN) is introduced to enhance the performance of multi-scale
feature fusion and improve the accuracy of small target detection. Finally, in order to make
up for the problem of weak generalization and slow convergence speed of the CIoU loss
function in the detection task, the bounding box regression loss function (MPDIoU) is used
instead of the CIoU loss function to improve the convergence speed of the model, to further
enhance its detection performance, and to achieve accurate detection of weed targets in
complex environments.

2. Materials and Methods
2.1. Wheat Weed Dataset

The YOLOv8-MBM algorithm model training proposed in this paper must label wheat
weeds, but the current open source dataset does not contain these labels. Therefore, wheat
weed datasets were constructed by collecting images on site, and weeds in the dataset were
labelled (with one weed in a bounding box). Due to the collection area, the only weed
species in the wheat field is wheat Artemisia, so the wheat weed dataset constructed in this
paper contains only one weed type, labelled as ‘wheat Artemisia’.

2.1.1. Weed Image Acquisition

The wheat and weed data utilized in this study were acquired from agricultural land
in Dezhou City, Shandong Province, China. To enhance the recognition model’s ability to
generalize and reduce the impact of light intensity on the detection results, RGB (red, green,
and blue) images under different lighting conditions were collected at 7 a.m., 12 p.m., and
6 p.m. in early and mid-March. The cameras were positioned at elevations of approximately
50 cm and 100 cm above the ground, with an inclination of 80◦ to 90◦ relative to the ground.
A total of 4536 photos were captured and saved in the JPG format. The photographs were
obtained using a SONY DSC-WX7 camera, with a resolution of 4608 × 3456 pixels. The
captured images may be seen in Figure 1.
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Figure 1. Image data captured. (a) near-distance (b) long-distance. 

2.1.2. Image Annotation and Dataset Construction 
The Labellmg tool (https://github.com/tzutalin/labelImg, accessed on 20 January 

2023.) was used to label the weed target area in the image. The labelling information pri-
marily includes the picture file name, image dimensions, and region-specific details, such 
as the label, top-left pixel coordinates, and bottom-right pixel coordinates. The labelling is 
shown in Figure 2. To assess the effectiveness of the training model, the labelled dataset 
is split into three sets: the training set, the validation set, and the test set. These sets are 
separated in a ratio of 6:2:2. 

 
Figure 2. Example of weed labelling (bounding box). 

2.1.3. Dataset Expansion 
In order to reduce the network overfitting and improve the generalization and ro-

bustness of the detection model, this study uses the OpenCV image processing algorithm 
to enhance the original image to expand the dataset. Image enhancement methods include 
multi-angle rotation (45°, 90°), mirror enhancement (horizontal, vertical), Gaussian noise, 
and salt and pepper noise techniques, as shown in Figure 3. Finally, the number of sam-
ples in the training set, validation set, and test set was expanded to 16,330, 5443, and 5443, 
respectively. 

Figure 1. Image data captured. (a) near-distance (b) long-distance.

2.1.2. Image Annotation and Dataset Construction

The Labellmg tool (https://github.com/tzutalin/labelImg, accessed on 20 January
2023.) was used to label the weed target area in the image. The labelling information
primarily includes the picture file name, image dimensions, and region-specific details,
such as the label, top-left pixel coordinates, and bottom-right pixel coordinates. The
labelling is shown in Figure 2. To assess the effectiveness of the training model, the labelled
dataset is split into three sets: the training set, the validation set, and the test set. These sets
are separated in a ratio of 6:2:2.
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2.1.3. Dataset Expansion

In order to reduce the network overfitting and improve the generalization and ro-
bustness of the detection model, this study uses the OpenCV image processing algorithm
to enhance the original image to expand the dataset. Image enhancement methods in-
clude multi-angle rotation (45◦, 90◦), mirror enhancement (horizontal, vertical), Gaussian
noise, and salt and pepper noise techniques, as shown in Figure 3. Finally, the number
of samples in the training set, validation set, and test set was expanded to 16,330, 5443,
and 5443, respectively.

https://github.com/tzutalin/labelImg
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2.2.1. The YOLOv8 Network Model 

YOLO (You Only Look Once) is a real-time target identification algorithm that oper-
ates in a single stage. It is known for its simplicity, efficiency, and capacity for application 
in real-time circumstances. YOLO is extensively utilized in the field of agriculture [29,30]. 
YOLOv8, developed by Ultralytics, is a state-of-the-art (SOTA) model that shares the same 
reasoning process as that of YOLOv5. However, YOLOv8 has undergone architectural 
updates and enhancements. The algorithm models are classed based on their size as 
YOLOv8n, YOLOv8s, YOLOv8m, YOLOv8l, and YOLOv8x. Every YOLOv8 model is 
trained using the dataset mentioned in this research paper, and the precise parameters 
can be found in Table 1. The YOLOv8n model has the smallest parameter count, but it 
lacks sufficient residual structures, leading to lower detection accuracy. On the other 
hand, the YOLOv8m, YOLOv8l, and YOLOv8x models have a higher number of parame-
ters due to an abundance of residual structures. However, this increase in parameters does 
not proportionally improve their mAP50 performance. This study proposes the construc-
tion of a new recognition model method based on YOLOv8s, taking into consideration the 
complicated farming environment, detection accuracy, and light weighting. 

Table 1. Comparison of the performance of different versions of YOLOv8. 
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Figure 3. Image data expansion. (a) Original images; (b) 45◦ rotation; (c) 90◦ rotation; (d) horizontal
mirroring; (e) vertical mirroring; (f) Gaussian noise; (g) impulse noise.

2.2. Deep Learning Network Construction
2.2.1. The YOLOv8 Network Model

YOLO (You Only Look Once) is a real-time target identification algorithm that operates
in a single stage. It is known for its simplicity, efficiency, and capacity for application in
real-time circumstances. YOLO is extensively utilized in the field of agriculture [29,30].
YOLOv8, developed by Ultralytics, is a state-of-the-art (SOTA) model that shares the same
reasoning process as that of YOLOv5. However, YOLOv8 has undergone architectural
updates and enhancements. The algorithm models are classed based on their size as
YOLOv8n, YOLOv8s, YOLOv8m, YOLOv8l, and YOLOv8x. Every YOLOv8 model is
trained using the dataset mentioned in this research paper, and the precise parameters can
be found in Table 1. The YOLOv8n model has the smallest parameter count, but it lacks
sufficient residual structures, leading to lower detection accuracy. On the other hand, the
YOLOv8m, YOLOv8l, and YOLOv8x models have a higher number of parameters due
to an abundance of residual structures. However, this increase in parameters does not
proportionally improve their mAP50 performance. This study proposes the construction
of a new recognition model method based on YOLOv8s, taking into consideration the
complicated farming environment, detection accuracy, and light weighting.

Table 1. Comparison of the performance of different versions of YOLOv8.

Model Size mAP50 mAP50–95 Parameters/×10 M6 Weight Size/MB FPS

YOLOv8n 640 0.694 0.653 3.2 5.9 42
YOLOv8s 640 0.707 0.759 11.7 21.4 37.9
YOLOv8m 640 0.712 0.734 26.0 49.5 32.3
YOLOv8l 640 0.708 0.721 43.7 83.5 26.1
YOLOv8x 640 0.703 0.719 68.2 130 20.9
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The YOLOv8 network consists of four parts: the Input, Backbone, Neck, and Head.
Input selects the Mosaic data enhancement method, and for models of different sizes, some
hyperparameters will be modified to enrich the dataset and improve the generalization
ability and robustness of the model. The Backbone part uses a cross-stage local network
structure to reduce the calculation amount and enhance the gradient. The spatial pyramid
pooling module is used to better extract spatial features. The Neck part first performs a
downsampling operation, and then an upsampling operation, so that the model offers better
adaptability to targets of different sizes and shapes. The Head part adopts a decoupled
head structure, which effectively reduces the number of parameters and the computational
complexity and enhances the generalization ability and robustness of the model. At the
same time, YOLOv8 uses the anchor-free node detection method to directly predict the
centre point and width–height ratio of the target, to reduce the number of anchor frames,
and to further improve the detection speed and accuracy of the model.

To enhance the accuracy of the detection model, this study incorporates a lightweight
vision converter (MobileViTv3) into the C2f module, creating the C2f-MobileViTv3 module.
Additionally, PANet is replaced with BiFPN to improve the accuracy of detecting small
targets by enhancing multi-scale feature fusion. To address the weak generalization and
slow convergence of the CIoU loss function in the detection task, the bounding box regres-
sion loss function (MPDIoU) is used instead. The final network structure is illustrated in
Figure 4.
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2.2.2. Residual Module Combined with Vision Converter

To address the unstructured and complex environment of wheat fields and to solve
the problem of the low accuracy of weed detection, this study improves these elements
using the C2f module of YOLOv8s and introduces the visual converter structure to form
the C2f-MobileViTv3 module to improve the detection accuracy of the model, which is
shown in Figure 5, with the red box indicating the introduced visual converter structure.
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(conv1 × 1), and a linear transformer. The 1 × 1 convolutional layer is employed in the 
fusion block to effectively combine the local and global features without considering other 
locations in the feature map. This simplifies the learning process of the fusion block. By 
using the 1 × 1 convolutional layer, the number of parameters and FLOPs (floating point 
operations) remains unchanged, even when the module’s width is altered. Due to the close 
relationship between the features of the local representation module and the global rep-
resentation module, and the slightly higher output channel of the local representation 
block compared to the input channel, the MobileViTv3 module combines the local repre-
sentation module and the global representation module. The input features are combined 
with the output of the 1 × 1 convolutional layer in the fusion block. To further decrease 
the parameters, the local representation block employs a deep 3 × 3 convolutional layer. 
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Figure 6 displays the schematic diagram of the MobileViTv3 module. The module
comprises a profound 3 × 3 convolutional layer (dwconv3 × 3), a 1 × 1 convolutional
layer (conv1 × 1), and a linear transformer. The 1 × 1 convolutional layer is employed in
the fusion block to effectively combine the local and global features without considering
other locations in the feature map. This simplifies the learning process of the fusion block.
By using the 1 × 1 convolutional layer, the number of parameters and FLOPs (floating
point operations) remains unchanged, even when the module’s width is altered. Due to the
close relationship between the features of the local representation module and the global
representation module, and the slightly higher output channel of the local representation
block compared to the input channel, the MobileViTv3 module combines the local repre-
sentation module and the global representation module. The input features are combined
with the output of the 1 × 1 convolutional layer in the fusion block. To further decrease the
parameters, the local representation block employs a deep 3 × 3 convolutional layer.
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2.2.3. Feature Fusion Networks

The YOLOv8s network incorporates PANet as the Neck component to effectively
merge targets of different scales. The structure of PANet, as depicted in Figure 7b, includes
a bottom-up path, based on FPN (as shown in Figure 7a). This enables the transmission
of more powerful semantic information from deeper features to the shallow feature layer,
while also transmitting stronger localization information from the shallow feature layer to
the deeper features. As a result, the fusion of features at different scales can be achieved.
PANet is also capable of integrating many feature layers, but its implementation involves
adding distinct features. However, in the case of the weed image in the wheat field, the
weeds vary in size. This simple addition method results in an unequal contribution of
the diverse input features to the fused output features. In order to address this issue and
enhance the YOLOv8s network’s ability to capture multi-scale feature information, this
research develops a weighted bidirectional feature pyramid network (BiFPN) [31]. The
construction of this network is depicted in Figure 7c.
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BiFPN is based on PANet, with the removal of an input node that contributes less to
the overall feature network, and the addition of an extra edge between the original input
and output nodes at the same level. This makes it possible to fuse more features without
adding too much cost, effectively mitigating the feature loss phenomenon which can occur
due to too many network levels, and finally, constructing the top-down and bottom-up
fusion as a single module so that it can be stacked repeatedly to enhance the information
fusion, as shown in Equation (1):

O = ∑i
wi

ϵ + ∑j wj
·Ii (1)

In the formula, O represents the weight, using the activation function ReLU to en-
sure wi ≥ 0, wi represents the learning weight corresponding to the input feature Ii, and
ε = 0.0001. BiFPN combines two-way cross-scale connection and fast normalized fusion.
Taking the feature layer P4 as an example, the two fusion processes are as follows:

Ptd
4 = Conv

 ω1·Pin
4 + ω2·Resize(P in

5

)
ω1 + ω2 + ϵ

 (2)

Pout
4 = Conv

 ω′
1·Pin

4 + ω′
2·Ptd

4 + ω′
3·Resize(P out

3

)
ω′

1 + ω′
2 + ω′

3 + ϵ

 (3)
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In the formula, Ptd
4 is the intermediate feature layer of layer 4 of the top-down path,

and Pout
4 is the output feature layer of the bottom-up path of layer 4. In this study, BiFPN is

used to replace PANet to enhance the multi-scale feature fusion performance and further
improve the target detection performance.

2.2.4. Bounding Box Regression Loss Function (MPDIOU)

Due to the complex environment of wheat cultivation, weeds and wheat are similar
in colour and mutual occlusion, which makes it difficult to detect weeds. The CIOU loss
function considers factors such as centre distance, perpendicular ratio, and overlapping
area. However, during the bounding box regression process, if the predicted box has
the same length and width ratio as the real box, but different width and height values,
optimization issues occur, and these cannot be easily resolved. Therefore, in this paper, the
bounding box regression loss function (MPDIOU) is selected to replace the original loss
function, which is shown in Equation (4):

MPDIoU = IoU −
ρ2
(

Ppred
1 , Pgt

1

)
ω2 + h2 −

ρ2
(

Ppred
2 , Pgt

2

)
ω2 + h2 (4)

Ppred
1 , Ppred

2 , Pgt
1 , and Pgt

2 represent the points located in the upper left and lower right
corners of the prediction box and the real box, respectively. The distance between the
corresponding points is calculated using ρ2

(
Ppred

1 , Pgt
1

)
, ρ2

(
Ppred

2 , Pgt
2

)
.

MPDIOU simplifies the similarity comparison between two bounding boxes by mini-
mizing the upper left and lower right point distances between the prediction box and the
bounding box. The utilization of MPDIOU can successfully address the issue of detecting
frame distortion resulting from the overlap of wheat and weeds, thereby significantly
enhancing the weed recognition accuracy.

2.3. Experimental Environment

The operating environment of the improved YOLOv8s model is shown in Table 2.
In this study, the initial learning rate was set to 0.01, the final learning rate was 0.01, the
weight decay coefficient was 0.0005, the intersection–union ratio (IoU) threshold was 0.7,
the momentum (momentum) was set to 0.9, the learning rate adjustment strategy used was
STEPS, the image size of the input network was set to 640 pixels × 640 pixels, the batch-size
size was set to 32, and the number of training times was set to 300.

Table 2. Operating environment.

Configuration Parameters

CPU Intel Core i5-12600KF 3.70 GHz
GPUs NVIDIA GeForce RTX 4060Ti

Operating system Windows 10
Accelerated environment CUDA11.6 CUDNN8.9.7

Development environment (computer) Pycharm 2020.2.1
random access memory (RAM) 32G

2.4. Assessment of Indicators

In this paper, we employ five metrics, namely P (precision, %), R (pecall, %), mAP1
(average mAP value on IoU thresholds of 0.5 or lower), mAP2 (average mAP value on IoU
thresholds ranging from 0.5 to 0.95 at intervals of 0.05), and the value of F1 parameters, to
assess the effectiveness of the network model. The calculation formula is as follows:

P =
TP

TP + FP
×100% (5)
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R =
TP

TP + FN
×100% (6)

AP =
∫ 1

0
P(R)dR (7)

mAP =
1
M∑M

k=1 AP(k) × 100% (8)

F1 =
P ∗ R ∗ 2

P + R
(9)

In the formula: TP is the positive sample predicted as positive; FP is the negative
sample predicted as positive; FN is the positive sample predicted as negative; TN is
the negative sample predicting as negative; k is the current category; M is the number
of categories.

3. Results and Discussion
3.1. Analysis of Ablation Experiments

Using the same training set, validation set, and test set, ablation experiments are
conducted on different optimisation algorithms to assess and validate the effectiveness of
the improved method used in this study. In this study, based on the YOLOv8s network
structure, the visual converter module is introduced into the C2f module, the weighted
bidirectional feature pyramid network (BiFPN) is used for multi-scale feature fusion, the
CIoU loss function is replaced with the MPDIou loss function for the test, and the different
optimisation algorithms are used to obtain the best model after 300 iterations to evaluate
the optimisation effect of the different optimisation algorithms; the optimisation effect of
the different optimisation algorithms is then evaluated. The performance index parameters
of different models are shown in Table 3.

Table 3. Comparison of ablation test results.

Model C2f-MobileViTv3 BiFPN MPDIoU P/% R/% mAP1/% mAP2/% Weight Size/MB

YOLOv8s

× × × 82.1 80.8 80.0 75.9 21.4√ × × 88.7 76.4 84.9 82.3 22.8
× √ × 87.5 74.9 82.6 78.9 22.6
× × √

85.6 80.0 83.8 80.0 22.5√ √ × 92.6 82.8 83.7 82.8 23.0√ × √
91.1 82.9 88.7 81.5 22.8

× √ √
91.0 82.8 89.8 82.5 22.6√ √ √
92.7 89.7 89.7 85.2 23.0

As can be seen from Table 2, the introduction of C2f-MobileViTv3, BiFPN, and MPDIoU
into the original YOLOv8s network model shows different degrees of gains in regards to
accuracy, recall, and average precision. The recognition accuracy of the original YOLOv8s
for weeds is 82.1%, and the recognition accuracy of weeds using the C2f-MobileViTv3
module, BiFPN, and MPDIoU loss functions alone reaches 88.7%, 87.5%, and 85.6%, re-
spectively, which is 6.6%, 5.4%, and 3.5% higher compared to that of the original model.
Additionally, compared to the original model, the weight size increased by 6.5%, 5.6%, and
5.1% compared to that of the original model, indicating that the C2f-MobileViTv3 module
results in a large gain in the detection accuracy of the model, and there is only a small
increase in the size of the model weights, but the use of an optimisation algorithm alone is
limited in improving the performance of the network model.

There is a significant improvement in the accuracy of the detection model when both
optimisation methods are used, as can be seen in Table 3, where the model accuracy is
increased by 10.5% when the C2f-MobileViTv3 module is used together with the BiFPN
structure and the model weight size is increased by 7.5%, and the accuracy is increased by
9% when the C2f-MobileViTv3 module is co-optimised with the MPDIoU loss function.
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The above experiments show that optimising the Backbone network, Neck network,
and loss function of YOLOv8s can significantly increase the model recognition accuracy
of weeds in the wheat field, and the novel algorithm of YOLOv8s+ C2f-MobileViTv3 +
BiFPN + MPDIoU proposed in this study improves the recognition accuracy of weeds
by 10.6%, the recall by 8.9%, the mAP1 by 9.7%, and the mAP2 by 9.3% when compared
with the results of the original model. Figure 8 shows the performance index curves of
different combinations of optimisation algorithms, where (a) is the comparison of the
accuracy curves and (b) is the comparison of the recall curves. As can be seen from the
figure showing the YOLOv8-MBM algorithm in the training process, its accuracy rate
for value fluctuation in the first 30 training iterations is larger, showing a growth state.
After completing 80 training iterations, the fluctuation tends to stabilise, and the change
fluctuation is smaller; the recall rate for the first 50 training iterations exhibits a growth
state, and after completing 50 training iterations, the fluctuation amplitude is reduced,
gradually tending to stabilise.
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This study evaluates the performance variation for the models of different optimisation
algorithms on the training and validation sets based on the loss curves, as shown in Figure 9,
where (a) is the training set anchor frame loss curve, (b) is the training set target loss curve,
(c) is the validation set anchor frame loss curve, and (d) is the validation set target loss curve.
As can be seen from Figure 8, during the training process, the anchor frame loss value
of the validation set and the target loss value of the validation set exhibited a decreasing
stage in the first 50 iterations until the anchor frame loss value and the target loss value
tended to smooth and stabilise after the completion of 50 iterations. The decrease in the
anchor frame loss value and the target loss value of the training set tends to stabilise after
200 iterations, which indicates that the model has already been fitted by the completion of
the 200th iteration. After fitting, the anchor frame loss and target loss of the validation set
of the YOLOv8-MBM algorithm proposed in this study converged faster during training
compared to other optimisation algorithms, and the loss values dropped to a lower point,
indicating that the introduction of the C2f-MobileViTv3 module, the BiFPN structure, and
the MPDIoU loss function in the YOLOv8s network showed a certain gain in the wheat
field weed detection model’s training effect.
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3.2. Visualisation of Target Area Model Features

Wheat and weeds are similar in colour, but there are obvious differences in leaf shape
and stem structure. In order to verify whether the proposed YOLOv8 _ MBM algorithm also
pays attention to the leaf and stem area when identifying weeds in wheat fields, this study
uses Grad-CAM technology to visually interpret the YOLOv8 model of visual converter
and multi-scale feature fusion to predict the weed target area and visually evaluate the
weed recognition method proposed in this paper. The Grad-CAM technology uses the
back propagation of training weights to perform the global average pooling of the obtained
gradient matrix in the spatial dimension, and after the weighted activation of each channel
in the feature layer, the heat map is obtained. The brightness depth of a certain area in
the heat map can show the portion of the image that has a greater impact on the model
output. The heat map of weed identification obtained by the YOLOv8-MBM model is
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shown in Figure 10. It can be seen from Figure 9 that the attention of the model proposed
in this study is mainly focused on the stem and leaf areas in the image when identifying
weeds, which are brighter in colour and more responsive to the imaging, while the original
YOLOv8s model focuses on the leaves when identifying weeds, and thus, can miss their
detection. The heat map visualization experiment regarding weed identification proves
that the image information based on the YOLOv8-MBM model proposed in this study is
validated for identifying weeds in wheat fields.
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3.3. Experimental Analysis of Different Modelling Algorithms

In order to further evaluate the effectiveness of the YOLOv8s-MBM algorithm for
weed target detection in wheat fields, the current mainstream Fast-RCNN and YOLO target
detection algorithms are trained by deep learning using the same training set, verification
set, and test set. The accuracy of the Fast-RCNN network model is 82.7%, and the frame
rate is 6.5 FPS, which is quite different from the accuracy of the algorithm proposed in
this paper. The YOLO series involved in the comparative detection network are: YOLOv3,
YOLOv4-tiny, YOLOv5 s, YOLOv7, and YOLOv9, the test results are shown in Table 4.

Table 4. Comparison test results using mainstream models.

Model P/% R/% mAP1/% mAP2/% Weight Size/MB FPS

YOLOv3 78.0 71.0 73.1 69.4 219.9 34.3
YOLOv4-tiny 78.4 74.6 75.8 75.1 27.6 30.8

YOLOv5s 79.0 71.2 74.0 70.7 14.1 36.7
YOLOv7 81.9 73.2 78.3 72.1 71.2 20.5
YOLOv9 79.6 70.4 78.4 74.3 116.0 11.6

YOLOv8-C2f_M3-BiFPN-
MPDIoU 92.7 87.6 89.7 85.2 23.0 35.5

As can be seen from Table 4, the YOLOv8s-MBM algorithm achieves 92.7%, 87.6%,
89.7%, 85.2%, and 35.5 FPS for P, R, mAP1, mAP2, and FPS values, respectively, and
these rates show the advantage of this method over the similar YOLO model algorithms.
The YOLOv8s-MBM algorithm is capable of extracting the key feature information in a
complex wheat field environment, and it improves the detection accuracy of the model
by introducing a visual in the C2f module converter module, fusing input, and local
and global features to improve the detection accuracy of the model, replacing the Neck
network with a weighted bidirectional feature pyramid network (BiFPN) to enhance the
performance of multi-scale feature fusion and improve the detection accuracy of small
targets. Therefore, the network is capable of accurately identifying weed targets in a
complex wheat field environment.

3.4. Weed Detection Effect of YOLOv8-MBM Algorithm

In order to verify the effectiveness of the YOLOv8-MBM algorithm proposed in this
study in recognizing weeds in wheat fields during the wheat green-up period under natural
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conditions, i.e., four cases of good near-distance light, bad near-distance light, good long-
distance light, and bad long-distance light, were randomly selected for target detection.
The detection effect is shown in Figure 11, in which it can be seen that the improved model
exhibits a good recognition ability in the natural environment. Only a very small number of
weeds cannot be detected due to occlusion or a particularly small target size. In most cases,
the algorithm can detect weeds. In summary, the YOLOv8-MBM algorithm proposed in
this study shows good recognition ability and can effectively detect weeds in wheat fields
in the natural environment.
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Figure 11. Effectiveness of YOLOv8-MBM algorithm for weed detection. (a-1) Original figure with
good near-distance light; (a-2) detection effect of good near-distance light; (b-1) original figure with
bad near-distance light; (b-2) detection effect of bad near-distance light; (c-1) original figure with
good long-distance light; (c-2) detection effect of good long-distance light; (d-1) original figure with
bad long-distance light; (d-2) detection effect of bad long-distance light. Note: Row 1 shows the
original image, where the blue circles mark the weed areas.

4. Conclusions

(1) In this paper, we address the problem of similarity in colour and inconsistency
in size and dimensions of wheat crops and weeds in regards to weed identification in
complex wheat field environments during the green-up period. We propose an improved
model YOLOv8s-based YOLOv8-MBM, which improves the C2f module in the Backbone
feature extraction network of YOLOv8s and introduces a lightweight visual converter
(MobileViTv3) into the C2f module. Secondly, the weighted bidirectional feature pyramid
network (BiFPN) is introduced to enhance the multi-scale feature fusion performance and
improve the detection accuracy for small targets. Finally, to compensate for the weak
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generalisation and slow convergence of the CIoU loss function in the detection task, a
bounding box regression loss function (MPDIoU) is used instead of the CIoU loss function
to improve the convergence speed of the model, further enhance the model detection
performance, and achieve accurate detection of weed targets in complex environments.

(2) Different optimisation algorithms are trained using the same training set and
validation set, and the same test set is used to compare the four parameters of differ-
ent optimisation algorithms, such as the precision, recall, mAP1 (mAP@0.5), and mAP2
(mAP@0.50-0.95), and the experimental comparisons show that the proposed algorithm
achieves an accuracy rate of 92.7%. Compared with the original YOLOv8s model, the
precision, recall, mAP1, and mAP2 are increased by 10.6%, 8.9%, 9.7%, and 9.3%, respec-
tively. Meanwhile, comparing with YOLO series algorithms, the experiment shows that
the accuracy of the YOLOv8-MBM algorithm is higher than that of the YOLOv3, YOLOv4-
tiny, YOLOv5s, YOLOv7, and YOLOv9 algorithms. The FPS of the proposed algorithm
reaches 35.5, which meets the requirements for real-time detection. In summary, the al-
gorithm proposed in this paper is more suitable for weed detection in complex farmland
environments.

(3) In future studies, we will increase the data for weeds at different growth stages,
in different planting areas, and for different species. Currently, we have only studied one
weed species, wheat Artemisia. At a later stage, we will carry out the identification of all
weed species in wheat fields to improve the general applicability of the model, as well as to
further improve the detection accuracy.
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