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Abstract: As a non-contact method, vision-based measurement for vibration extraction and modal
parameter identification has attracted much attention. In most cases, artificial textures are crucial
elements for visual tracking, and this feature limits the application of vision-based vibration measure-
ment on textureless targets. As a computation technique for visualizing subtle variations in videos,
the video magnification technique can analyze modal responses and visualize modal shapes, but the
efficiency is low, and the processing results contain clipping artifacts. This paper proposes a novel
method for the application of a modal test. In contrast to the deviation magnification that exaggerates
subtle geometric deviations from only a single image, the proposed method extracts vibration signals
with sub-pixel accuracy on edge positions by changing the perspective of deviations from space
to timeline. Then, modal shapes are visualized by decoupling all spatial vibrations following the
vibration theory of continuous linear systems. Without relying on artificial textures and motion
magnification, the proposed method achieves high operating efficiency and avoids clipping artifacts.
Finally, the effectiveness and practical value of the proposed method are validated by two laboratory
experiments on a cantilever beam and an arch dam model.

Keywords: vision-based measurement; experimental modal analysis; dynamic deviation extraction;
modal shape visualization; high-speed camera system

1. Introduction

Structural modal characteristics, including modal frequencies, damping ratios, and
modal shapes, are crucial parameters in structural health monitoring (SHM) and non-
destructive testing (NDT) [1–5]. For applications of failure estimation and topological
optimization, the measurement requirements of these properties are widely presented in
various scales, from micro-nano to construction structures. Researchers have made great
efforts to acquire critical data from structural dynamic responses for these properties. The
most common types of sensors in modal experiments include the accelerometer, Laser
Doppler Vibrometer (LDV), and strain gauge [6–8]. Although observations relying on these
sensors are accurate and reliable, the spatial resolution in measurement is limited by the
quantity of sensors.

Vision-based measurement techniques provide an alternative for modal testing with a
high spatial resolution [9–13]. As a non-contact method, vision-based devices are easy to
install and provide higher resolution in space. Combined with image processing algorithms,
such as the image registration [14,15] and digital image correlation (DIC) [16–18], vibration
or deformation can be estimated through relative pixel shift. In most cases, artificial
textures like speckles and markers are crucial elements for tracking and locating, which
have a significant impact on the quality of measuring. This feature limits the application of
vision-based vibration measurement for textureless engineering targets, especially in the
outdoor environment.
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In recent years, the video magnification technique has been developed and introduced
into experimental modal tests [19–24]. By connecting spatial vibration to temporal variation,
video magnification algorithms extract vibration signals from intensity/phase variations
in the timeline. Then, structural modal parameters such as the natural frequencies and
damping ratios can be identified from the vibration data. Also, modal shapes can be
visualized by exaggerating spatial vibrations corresponding to a specific modal order.
Studies have verified the applicability of video magnification algorithms in vibration tests
on various engineering structures, such as arch dams, buildings, bridges, etc. [25–29].
Most video magnification frameworks provide full-field measurement capability without
requiring a speckle or marker. However, the manipulation of spatial features is usually
complicated and tedious. For instance, in the phase-based Eulerian video magnification
(PEVM) [19], vibration signals are extracted from temporal phase variations decomposed by
spatial filters. Meanwhile, the increasing of spatial filters will not only reduce the clipping
artifacts and image blurs in the final motion magnification but also significantly increase
the burden on the processor and memory.

To enhance the efficiency of vision-based vibration tests, this paper proposes a vi-
bration extraction and modal shape analysis method based on dynamic deviations on
structural edge profiles. In contrast to the deviation magnification [30] that exaggerates sub-
tle geometric deviations from only a single image, the proposed method extracts vibration
signals with sub-pixel accuracy on edge positions by turning the perspective of deviations
from space to timeline. Then, according to the vibration theory of continuous linear systems,
structural modal shapes are visualized using spatial weights on edge positions. Without
involving spatial filters and motion magnification, the proposed method has a compact
structure and achieves high operating efficiency.

The main contributions of this paper are summarized as follows: (1) An efficient
vibration extraction and modal shape analysis method is proposed based on dynamic
deviations. (2) The relationship between temporal deviation and spatial weights is detailed,
and the main technical issues are discussed. (3) The performance of the proposed method
is validated by two modal experiments on a beam structure and an arch structure.

The rest of this paper is organized as follows: Sections 2.1 and 2.2 introduce the
vibration extraction theory based on temporal deviations and discuss the pixel sam-
pling issue of unilateral and bilateral edges, respectively. A simulation test is also pre-
sented in Section 2.2 to better understand the whole process and validate signal accuracy.
Section 2.3 describes the relationship between the temporal deviations and linear vibration
system in detail and presents the temporal and spatial processing in visualizing modal
shapes. In Section 3.1, two modal experiments on a cantilever beam and an arch dam
model are given to further evaluate the performance of the proposed method. Finally,
Sections 4 and 5 provide the discussion and conclusion of this paper.

2. Materials and Methods

In the original deviation magnification algorithm, the variations along a canonical
stripe in a single image are the prerequisites for generating deformation fields and achieving
magnification [30]. In this study, by changing the perspective of deviations from space to
the timeline, temporal deviations along the edges can be estimated in the same way, and
vibration signals on entire edge coordinates can be effectively extracted. For simplicity, the
methodology section only discusses the situation of the linear edge. This method can also
be applied to more complicated situations, such as the ellipse (circle) and other high-order
curves after temporal sampling along the normal directions.

2.1. Dynamic Deviations and Vibration

Consider a synthetic image I(t, x, y), which has a linear edge along the x-axis and
vibrates only in the y-direction, the intensity values along the n-th column in the timeline is
Ixn(t, y). Define temporal variations in I(t, x, y) at position xn and time t as
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Sxn ,t(y) := Ixn(t, y). (1)

The vibration signal at position xn is closely related to deviations in Sxn ,t(y).
Assuming there is no vibration (i.e.,∀t fxn(t) = 0) at position xn, the temporal vari-

ations along Ixn(t, y) will be constant, i.e., Sxn ,t(y) = Sxn(y). Given the vibration signal
fxn(t) at position xn, the relationship between fxn(t) and Sxn ,t(y) can be represented as:

Sxn ,t(y) = Sxn(y + fxn(t)). (2)

Then, the vibration extraction at xn turns into estimating fxn(t) given the observations
of Sxn ,t(y).

In practice, Sxn(y) can be computed by aggregating information from all available
spatial-temporal slices at xn. Since fxn(t) usually has a small value, the mean of the spatial-
temporal slices can be exploited to calculate Sxn(y). Assuming that the noise is independent
in the timeline, the sampled Ixn(t, y) is represented as:

Ixn(t, y) = Sxn(y + fxn(t)) + gxn(t, y), (3)

where gxn(t, y) denotes the temporal noise. Then, using a first-order Taylor expansion of
Sxn(y + fxn(t)) leads to:

Ixn(t, y) ≈ Sxn(y) + fxn(t)S
′
xn(y) + gxn(t, y). (4)

Thus, the mean over t is:

1
Dt

∑
t

Ixn(t, y) ≈ Sxn(y) + µ f S′
xn(y) +

1
Dt

∑
t

gxn(t, y), (5)

where µ f denotes the mean of fxn(t) over t, and Dt represents the number of frames in the
t direction. Since µ f also has a small value, using the Taylor expansion again, we have:

Sxn(y) + µ f S′
xn(y) ≈ Sxn

(
y + µ f

)
. (6)

Thus, the average temporal variation can approximate the common variation up to a
constant shift of µ f . After the value of Sxn(y) is obtained, fxn(t) is calculated in terms of
the least square error between the Sxn(y) and each of the observed ones:

arg min ∑
y

(
Ixn(t, y)− Sxn(y)− fxn(t)S

′
xn(y)

)2, (7)

which leads to the vibration signal at position xn:

fxn(t) ≈
∑y(Ixn(t, y)− Sxn(y))S

′
xn(y)

∑y S′
xn(y)

2 (8)

The above equation indicates that the pixels for which S′
xn(y) = 0 do not affect the

solution. By sampling spatial-temporal slices at all edge coordinates, vibration signals can
be extracted by continually computing the dynamic deviations.

2.2. Unilateral and Bilateral Samplings

From the derivations above, it can be seen that the vibration extraction at xn depends
on the temporal sampling result Ixn(t, y). For those structures with thin cross-sections,
such as the trusswork and arch structure, temporal sampling on each side of the edge
almost doubles the amount of n and requires additional control of the pixel amount in the
y direction. Thus, bilateral sampling will be more convenient.
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Assuming that the bilateral sides of the structure are mirror-symmetric with respect to
a centerline, by Equation (8), the vibration extraction result depending on bilateral sampling
can be represented as:

f̂xn(t) ≈
∑y

((
Ixn(t, y)

MIxn(t, y)

)
−

(
Sxn(y)

MSxn(y)

))(
S′

xn(y)
MS′

xn(y)

)
∑y

((
S′

xn(y)
MS′

xn(y)

))2 (9)

where f̂xn(t) denotes the vibration signal, and M is the mirror-symmetric operator (diagonal
matrix). Obviously, from Equations (8) and (9), fxn(t) and f̂xn(t) are equal when the
differences between each side of the edge are ignored.

Here, a simulation test is conducted to better understand the vibration extraction
process and validate its accuracy. As illustrated in Figure 1, an image with a clear dividing
line is programmed to vibrate by the phase shifting (only in the y direction) in a synthetic
damped sinusoidal manner as:

δ(t) = ξ1sin(2π f1t)e(−α1t) + ξ2sin(2π f2t)e(−α2t). (10)

where ξ1=1, ξ2=2, f1=1Hz, f2=2.7Hz, and both α1 and α2 are 0.03. The sampling position xn
is set to the right side of the image. After temporal sampling at position xn, the deviations
of Ixn(t, y) reflect vibration fxn(t). Through analysis, the Root Mean Square Error (RMSE)
between δ(t) and fxn(t) is 0.1927. As demonstrated in Figure 2, the comparison of the
vibration signals between fxn(t) and f̂xn(t) indicates that there is little difference in the
vibration signals extracted using unilateral sampling and bilateral sampling. The RMSE
between fxn and f̂xn(t) is 0.2119. It is worth noting that the phase-shifting of images will
introduce noise to the edge (shown in Figure 1), making the vibration signals affected by
temporal and spatial noise.
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Figure 1. A simulation for understanding how to extract the dynamic deviations through the
edge profile.

2.3. Estimation of Spatial Weight

After calculating vibration signals on the edge, the spatial weight is then estimated.
According to the theory of the modal superposition method, the structural, spatial vibration
fxn(t) is a linear combination of modal responses for a Rayleigh damping system, and it
can be approximated by the edge vibration signal:

fxn(t) =
k

∑
i=1

ϕi(xn)qi(t)e(−αit). (11)

where k denotes the maximum mode order being excited, ϕi(xn) represents the weight cor-
responding to the i-th mode at position xn, qi(t) denotes the i-th temporal modal response,
and the αi is the attenuation coefficient. Considering vibration signals on all sampling
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positions, the relationship between spatial weights, modal responses, and vibration signals
is expressed as follows:

ϕ1(x1) ϕ2(x1) · · · ϕk(x1)
ϕ1(x2) ϕ2(x2) · · · ϕk(x2)

...
...

...
...

ϕ1(xn) ϕ2(xn) · · · ϕk(xn)
...

...
...

...
ϕ1(xN) ϕ2(xN) · · · ϕk(xN)





e(−α1t)q1(t)

e(−α2t)q2(t)

...
e(−αit)qi(t)

...
e(−αkt)qk(t)


≈



fx1(t)
fx2(t)

...
fxn(t)

...
fxN (t)


. (12)

It can be seen from the equation that each column of the first bracket on the left side
represents the spatial weights corresponding to a specific vibration mode, and each column
of the second bracket represents the modal response of each order. Since fxn(t) can be
observed, the estimation of spatial weights on all edge positions mainly depends on the
modal responses [28]. The modal superposition theory is first validated through the above
simulation test. As illustrated in Figure 3, the programmed signal δ(t) is a combination of
two independent damped vibrations. In this simulation, all spatial weights on the edges
are constant values (ξ1 and ξ2).
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Figure 3. The representation of spatial motion based on the theory of linear vibration systems in the
simulation test.

2.3.1. Temporal Processing

It can be seen from the above introduction that the calculation of spatial weights
requires the estimation of modal responses. In linear vibration theory, structural responses
in the modal test are usually considered to be combinations of damped signals of each
mode. To realize an efficient process, the variational mode decomposition (VMD) algorithm
is used in this study to estimate modal responses [31]. As an efficient self-adaption signal
processing method, the VMD decomposes the raw signal into a sequence of intrinsic mode
functions (IMFs) by solving a variational problem. This algorithm has been verified in
separations of mixed vibration signals [32,33].
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For an observed fxn(t), the structural modal response of each order e(−αit)qi(t) can be
approximated by decomposed modal components hv(t):

min
{hv(t)},{ωv}

=

{
V
∑

v=1

∥∥∥∂(t)
[
(η(t) + j 1

πt ) ∗ hv(t)
]
e−jωvt

∥∥∥2

2

}
s.t.

V
∑

v=1
hv(t) = fxn(t)

(13)

where ωv denotes the center frequency, V denotes the maximum mode number being
disassembled, ∂(t) represents the partial derivative with time t, η is the Dirac distribution, ∗
denotes the convolution operator, {hv(t)} = {h1(t), h2(t), · · · , hV(t)} represents the mode
ensemble, and {ωv} = {ω1, ω2, · · · , ωV} denotes the corresponding center frequency
ensemble. The constraint is that the sum of the modes is equal to the original signal fxn(t).

To solve the above optimization problem, a quadratic penalty term and a Lagrangian
multiplier are introduced to transform it into the following unconstrained problem:

L({hv(t)}, {ωv}, λ) = β
V

∑
v=1

∥∥∥∥−jωv

[(
η(t) + j

1
πt

)
∗ hv(t)

]
e−jωvt

∥∥∥∥2

2

+

∥∥∥∥∥ fxn(t)−
V

∑
v=1

hv(t)

∥∥∥∥∥
2

2

+

〈
λ(t), fxn(t)−

V

∑
v=1

hv(t)

〉 (14)

where β is the penalty parameter, and λ is the Lagrangian multiplier. The mode ensemble
{hv(t)} can approximate representation e(−αit)qi(t).

In practice, VMD can be easily implemented by calling the MATLAB inbuilt functions.
If the input vibration signal is not selected from the stationary points of a structure, the
modal responses can be estimated without prior knowledge of the intrinsic frequencies. It
is noteworthy that the amplitude of the estimated modal responses affects only the global
scale of spatial weights [28]. Nevertheless, it is still recommended to normalize them before
applying them to Equation (12).

2.3.2. Spatial Processing

After the system responses are obtained, the spatial weights of each modal shape
can be calculated by solving Equation (12). Considering that the ϕi(x) in high-frequency
regions is not meaningful, the operation in space focuses on removing high-frequency
components. Since spatial weights on continuous edges can be regarded as 1D signals,
moving-average filtering (MAF) is used in this study to improve the quality of each set of
spatial weights [34]. As a simple low-pass finite impulse response filter, the MAF smoothes
the sampled data and replaces the original data with the average of the neighboring points
within a defined scaling range. The smoothed spatial weights are expressed as:

ϕ̃i(xn) =
1
m

m−1

∑
u=0

ϕi(xn+u) (15)

where ϕ̃i(x) denotes the smoothed weight of each modal response, and m is the number of
points used in the moving average. By plotting the smoothed weight ϕ̃i(x), the structural
modal shapes can be observed.

3. Results

To validate the effectiveness of the proposed method, two laboratory modal tests on a
beam structure and arch structure are provided in the experiment section. The technical
information about the Chronos 2.1-HD high-speed camera system is listed in Table 1. All
elapsed times of these two experiments are computed on MATLAB R2020b on a laptop
equipped with a single AMD Ryzen 7 5800H processor (3.20 GHz).



Sensors 2024, 24, 4413 7 of 16

Table 1. The technical information about the high-speed camera.

Model Sensor Maximum Resolution FPS at Maximum Resolution Memory Capacity Shutter

Chronos 2.1-HD CMOS 1280 × 1024 pixels 1069 fps 32 GB Global shutter

3.1. Experiment of the Beam

As illustrated in Figure 4, a beam was installed on the metal base and then driven by
an impact excitation at the bottom by a force hammer. The aluminum alloy beam has a
dimension of 500 mm × 30 mm × 5 mm. The vibration of the test beam was recorded by the
Chronos 2.1-HD high-speed camera at 1069 frames per second (fps) with a resolution of
1280 × 1024 pixels. The vibration video of the beam was captured with a duration of up to
8 s. The vibration signals were also collected by an accelerometer placed at the top of the
beam. The accelerometer of type DYTRAN/3333MT weighs about 4 g, so its additional
mass effect on the beam can be almost negligible.

High Speed Camera

Acceleration Controller

Acceleration Sensor Laptop

Tripod

Test Beam

Figure 4. The experimental setup for the beam experiment.

The location of the spatial-temporal slice in the beam test is demonstrated in Figure 5a.
Figure 5b shows the spatial-temporal slices of bilateral edges, and the vibrational signals of
the structure are characterized by irregular edges. Figure 5c demonstrates the vibration
signal from bilateral edges and frequency spectra, and it can be observed that the extracted
vibration signals reach sub-pixel level accuracy. Figure 5d shows the vibration signal from
the accelerometer and frequency spectra. Then, the modal responses are recovered by
the VMD algorithm. The separated first three orders of modal responses and frequency
spectra are presented in Figure 6. Also, three obvious peaks, including 15.50 Hz, 98.88 Hz,
and 279.54 Hz, are detected from their frequency spectra. The parameters of the beam
and analysis of the modal frequencies in the beam test are listed in Table 2. The errors
between the finite element simulation and experimental modal frequencies suggest that the
proposed method can accurately extract the modal responses in the beam test. To estimate
the spatial modal shapes of the beam, the vibration signals of all the columns that make
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up the edge of the beam must be extracted. The edge of the beam in the image consists of
550 columns of pixels; 2000 frames are selected from the video and processed to extract the
vibration signals from these 550 columns, and the whole process consumes only 35.6 s.

(a)

(d)

Time (s)

A
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2 )
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m
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m
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itu

de
 

15.50 Hz 98.88 Hz
279.54 Hz

Timeline

sp
ac

e

Figure 5. (a) The location of the spatial-temporal slice in the beam test, (b) the spatial-temporal slices
of bilateral edges, (c) the vibration signal from bilateral edges and frequency spectra, (d) the vibration
signal from the accelerometer and frequency spectra.

Table 2. The parameters of the beam and analysis of the modal frequencies in the beam test.

Young’s Modulus
(GPa)

Density
(kg · m−3) Mode Order Simulation

(Hz)
Experiment

(Hz)
Error
(%)

72 2.66 × 103
1 15.47 15.50 0.19
2 96.87 98.88 2.07
3 271.16 279.54 3.09
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Figure 6. (a,b), first three orders of the modal responses and frequency spectra in the beam test.

As illustrated in Figure 7a, the bottom of the beam marked with a green box is affected
by light and background interference, which in turn affects the accuracy of the extracted
vibration signals. Considering that the edges of the beam are horizontal in the image,
a horizontal sharpening convolution kernel is used at the bottom of the beam image to
improve the quality of the edges. Figure 7b,c present the comparison of the vibration
signals extracted from the bottom of the beam and spectra before and after sharpening,
and it can be seen that more valuable vibration signals can be extracted from the sharpened
image. Figure 8 compares the spatial weights before and after sharpening in the beam test.
It can be observed that the spatial weights at the bottom of the beam extracted from the
sharpened image are smoother and more accurate. Then, the spatial weights are smoothed
using the MAF, and the modal shapes can be plotted based on the smoothed spatial weights.
The modal shapes obtained by finite element simulation in the beam test are illustrated
in Figure 9a. Figure 9b shows the comparison of the normalized modal shapes obtained
by finite element simulation and the proposed method in the beam test. Since there are
differences in material property, constraint conditions, and experimental control between
the actual experiment and finite element simulation under ideal conditions, deviations
can be observed in the comparison results. As shown in Figure 9, for a rigid structure
with bilateral parallel sides, the spatial vibration shapes at the edges can be exploited to
characterize the structural modal shapes. The accuracy of modal shapes obtained from the
proposed method is further quantitatively validated by means of the cross-modal assurance
criterion (cross-MAC) values [35], provided in Table 3. The cross-MAC values are close
to one, therefore demonstrating the precision of the proposed method when compared to
conventional finite element simulation.
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Figure 7. (a) The grayscale image of the beam, (b) the vibration signal extracted before sharpening
and frequency spectra, (c) the vibration signal extracted after sharpening and frequency spectra.
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Figure 8. (a) The grayscale image of the beam, (b–d) comparison of the first three orders of the spatial
weights before and after sharpening in the beam test.
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(a)

(b)

Original position Finite element simulationProposed method

Figure 9. (a) The modal shapes obtained by finite element simulation in the beam test, (b) comparison
of the normalized modal shapes obtained by finite element simulation and the proposed method in
the beam test.

Table 3. Comparison of the cross-MAC values of the modal shapes obtained by finite element
simulation and the modal shapes obtained by the proposed method.

Proposed Method

Mode 1 Mode 2 Mode 3

Finite element simulation 0.9971 0.9524 0.9887

3.2. Experiment of the Arch Dam Model

Arch dams transmit a large portion of the water pressure and other loads through
thrust to the abutment, exploiting the compressive strength of its material. Therefore,
their design and construction require sophisticated engineering knowledge. Since water
considerably affects the dynamic response of arch dams, regular inspections are necessary
to identify potential problems and reduce these risks. One of the important inspections is to
apply vibration tests to arch dams to detect damage by investigating changes in the dynamic
characteristics, mainly changes in the modal frequencies and modal shapes [36,37].

To extract the modal responses and modal shapes of arch dams, the proposed method
was performed on an arch dam model made of plastic. As demonstrated in Figure 10, the
arch dam model consists of the dam base and dam body, and it was placed on an anti-slip
mat. In the experiment, an impact excitation was given to excite the arch dam model on the
dam body using a force hammer, and the vibration of the test structure was recorded by
the Chronos 2.1-HD high-speed camera at 1069 fps with a resolution of 1280 × 1024 pixels.
The vibration video of the arch dam model was captured with a duration of up to 8 s.
Meanwhile, the vibration signals were also collected by an accelerometer placed at the top
of the dam body.
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Since the arch dam model is a circular structure, the pixel coordinates of the circle
center (x0, y0) and radius r0 can be located using Hough circles. Then, the coordinates of
the pixels that make up the arch dam model are calculated following Equation (16):{

xp = x0 + r0cos(pθ)
yp = y0 + r0sin(pθ)

, (16)

where (xp, yp) are the pixel coordinates of arch dam model, p denotes the serial number of
pixel, and θ denotes the angle between adjacent pixels.

Tripod

High Speed Camera

Arch Dam Model
Rubber Hammer

Laptop

Acceleration Sensor

Acceleration Controller

Figure 10. The experimental setup for the arch dam model test.

The colored lines in Figure 11a indicate the extraction results of the dam body pixels,
and the yellow line indicates the location of the spatial-temporal slice in the arch dam
model test. Figure 11b shows the spatial-temporal slices from bilateral edges. Figure 11c
presents the vibration signal from bilateral edges and its frequency spectra. Figure 11d
shows the vibration signal from the accelerometer and frequency spectra. In this case, the
running time of the sampling and vibration extraction processes is slightly longer than
that in the beam test (41.3 s). After separation by VMD, the first three orders of modal
responses were reserved. The separated time-domain modal responses and frequency
spectra are illustrated in Figure 12. Three obvious peaks, including 171.04 Hz, 203.11 Hz,
and 277.94 Hz, were detected from frequency spectra. The analysis results of finite element
simulation and experimental modal frequencies in the arch dam model test are listed in
Table 4. Moreover, Figure 13a,b illustrate the comparison of modal shapes obtained by
finite element simulation and the proposed method in the arch dam model test.
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Figure 11. (a) The extraction results of the dam body pixels and the location of the spatial-temporal
slice in the arch dam model test, (b) the spatial-temporal slices from bilateral edges, (c) the vibration
signal from bilateral edges and frequency spectra, (d) the vibration signal from the accelerometer and
frequency spectra.
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(a) (b) Original position Proposed method

Figure 13. (a,b) Comparison results of modal shapes obtained by finite element simulation and the
proposed method in the arch dam model test.

Table 4. The analysis results of finite element simulation and experimental modal frequencies in the
arch dam model test.

Mode Order Simulation
(Hz)

Experiment
(Hz)

Error Rate
(%)

1 169.82 171.04 0.72
2 206.39 203.11 1.59
3 284.95 277.94 2.46

4. Discussion

The experiments on two typical structures validate the effectiveness of the proposed
method. Using an efficient process, the extraction of vibration signals in these two cases is
controlled within 1 min. The only step that requires manual intervention is the estimation
of modal responses (setting the parameters in VMD). Without the interface of spatial filters,
the proposed method only focuses on the dynamic deviations on edge profiles instead of
all pixel coordinates. The modal shapes are observed by estimating spatial weights along
the edges instead of manipulating global spatial information. These advantages make the
method more efficient in practical applications. Similar to the deviation magnification
[30], the direction of temporal samplings in the proposed method should also be along
the normal line of curve edges. For more complex curve edges, the critical problem
in temporal sampling is to locate edge coordinates and find their normal directions. A
promising solution to the problem is to match these curves with appropriate equations and
then calculate the sampling directions in space. However, the error in curve fitting will
affect the accuracy of vibration signals. This is a common problem, and its solution has
significance for the practical extension of both the deviation magnification algorithm and
the proposed method.

5. Conclusions

This paper proposes an efficient method for extracting structural vibration signals and
visualizing modal shapes by processing spatial-temporal slices on structural edges. In the
proposed method, the perspective regarding deviation changes from space to the timeline.
Meanwhile, by temporal samplings on all edge positions, dynamic deviations of these
datasets can accurately reveal vibrations on structural edges. Based on the assumption of a
linear vibration system, the modal shapes are observed by calculating the spatial weights
corresponding to a specific mode. During the processing, the VMD and MAF algorithms
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are employed, respectively, to calculate modal responses and refine the estimated spatial
weights. Finally, the effectiveness of the proposed method is verified by a simulation test
and two laboratory experiments on typical structures. The analysis results have proven
the accuracy and efficiency of the presented processing flow. In the discussion part, the
importance of sampling for both the proposed method and the deviation magnification is
emphasized. In future work, we will further investigate the automation of the positioning of
edges and normal direction coordinates, as well as the feasibility of applying the proposed
method to real scale structures.
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