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Abstract: The types of obstacles encountered in the road environment are complex and diverse,
and accurate and reliable detection of obstacles is the key to improving traffic safety. Traditional
obstacle detection methods are limited by the type of samples and therefore cannot detect others
comprehensively. Therefore, this paper proposes an obstacle detection method based on longitudinal
active vision. The obstacles are recognized according to the height difference characteristics between
the obstacle imaging points and the ground points in the image, and the obstacle detection in the
target area is realized without accurately distinguishing the obstacle categories, which reduces the
spatial and temporal complexity of the road environment perception. The method of this paper is
compared and analyzed with the obstacle detection methods based on VIDAR (vision-IMU based
detection and range method), VIDAR + MSER, and YOLOvS8s. The experimental results show that
the method in this paper has high detection accuracy and verifies the feasibility of obstacle detection
in road environments where unknown obstacles exist.

Keywords: longitudinal active vision; image processing; distance estimation; camera rotation strategy

1. Introduction

With the improvement in people’s living standards and the progress of science and
technology, automobiles have become the most common means of transportation in modern
travel. With the increase in the number of automobiles in countries all over the world, the
numbers of related automobile safety problems have also risen. According to the World
Health Organization, the number of road traffic deaths has decreased by 5% per year since
2010, down to 1.19 million per year [1]. However, road traffic crashes remain a persistent
global health crisis, with pedestrians, cyclists and other vulnerable road users facing a
serious and rising risk of death. In order to improve road traffic safety, research in the field
of automotive safety has evolved towards smarter Advanced Driving Assistance Systems
(ADASsS) [2]. An ADAS is the use of environmental sensing technology to collect dynamic
data from the vehicle, driver and surrounding environment and analyze and process them,
in order to achieve safe and comfortable driving and minimize traffic accidents by alerting
the driver or actuators to intervene in the vehicle’s maneuvering. In addition, it also
provides reliable safety support for FSD (full self-driving). Therefore, obstacle detection is
an important element in the structure of intelligent-vehicle environment-sensing technology,
and it is also a prerequisite for realizing advanced assisted-driving functions.

The complex road environment brings great difficulties for the intelligent vehicle’s
environment perception; the reliable and accurate detection of obstacles is one of the core
problems that need to be solved to realize automobile assisted driving [3]. In addition to the
innovation of algorithms, developments in technology have made great progress in obstacle
detection, and sensor types, target objects, and detection methods have become the main
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research content. The sensor aspect includes cameras [4], radar [5,6], etc. Camera detection
technology is widely used in obstacle detection due to its relative maturity and low cost. In
this paper, a novel obstacle detection method is proposed, which uses a monocular camera
as a visual sensor and servo motor to form a longitudinal active camera detection system to
detect various types of obstacles in front of the vehicle in the road environment, including
vehicles, pedestrians, and conical obstacles, spherical obstacles, rod obstacles, cartons and
so on. The principle of the detection method in this paper is to use the two frames of images
acquired before and after the camera rotates along the longitudinal plane as the detection
object, use the height difference characteristics of the obstacle point and the ground point
to detect the obstacle, obtain the distance information between the obstacle and the vehicle,
and realize the detection of the obstacle in front of the vehicle.

The rest of the paper is organized as follows: Section 2 describes the existing research
methods. Section 3 presents the principles of an obstacle detection method based on
longitudinal active vision, including the detection process, obstacle extraction algorithms
based on fast image region matching in stable extreme regions (MSER), monocular ranging
models, and static and dynamic obstacle detection models. Section 4 designs the obstacle
detection experiments for the theoretical method proposed in this paper, compares the
obstacle detection methods based on YOLOv8s and VIDAR, and verifies the superiority of
the method in this paper. Section 5 summarizes the content of this paper.

2. Related Work

Obstacle detection is a core component of automatic driving technology, which is
crucial for promoting the development of automatic driving technology and has become a
key area of research in recent years. Monocular vision sensors collect rich information, with
strong applicability and a low price; many scholars have conducted relevant research on
this, mainly divided into two kinds of obstacle detection algorithms, either based on image
features or based on deep learning. With the rapid development of computer technology,
deep learning is increasingly used in target detection. Target detection algorithms based
on deep learning use convolutional neural networks (CNN) to learn features; this feature
learning method is mainly through input training set to automatically learn the feature
information of the target, and the neural network to generate more advanced, more abstract
and more reliable feature information. Han et al. [7] proposed CNN-based real-time
semantic segmentation of class-aware edge information based on channel-aware attention
and constructed a new EdgeNet network with significant improvement in MIOU compared
to other networks. Nguyen [8] proposed an improved framework based on a fast, reactive
neural network using MobileNet architecture to build the base convolutional layer of
fast R-CNN, which utilizes the deeply divisible convolutional structure in the mobile
network architecture to build the classifier and improve the accuracy of vehicle detection.
Zaghari et al. [9] used the YOLO non-maximum suppression (NMS) algorithm for obstacle
detection, which has higher detection accuracy and faster detection speed compared to
other algorithms. Yasmin et al. [10] proposed an approach based on transfer learning to
detect small obstacles under strict lighting and illumination conditions using UNet++,
PSPNet, PANNet, LinkNet and DeepLabV3+ semantic segmentation models. He et al. [11]
proposed a flexible and efficient multi-scale unipolar target detector FE-YOLO for image
obstacle detection. Sun et al. [12] proposed a real-time fused semantic segmentation
network RFNet, which can effectively utilize depth complementary features, multi-dataset
training and depth streaming in the architecture makes the network very effective in
detecting unexpected small targets. However, the RENet network performs poorly in
detecting features such as sidewalks, walls, and motorcycles.

Detecting obstacles using deep learning methods requires prior knowledge about
the obstacle; therefore, obstacle detection methods based on deep learning have some
limitations. In obstacle detection based on conventional image features, GUNGOR et al. [13]
proposed a new non-artificial intelligence method for finding ground lines and detecting
obstacles on the road using v-parallax data. Yuan et al. [14] used U-V parallax images to
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detect the drivable area of an unmanned vehicle using U-V parallax images as well as the
geometric relationship between the size of an obstacle and its parallax to detect obstacles in
the drivable area. Xu et al. [15] proposed a generalized obstacle detection method based on
VIDAR combined with a fast image region-matching method based on MSER with high
detection accuracy. Kumar et al. [16] accomplished the identification of defective regions on
the surface of an obstacle by means of a multilevel color threshold segmentation method.
Wang et al. [17] used a single wide-angle camera for real-time obstacle detection, based on
the background difference method for detecting static and moving objects. Xue et al. [18]
proposed a method for detecting obstacles on a reflective ground, using a pre-calibrated
ground-based detection scheme that characterizes the difference between obstacles and
non-obstacles, and locates obstacles by means of appearance—-geometry fusion models.
Optical flow methods can detect moving obstacle targets based on changes in the image
optical flow field caused by object motion, with good robustness and without the need to
know a priori information about the obstacle. Therefore, optical flow methods have been
widely studied and applied [19-21].

However, today’s research techniques still contain deficiencies. The obstacle detection
method based on VIDAR, although highly accurate, is limited in usage scenarios, and
their applicability decreases when vehicles are stationary or at low speeds. Deep learning
is limited by the sample type and cannot detect obstacles of unknown shape. Therefore,
this paper proposes an obstacle detection method based on longitudinal active vision,
which does not require a priori knowledge of the scene to achieve more accurate obstacle
recognition and distance detection.

3. Methods

In this paper, we combine a fast image region-matching method based on MSER with
an obstacle detection method based on longitudinal active vision to simplify the matching
process, improve the matching speed, and use fewer feature points for obstacle detection.
The process of the road obstacle detection method based on longitudinal active vision
studied in this paper is as follows and is shown in Figure 1.

(1) Calibration of initial camera parameters

Calibrate the initial internal and external parameters of the camera mounted on the
vehicle, obtain the camera’s focal length f by camera calibration, the pixel size p of the
photosensitive chip, obtain the camera mounting height / by measurement calculation, and
the camera rotation radius K.

(2) Image region matching and obstacle detection

® Acquire the initial frame image. At the moment t = 0, the camera obtains the
first frame image If;. The feature points in I; are extracted, and the lowest
point of the extracted feature points is considered as the intersection point P;
of the obstacle and the road plane. The distance d; from point P; to the camera
is then calculated, resulting in the required rotation angle 0; for the camera to
obtain the next frame image.

® Acquire the second frame image. The second frame image Ij; is acquired after
the camera is rotated by an angle ;. The fast image region-matching method
based on MSER is performed on I7; and Ij; to find the center of mass of the
matched region as feature points.

® Calculate the horizontal distance from the camera to the center of rotation.
Calculate the horizontal distance Kcosf from the camera to the center of
rotation based on the camera rotation angle 6; and camera rotation radius K
obtained in (D).

® Horizontal distance calculation. Assuming that the feature point is on the
horizontal plane, the horizontal distance d1, d, from the feature point to the
camera is calculated based on the monocular ranging model at the before and
after moments, respectively.
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: | Camera focal length f |

I
: | Installation Height / | ™

[ | Radius of rotation K |
I

®)

® Obstacle judgment. According to the internal and external parameters of the camera
as well as the acquired valid information, compare Al (Al = dy + Kcos 8 — d; — K)
and k (k is a set threshold, k > 0). The feature point is not on the horizontal plane
and the region is an obstacle if Al > k. The feature point is on the horizontal plane
and the region is not an obstacle if Al < k.

Camera reset

After completing the two-frame image detection, the camera resets and repeats step (2)

to proceed to the next stage of active obstacle detection.
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I

[ Camera Calibration
—
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Image at t+ <t Target Region is Y N Target Region is
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Figure 1. An obstacle detection based on longitudinal active vision.

3.1. Fast Image Region-Matching Method Based on MSER

The MSER algorithm is a region-based feature-extraction algorithm that is widely used

in image matching and target tracking [22-25]. Since the detection object of this method is
the region features of the image rather than the local features, the detected feature points are
more stable, and the obstacles in the image can be detected quickly and the non-obstacles
can be eliminated. The fast image region-matching method based on MSER ignores the
position and shape differences of the MSER algorithm between two images, and the specific
matching method process is as follows:

@
@)

Extract the region of maximum stable extremes using the MSER algorithm.

Perform region range difference AN; calculation. For the two frames captured in the
experiment, it is assumed that the MSER region sets of the two frames before and after
are Af = {Af1,Afy,--- ,Afy} and As = {Asy, Asy, - - -, As, }, respectively. A; is the
set of the difference between the fth MSER region range in the previous frame and
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the unmatched region in the next frame. The set A; is normalized and the effect of
normalization is denoted by AN;, where

Ai — min (A7)

AN; =
" max(Ai) — min(Ai)

(1)

(3) Perform region set spacing DN; calculation. It is assumed that the MSER region
center-of-mass sets in the front and back images are Df = {Dfy,Df,,--- ,Dfy} and
Ds = {Ds1,Ds,,-- - ,Dsy }, respectively. D;is the set of distances between the fth
MSER region range in the previous image and the unmatched region in the latter
image. The set Dj is normalized and the result is denoted by DNj, where

7" max(Dj) — min(D;)

(4) Extract the matching region M;. Let M; be the set of matching values of the s th MSER,
and extract the MSER corresponding to the smallest M; as a matching region, denoted
as M; = AN; + DN]'.

Using the stabilized feature points extracted using the algorithm based on MSER for
obstacle detection can shorten the post-processing image time and improve the speed of
obstacle detection.

3.2. Static Obstacle Detection Model

Measurement methods based on monocular vision need to obtain position information
in three-dimensional space from two-dimensional image information, and the obstacle
ranging principle can be described by the pinhole model principle, which can accurately
calculate the distance between the vehicle and the obstacle. As shown in Figure 2, a camera
is loaded on the auto-vehicle, the object in front of the auto-vehicle is regarded as an
obstacle, and the lowest point of the obstacle is regarded as the intersection of the obstacle
and the road surface.

A

4
(x.)) \

X0,)0) / Horizontal plane

Imaging plan?ff\s{ } 0

h

=
A

Ground d

Figure 2. Obstacle ranging model.

Here, the focal length of the camera is f and the pixel is y. The pitch angle of the
camera installation is 0 and the height of the installation is /. Let (xo, o) be the coordinate
origin in the image plane and (x, y) be the coordinates of the intersection of the obstacle
and the road plane in the imaging plane. Then the horizontal distance between the camera
and the obstacle can be found by Equation (3).

. h
~ tan(0 + arctan((yo — y)p/ f])

©)
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As shown in Figure 3, the first imaging point of the vertex of the obstacle at the initial
moment is A. At the next moment, the y-axis rotates and translates from the image plane
from y; to y» due to the camera making a longitudinal rotation in the plane with the point
M as the center of rotation, and the second imaging point of the vertex of the obstacle
is B. The horizontal distance from the camera optical center to the point M is K in the
previous frame, and the horizontal distance from the optical center to the point M is K cos 6
after the camera is rotated by an angle 6. A’ and B’ are points on the road plane projected
from the vertex of the obstacle, and Al is the horizontal distance between the two projected
points. The horizontal distance from the camera optical center to A’ is dy, and the horizontal
distance to B’ is dy. dq and d, can be calculated by Equation (3). d; and d; are related by
the equation d; + K + Al = dy + Kcos 6. If the feature point is a point on the ground, the
equation for dq and d, should be d; + K = dy + Kcos 6. If d; + K # dy + Kcos 6, it means
that the target point is a point with height and therefore the obstacle can be recognized by
Al. Figure 3 shows the theoretical model for detecting static obstacles when the vehicle
is stationary, and the displacement in the horizontal direction due to camera rotation is
K — K cos . And when the vehicle is in motion, the actual displacement of the camera in
the horizontal direction is Ad. Ad can be calculated by Equation (5). Al can be calculated by
Equation (6).

0
—— 4
= @
Ad =ts x v — K+ Kcosf (5)
Al =dy+Ad —dy 6
:d2+9§7;’“—K+Kc0597d1 ©)

where t; is the time to acquire two frames of image camera rotation, v; is the speed of the
servo motor, and v, is the vehicle speed.

Second imaging point “y<{ First imaging point
Camera rotation . A

center M

Figure 3. Schematic diagram of the static obstacle imaging.

3.3. Dynamic Obstacle Detection Model

When the obstacle in front of the vehicle moves in the horizontal direction, the imaging
of the moving obstacle is shown in Figure 4. The camera pitch angle at the initial moment
is 0. Therefore, the distance from the camera rotation center point M to the ground is equal
to the distance from the camera optical center to the ground, which is /;. The distance
between the optical center and the ground after the camera is rotated by an angle 6 is h,.
The horizontal distance between the optical center of the camera and the vertex of the
obstacle at the initial moment is s;. The horizontal distance between the optical center
and the vertex of the obstacle after the camera is rotated by an angle 0 is 5. The distance
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moved by the obstacle is s. When the target obstacle is not moving straight, s is the distance
that the actual moving distance of the obstacle projects onto the direction of the vehicle’s
movement. Then the relationship between dy, dy, 51, 57 and s is:
Kcos@+dy =K+d; + Al @)
K—Kcosf0+s1+s=s;

Second imaging point AN First imaging point

Camera rotation
centerm .

d; e Al———»

d>

Figure 4. Schematic diagram of dynamic obstacle imaging.

The height of the obstacle is /,. According to the principles of a right triangle, the
relationship between hy, hy, hy, d1, da, s1 and s, can be expressed as:

hy _ di—s;
h —  d
h}, dz—]Sz (8)
hy do

From Equations (4) and (5):

(h1 — hy)(shy — shy + sohy) — s1hy(ho — hy)
(h1 = ho)(ha — ho)

Dynamic obstacles can be recognized when (hy — hy)(shy — shy + sphy) # s1ho(hy — hy).
Thus obstacles on the road can be recognized using camera rotation. The judgment process
only requires tracking of the feature points, calculating their positions, and obtaining the
height of the optical center above the ground after camera rotation, thus reducing the
consumption of time and space for obstacle detection. From Equation (9), it can be seen
that the dynamic obstacle detection model is only related to the parameters such as the
height above the ground before and after the movement of the camera, the moving distance
of the target obstacle, and has nothing to do with the state of the self-vehicle, the camera
rotating speed and the camera rotating angle, so that the vehicle in both stationary and
motion state can realize the accurate detection of obstacles.

Al = (9)

3.4. Camera Rotation Strategy

The theoretical models of static and dynamic obstacle detection presented in Sec-
tions 3.2 and 3.3 are based on two frames of images captured before and after camera
rotation, and the target always remains within the field of view before and after camera
rotation. The rotation angle of the camera is calculated by pointing the optical axis to the
lowest point of the obstacle based on the positional information of the obstacle. As shown
in Figure 5, the obstacle is located in front of the vehicle, when the camera is located in the



Sensors 2024, 24, 4407

8 of 17

initial position to acquire the first frame image. Based on the MSER algorithm to obtain
a stable extreme value region, the lowest point of the extreme value region as a feature
point, the lowest point of the extracted feature point is regarded as the intersection point
P; (i is the number of P-points) of the obstacle and the road plane, the optical axis points
to the intersection point a at the next moment. The coordinates of point P; in the imaging
plane are (x;,y;), the distance d; from the camera to P; can be calculated from Equation (3),
and the camera’s optical axis rotation angle 6; can be found based on the trigonometric
relationship:

o h h tan (arctan((yo — yi)p/ f])
0, = arctanm = arctanh + Ktan(arctan|(yo — y)p/ f]) (10)
Camera rotation ) )
center N Optical axis
/\ /
Yy Optical
ax1s
s " @ @@
K d;

Ground plane

Figure 5. Schematic diagram of the camera rotation.

4. Experiments and Results

In order to verify the feasibility of the theoretical method in this paper, simulation
experiments and real-vehicle experiments under controlled scenarios are designed. The
experimental results show that the obstacle detection method based on longitudinal active
vision proposed in this paper can effectively detect obstacles in the road environment. By
analyzing and comparing with the traditional method, it proves that the method has high
detection accuracy and detection speed.

4.1. Experimental Equipment

In order to realize the active rotation of the camera as well as the accurate control
of the camera angle and direction of rotation, this paper selects the MS9015 V1 model
three-phase permanent magnet synchronous motor (Shanghai Lingkong Technology Co.,
Ltd., Shanghai, China), U-shaped bracket, and magnetic suction cup for the design of the
active camera gimbal. The camera model selected in this paper is the RER-USBSMP02G
(RERVISION Technology Co., Ltd., Shenzhen, China), which has high resolution and
dynamic range, is not easily affected by temperature changes, and meets the requirements
of environment sensing for the autonomous vehicle. The STM32F103VET6 microcontroller
is utilized as the controller to achieve the control of the motor through voltage space-vector
pulse width modulation (SVPWM). CAN communication is used between the motor and
the STM32F103VET6 microcontroller (Wildfire Technology Co., Ltd., Dongguan, China) to
control the camera rotation. This paper designs the longitudinal active camera obstacle
detection system, as shown in Figure 6.
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~ Stm32F103VET6
microcontroller

Computer
Camera

Figure 6. Architecture of the longitudinal active camera obstacle detection system.

4.2. Obstacle Detection Simulation Experiment

The longitudinal active camera is mounted on the experimental platform, a vehicle
scale model is used to simulate obstacles, and common non-obstacles such as traffic signs
and road patches are simulated with pieces of paper attached to a flat surface, and two
other unknown types of obstacles are set up. One set of obstacle simulation experiments is
processed as follows.

In the simulation experiment of obstacle detection, the camera pitch angle 6 = 0° at
the initial moment, the effective focal length of the camera f = 6.779 mm, the installation
height i = 18 cm. The camera rotation radius and steering angle affect the measurement
accuracy of the target distance, so the corresponding camera steering angle is calculated
by setting different K values, and the measured target distance is compared and analyzed
with the real distance. As shown in Figures 7 and 8, the steering angle decreases with
the increase in the rotation radius, and the calculated camera steering angle 8 = 10.1° at
K = 9 cm, when the corresponding distance error is minimized. Therefore, the rotation
radius of the camera was set to 9 cm. The camera acquires the first frame of the image at
the initial moment, and detects the extreme value region in the image based on the MSER
algorithm through the filtering and thresholding operation of the first frame of the image at
multiple scales. According to the stability and distribution density of the region, the lowest
point of the stable extreme value region is selected as the feature point, and the point with
the largest value of the vertical coordinates among the various feature points under the
imaging coordinate system is regarded as the intersection point of the obstacle and the
road plane (Figure 9c¢), and the angle of rotation of the camera at the next moment 8 = 9° is
calculated by Equation (7).

Steering angle{”)
w
£

5 6 7 8 9 10 1 12 13 14 15
Rotation radius(cm)

Figure 7. Steering angles corresponding to different radii of rotation.
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Figure 8. Distance measurements corresponding to the different steering angles.

Camera initial state

Camera rotation

(©

Figure 9. Two-frame image acquisition before and after camera rotation; (a) is the obstacle image at
the initial moment, (b) is the feature region extraction based on MSER, and (c) is the feature point
extraction, where red * is the lowest point of each extreme region and blue + is the intersection point
of the obstacle and the road plane. (d) The second frame image acquired after camera rotation.

Based on the rotation angle calculated from the above experiments, the camera rotates
to acquire the second frame image. The horizontal distances from the optical center to
the center of rotation at the before and after moments were calculated by the monocular
ranging model as 10 cm and 9.74 cm, respectively, and the experiments used the fast image
region-matching method based on MSER to process the two frames acquired at the before
and after moments. The centers of mass of the 14 extracted matching regions are used as
feature points, as shown in Figure 10.
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The first
frame
Feature point
matching
The second ©
frame

Figure 10. MSERs feature region extraction; (a) is the obstacle image in the initial moment, (b) the
obstacle image in the next moment, and (c) is the region matching image in the two moments before
and after, where the red region and + are the center of mass of MSERs and MSERs in the initial
moment in the image, and the cyan region and o are the center of mass of MSERs and MSERs in the
next moment in the image.

Feature point extraction is performed based on the front and rear frames acquired by
the active camera (Figure 11), assuming that the feature points are on the horizontal plane,
and detecting the horizontal distance d; and d; of each feature point from the camera in
the front and rear frames through the monocular ranging model, and comparing Al and k
(k = 2 cm) to confirm the obstacles. dq, d, and Al are calculated as shown in Table 1.

Saven Avauo
SR

(a) (b)

Figure 11. Feature point location; (a) shows the location of the feature point located in the image
at the initial moment and (b) shows the location of the feature point located in the image at the
next moment.

The calculation results show that the value of feature point four is 0.83 cm, which
is smaller than the set threshold and is a feature point on the horizontal plane. The rest
of the feature points except feature point four are not on the horizontal plane and are
feature points on obstacles with height targets, and the corresponding MSERs all belong
to the obstacle region. Non-obstacle points are excluded based on a set threshold, and the
intersection of the bottom boundary of the obstacle region and the road plane is taken as the
ranging point of the obstacle, and the distance from the obstacle to the camera is calculated
using the monocular ranging model. Figure 12 shows the divided obstacle region, and
the distances from the camera to the target obstacle are 42.09 cm, 23.78 cm, and 32.55 cm,
respectively.
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Table 1. Calculation results of dy, d» and Al.

Feature Point di/cm dy/cm Allcm
1 39.88 42.27 2.21
2 39.74 42.09 2.17
3 39.78 42.12 2.16
4 29.12 30.14 0.83
5 21.04 23.54 2.32
6 21.22 23.78 2.37
7 21.19 23.75 2.37
8 29.77 32.97 3.22
9 29.43 32.76 3.15

10 29.56 32.86 3.12
11 29.40 32.75 3.17
12 29.37 32.75 3.20
13 29.17 32.55 3.20
14 29.25 32.58 3.15

distance 42.09cm

distance 32.55cm

Figure 12. Obstacle area division (where the yellow box is the detected obstacle area and the upper
number is the distance from the obstacle to the camera).

4.3. Obstacle Detection Real Vehicle Experiment

In order to verify the reliability of the method in this paper, a real vehicle experiment
was set up. A Honda Fit (FIT) vehicle was used as the experiment vehicle, and a longitudinal
active camera was mounted at the front position of the roof to collect environmental
information, and the camera was mounted at a height of 1.60 m. The equipment for the real
vehicle experiment is shown in Figure 13. A computer with an NVIDIA GeForce RTX 2080
Ti graphics card was used. It is equipped with Intel(R) Xeon(R) Silver 4210 CPU running
at 2.20 GHz with 32 GB of RAM. Figure 14 shows the route of the real vehicle experiment.
The experimental vehicle traveled in the campus environment at a speed of 0-30 km/h
(including a straight section and a turning section), and the environmental information
was collected by the camera. The total number of obstacles in the target area was 4479. The
obstacles in the road were classified into two categories: 1. Pseudo obstacles with height
and no risk of obstructing the vehicle’s travel. 2. Real obstacles with height and risk of
obstructing the vehicle’s travel.
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Figure 13. Experimental equipment for real vehicle.
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Figure 14. Real vehicle experiment route.

YOLOVS8 is divided into different versions such as YOLOv8n, YOLOvS8s, YOLOv8m,
YOLOvS8I and YOLOv8x according to the depth and width of the network. In this paper,
YOLOvVS8s was selected for comparison experiments by taking the model size into account.
The statistical data of the experimental results of four obstacle detection methods, this
paper’s method, VIDAR [15], VIDAR + MSER [26], and YOLOvS8s were used to measure
the accuracy of the obstacle detection methods with TP, FP, TN, and FN values [27-29],
where TP denotes that the model correctly predicts real obstacles as real obstacles, FIN
denotes that the model incorrectly predicts real obstacles as pseudo-obstacles, FP denotes
that the model incorrectly predicts pseudo-obstacles as real obstacles, and TN denotes that
the model correctly predicts pseudo-obstacles as pseudo-obstacles. The TP, FP, TN, and FN
values for each method are shown in Table 2.

Table 2. TP, FP, TN, FN values of the four methods.

Experimental Method TP FP TN FN
VIDAR 3710 397 118 254
VIDAR + MSER 3856 356 41 226
YOLOv8s 3527 362 289 301
Proposed method 4033 146 168 132
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In the result analysis, accuracy, recall, precision, mAP were used as the evaluation
index for obstacle detection methods, where mAP is the average of average precision
(average precision, AP) of all categories. Accuracy indicates the proportion of correctly
judged data to the total data. Recall rate for all positive cases in the data, indicating the
proportion of correctly judged positive cases to all positive cases in the total data. The
accuracy rate is also called the check rate, and a high accuracy rate indicates that most of
the obstacles detected by the model are indeed obstacles. Since the methods in this paper,
VIDAR and VIDAR + MSER are designed to categorize road obstacles into two categories,
obstacles and non-obstacles and YOLOv8s contains multiple categories of obstacles, mAP is
therefore used as the final evaluation metric for the four detection methods. The comparison
of the detection precision of each method is shown in Table 3. Accuracy, recall and precision
can be expressed, respectively, as follows:

FP+FN
A = 11
Y = TP Y TN+ FP + EN (11)
FP
Recall = TP+ ED (12)
_ TP
Precision = TP L EP (13)

Table 3. Results of the four methods.

Experimental Method mAP/% Recall/%  Accuracy/% Precision/%  Time/s

VIDAR 89.3 93.6 85.5 90.3 0.324
VIDAR + MSER 92.7 94.4 87.6 91.5 0.343
YOLOv8s 88.1 92.1 85.2 90.7 0.205
Proposed method 96.7 96.8 93.8 96.5 0.317

The results show that the mAP of the method in this paper was improved by 7.4%, 4%,
and 8.6% compared to the obstacle detection methods based on VIDAR, VIDAR+MSER,
and YOLOVSs, respectively. The recall improved by 3.2%, 2.4% and 4.7%. The accuracy
improved by 8.3%, 6.2% and 8.6%. Compared with YOLOVSs, this paper’s method had
no obvious advantage in detection time, but compared with the other two methods, this
paper’s method needed to deal with fewer feature points, and the final detection time was
relatively short.

Figure 15 shows the obstacle detection results (partially) when the experiment vehicle
is in motion and stationary. From the figure, it can be seen that the method in this paper can
realize the detection of common obstacles in the road, such as vehicles, bicycles, pedestrians
and so on. In addition, it can also achieve the detection of unknown types of obstacles,
such as irregularly shaped tires due to breakage, road cones, barricades and so on. Poor
detection is due to YOLOvS8s lack of training on unknown types of obstacles. Moreover, in
scenes with complex backgrounds, false detection occurs, which leads to lower detection
accuracy. The second group in Figure 15 shows the images captured by the camera when
the vehicle is completely stationary, and VIDAR and VIDAR + MSER cannot recognize
the obstacles when the vehicle is stationary. The detection method proposed in this paper
uses camera rotation to obtain image information and process the obstacle feature points.
For a class of obstacles with similar color to the ground, the detection effect is poor, but
the detection effect of this paper’s method is better overall than the other methods. In
addition, the method used in this paper calculates the distance between the camera and the
obstacle in front of it. The distance detection results of obstacles in the second set of images
are shown in Table 4. By analyzing the difference between the actual distance and the
measured distance, the results show that the distance error is mainly between 0.09 and 0.23.
The method has an error of less than 0.15 m over short distances (<10 m); the error increases
with the increase in distance, and the distance error is relatively large in the presence of
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obstacles that are partially obscured. From the overall results of distance measurement,
the vision-based ranging algorithm proposed in this paper meets the requirements of
measurement accuracy and can realize accurate distance measurement of obstacles within
a short distance.

YOLOvSs

VIDAR

VIDAR+
MSER

Proposed
method

Figure 15. Detection results.

Table 4. Distance measurement results.

Obstacle Measuring Distance (m) Actual Distance (m) Error (m)
1 4.79 4.88 0.09
2 5.13 5.24 0.11
3 7.60 7.73 0.13
4 8.33 8.44 0.11
5 11.09 11.24 0.15
6 10.10 10.27 0.17
7 12.78 12.97 0.19
8 15.72 15.92 0.20
9 15.90 16.08 0.18
10 18.68 18.89 0.21
11 22.53 22.76 0.23
12 12.19 12.34 0.15
13 13.50 13.64 0.14
14 14.58 14.66 0.18
15 9.50 9.65 0.15

16 12.98 12.12 0.14
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5. Conclusions and Future Work

In this paper, we propose an obstacle detection method based on longitudinal active
vision, which realizes the detection of all types of obstacles in the road, does not depend
on the accurate classification of obstacles, and reduces the spatiotemporal complexity
of road environment perception. Combining the fast image region-matching method
based on MSER with the obstacle detection method based on longitudinal active vision
improves the speed of image matching as well as the accuracy of obstacle recognition and
realizes the distance measurement of obstacles. The experimental results show that this
paper’s method can effectively recognize obstacles, and the mAP of this paper’s method is
improved by 7.4%, 4%, and 8.6% compared with the obstacle detection methods of VIDAR,
VIDAR+MSER and YOLOVSs. The obstacle ranging error over a short distance (<10 m) is
less than 0.15 m. Compared with other obstacle detection methods, the method in this paper
is more applicable and can meet the detection requirements in complex environments.

In this paper, we produced a methodological innovation in obstacle detection, using
the obstacle detection method based on longitudinal active vision to realize the accurate
detection of road obstacles, and there are still some shortcomings. Compared with other
traditional obstacle detection methods, the detection speed of this paper’s method is low
and has no obvious advantages. The next step is to consider using more complex feature
descriptors and matching algorithms to improve the detection speed. In addition, machine
learning is being considered for combining with this paper’s model in subsequent research
to realize more comprehensive and efficient obstacle detection on the roads.
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