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Abstract: Automatic Modulation Recognition (AMR) is a key technology in the field of cognitive
communication, playing a core role in many applications, especially in wireless security issues.
Currently, deep learning (DL)-based AMR technology has achieved many research results, greatly
promoting the development of AMR technology. However, the few-shot dilemma faced by DL-
based AMR methods greatly limits their application in practical scenarios. Therefore, this paper
endeavored to address the challenge of AMR with limited data and proposed a novel meta-learning
method, the Multi-Level Comparison Relation Network with Class Reconstruction (MCRN-CR).
Firstly, the method designs a structure of a multi-level comparison relation network, which involves
embedding functions to output their feature maps hierarchically, comprehensively calculating the
relation scores between query samples and support samples to determine the modulation category.
Secondly, the embedding function integrates a reconstruction module, leveraging an autoencoder
for support sample reconstruction, wherein the encoder serves dual purposes as the embedding
mechanism. The training regimen incorporates a meta-learning paradigm, harmoniously combining
classification and reconstruction losses to refine the model’s performance. The experimental results
on the RadioML2018 dataset show that our designed method can greatly alleviate the small sample
problem in AMR and is superior to existing methods.

Keywords: few-shot learning; automatic modulation recognition; relation network; deep learning

1. Introduction

AMR is an important step between signal detection and demodulation [1]. As a key
technology in the field of cognitive communication, AMR is a prerequisite for achieving
efficient spectrum sensing and understanding, and it is widely used in wireless monitoring,
signal interception and interference problems [2].

For a long time in the past, maximum likelihood theory and expert feature extraction
were the main methods for solving AMR problems. Based on the maximum likelihood
theory method, it is necessary to first obtain the statistical characteristics of the modulated
signal, then construct a decision criterion and finally construct a maximum likelihood
classifier. In theory, this type of method can bring high recognition accuracy, but its high
computational complexity and strong dependence on prior knowledge limit its application
in practical problems. The method based on expert features relies on expert knowledge
in the field of signal processing, designing feature-extraction models that can distinguish
different modulation signals manually, and then designing classifiers for recognition. The
recognition accuracy of this type of method depends on the extracted statistical features
and is limited by the weak learning ability of traditional classifiers [3].

In recent years, deep learning technology has shown excellent feature-extraction
and data-analysis capabilities in fields such as image processing and natural language
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processing, and it has been widely applied in wireless communication [4]. At the same time,
it also provides a data-driven research approach for AMR. The AMR method based on
deep learning utilizes a deep neural network model to learn data distribution from a large
number of historical signal samples, extract more robust and effective signal features and
use them to distinguish different modulation categories. Recent research has shown that
signal modulation-recognition methods based on deep learning have higher recognition
performance compared to traditional methods [5].

However, most DL-based AMR studies assume sufficient historical signal samples for
training deep neural network models and assume that the sample categories are the same
when training offline and deploying applications in practice. In practical scenarios, fulfilling
this assumption is inherently difficult. Firstly, this is due to the dynamically complex
electromagnetic environment, which constantly faces interference from a multitude of
sources: various wireless communication devices, different electronic instruments and the
ever-changing influences of natural phenomena, including weather fluctuations and terrain
characteristics. This continuous change leads to rapid fluctuations in signal characteristics,
making it difficult to obtain widely applicable and high-quality signal samples as the
samples collected at one time may not represent the situation at other times. Secondly, the
collection of high-quality signal samples often requires high-performance measurement
equipment and professional data-collection techniques, which brings significant economic
and operational burdens. The signal samples also require precise labels for model training,
but obtaining accurate labels is also a challenging task. This not only requires a high level of
professional knowledge but may also involve a lot of manual work, especially when facing
diverse signal types generated by complex electromagnetic environments [6]. Therefore,
in practical scenarios, AMR often faces the few-shot challenge, which greatly limits the
implementation and widespread application of deep learning-based signal modulation-
recognition methods in practical scenarios.

In the field of image recognition, the few-shot problem has also received sufficient
attention, and methods such as data augmentation and meta-learning have been proposed
to solve the few-shot dilemma. Among them, meta-learning is considered the most promis-
ing method for solving small sample problems [7]. Its idea is to continuously construct
small sample training tasks on the source domain dataset so that the model can distin-
guish similarities and differences between different categories. Even when facing new
small sample tasks in the target domain, it can still have good recognition performance.
Metrics-based meta-learning methods, such as prototype networks (PNs) [8] and relation
networks (RNs) [9], have been widely studied and applied due to their simple structure,
ease of training and good performance.

Therefore, this paper proposes a few-shot AMR method based on a multi-level com-
parison class reconstruction relation network (MCRN-CR) based on the meta-learning
paradigm, aiming to solve the few-shot problem faced in AMR.

The main contributions of this article are as follows:

(1) A meta-learning paradigm is proposed for the FS-AMR problem. By utilizing existing
source domain datasets and constructing meta-task training methods, the model can
distinguish differences between different categories and can be well generalized to
target domain classification tasks. Namely, it can attain satisfactory classification
performance on the target domain with either no or minimal training samples from
the target domain.

(2) A multi-level embedding comparison relationship network has been proposed. Based
on the relation network architecture in meta-learning, we propose an improved
version, which involves multi-level measurement of the deep and shallow features
output by the embedding function, synthesizing the relationship score of the test
sample relative to the support category and using this to determine the category of the
test sample. Compared to general relational networks, the comprehensive comparison
of deep and shallow features can minimize the confusion of different modulation
categories in the metric space as much as possible.
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(3) A class reconstruction meta-learning framework was proposed. The class reconstruc-
tion network consists of an encoder and a decoder, where the encoder serves as an
embedding function and the decoder reconstructs the potential representation of the
sample into the original signal. Furthermore, by combining class reconstruction loss
and classification loss to jointly train the model, more robust feature representations
can be learned, reducing the impact of noise on recognition performance.

The rest of this article is organized as follows. In the second section, relevant works
on AMR are introduced, including traditional AMR methods, DL-based AMR methods
and FS-AMR methods. In the third section, the relevant theories and methods of this
article are introduced. The fourth section provides a detailed introduction to the multi-level
comparison relation network proposed in this article, which combines class reconstruction.
The fifth section provides detailed experimental results and discussion. Finally, a summary
of the entire article was provided.

2. Related Works

This section focuses on the problem of AMR, introducing traditional AMR methods,
DL-based methods and existing FS-AMR methods.

2.1. Traditional AMR Methods
2.1.1. Maximum Likelihood Theory-Based AMR Method

The modulation-recognition method based on maximum likelihood theory analyzes
signal characteristics through probability theory, and its modulation-recognition process
is a multi-hypothesis testing problem. This method is based on the likelihood function
of electromagnetic signals, using the comparison results of the likelihood ratio and set
threshold as the basis for judgment. Common methods include average likelihood ratio test
(ALRT) [10], generalized likelihood ratio test (GLRT) [11] and mixed likelihood ratio test
(HLRT) [12]. This type of method has the best signal feature performance in ideal channels,
but it has high computational complexity and requires complete signal prior knowledge,
making it susceptible to environmental interference factors.

2.1.2. Expert Features-Based AMR Method

Feature extraction is a process of data mapping, which involves mapping the original
signal data to a specific feature space. The purpose of feature mapping is to generalize
the differences between modulation categories, reduce data dimensionality, and improve
algorithm efficiency. Common signal features include the following: (1) instantaneous
features; (2) statistical characteristics; (3) transform domain features [6].

Instantaneous features describe the instantaneous properties of a signal in the time
domain. It mainly considers the instantaneous change characteristics of the signal at a cer-
tain moment or period [13]. Common instantaneous characteristics include instantaneous
amplitude, instantaneous frequency and phase. Statistical features are obtained through
statistical analysis of signals. They describe the probability distribution, average level, dis-
persion degree and other characteristics of signals, mainly including high-order moments,
high-order cumulants and cyclic cumulants [14,15]. The transformation domain feature
is acquired through the mathematical transformation of a signal, such as using methods
like the short-time Fourier transform or wavelet transform. These methods convert the
signal from the time domain to the frequency domain or other transformation domains,
revealing valuable information such as the frequency, phase and energy of the signal. The
commonly used transform domain features mainly include wavelet transform features,
spectral analysis features, time-frequency maps, constellation maps [16], etc.

Feature extraction is fundamental in expert feature-based methods and requires a
high level of expertise. The effectiveness of features directly impacts the final classification
performance. However, this method is limited by its reliance on a single feature, which con-
strains its data representation capability and, consequently, caps its performance potential.
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Additionally, feature extraction and classifier design are conducted separately, resulting in
low automation and high time costs.

2.2. DL-Based AMR Methods

The deep learning-based AMR method uses deep neural network models for feature
extraction and classification. Compared with traditional methods, the deep learning-based
method achieves higher recognition accuracy, stronger generalization ability and wider
applicability, thus gaining widespread attention. From the perspective of network structure,
currently, the types of deep neural networks (DNNs) used for designing modulation
recognition include Convolutional Neural Networks (CNNs), Recurrent Neural Networks
(RNNs) and their hybrid networks.

2.2.1. CNN-Based AMR Methods

O’SHEA et al. first proposed a modulation-recognition neural network model for di-
rectly processing raw In phase and Quadrature (I/Q) signals in 2016. Although this model
only uses a simple CNN structure, its recognition performance far exceeds traditional artifi-
cial feature methods. At the same time, the author also opened up the RadioML2016.10a
and RadioML2016.10b datasets, greatly promoting the development of this field. Further-
more, classic deep learning architectures such as VGG [17] and ResNet [18], which are
widely used in the image field, have also been applied to AMR problems. O’SHEA released
the RadioML2018.01A dataset in 2018 and compared the classification performance of two
types of networks for AMR. The experiment proved that the ResNet structure with skip
connections could bring better recognition accuracy under a high signal-to-noise ratio.
In addition, the author also compared the recognition performance of the model with
different convolutional layers in VGG and different residual block numbers in ResNet and
pointed out that a too-deep network architecture not only cannot bring higher recognition
performance [19] but also can bring higher complexity and computational complexity,
leading to overfitting of the model during training.

In addition to processing I/Q signals directly, the original I/Q data is typically pre-
processed and transformed into other forms of features. Corresponding DNN models are
then developed for deep feature extraction and recognition. Constellations [20], spectro-
grams [21], as well as cyclic spectrograms [22], eye charts [23], amplitude histograms [24],
etc., are all used as data preprocessing forms in AMR problems. In contrast, the DL-AMR
method with preprocessed form has stronger comprehensibility, but there is additional com-
putational complexity in the process of converting I/Q signals into images. The DL-AMR
method, which directly processes I/Q signals, does not require additional preprocessing
processes, requires less computation and has a higher degree of automation.

2.2.2. RNN-Based AMR Methods

Note that the modulated signal is a time series, and CNNs typically struggle to capture
temporal features well, so RNN-based AMR methods are gradually being proposed. A
new AMR method based on RNN is proposed in [25], which uses gated recurrent units
(GRUs) to achieve better recognition accuracy than some CNN models. The author of
reference [26] converted the I/Q signal into amplitude and phase (A/P) and input it into
LSTM, achieving high recognition accuracy.

2.2.3. Hybrid AMR Method of CNN and RNN

Based on a single CNN or RNN network architecture, it is difficult to simultaneously
focus on the spatial or temporal characteristics of wireless signals. Using only one type
may not achieve optimal performance. Therefore, some scholars have proposed an AMR
model that combines the two network architectures. A Convolutional Long Short Term
Deep Neural Network (CLDNN) model is proposed in [26], consisting of one LSTM and
three CNN layers. This model has a skip connection before LSTM, bypassing two CNN
layers, aiming to provide longer temporal correlation information for the extracted features.
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Reference [27] proposes another CLDNN2 model without bypass layer connections, which
can achieve higher recognition accuracy than CLDNN at the cost of increasing the number of
layers and parameters. Inspired by the excellent feature-extraction characteristics of hybrid
models and the complementary information present in individual channels, reference [28]
proposes a new multi-channel deep learning model (MCLDNN), which utilizes single
and combined I/Q symbols of received data to extract features from a spatiotemporal
perspective, achieving high recognition performance.

2.2.4. Other Network Architecture-Based AMR Method

In addition to CNN and RNN, popular network structures in deep learning such as
Complex Value Neural Networks (CVNN), Graph Neural Networks (GNN) and Trans-
former have also been used in the study of AMR problems. Compared with traditional
real neural networks, CVNN can simultaneously process data containing both real and
imaginary parts, providing richer and more diverse feature-expression capabilities than
real neural networks [29]. Therefore, CVNN is very suitable for processing periodic signals.
Reference [30] proposed a novel AMR model based on CVNN and found that complex-
valued operations are more effective in helping neural networks extract correct statistical
information than real-valued operations at low signal-to-noise ratios. To reduce the ad-
ditional computational cost of complex convolution, reference [31] proposes an AMC
model based on complex depthwise separable convolution (CDSCNN) to achieve a balance
between classification accuracy and model complexity. When the essence of a problem
can be represented by a graph structure, a graph neural network (GNN) can be used to
solve the problem [32]. Reference [33] first proposed an automatic modulation-recognition
model based on Graph Convolutional Neural Network (GCN). Transformer [34] has also
been proven to be useful for solving AMR tasks. For example, the Mcformer model in
reference [35] achieved good classification performance by extracting global information
from time-domain signals through the Transformer.

2.3. FS-AMR Methods

Based on different research approaches to solving few-shot problems, we divide them
into data-driven few-shot learning methods and model-driven few-shot learning methods.

2.3.1. Data-Driven FS-AMR Methods

The data-driven approach mainly focuses on how to enhance or expand existing small
training samples and improve the learning performance of the model under few-shot
conditions. When the labeled samples are insufficient, on the one hand, simple data trans-
formations such as cropping and concatenation, and adding noise can be used to expand
the training samples. On the other hand, Generative Adversarial Networks (GAN) can
be used to generate virtual data. Based on the characteristics of electromagnetic signal
data, reference [36] analyzed and applied several simple and effective time-series enhance-
ment methods that conform to the characteristics of electromagnetic signals, including
noise disturbance, amplitude and time delay transformation, frequency shift and phase
shift. Finally, the effectiveness of the proposed simple data-augmentation method in small
sample radiation signal-recognition tasks was verified through experiments. The author
of reference [37] used GAN to generate pseudo data similar to the original signal and
reversed the original signal and false signal to further increase sample diversity. Finally,
the effectiveness of data augmentation based on the GAN method was verified in a CNN
network model.

2.3.2. Model-Driven FS-AMR Methods

This type of method focuses on designing and optimizing model structures, learning
strategies or optimization algorithms, enabling them to have inherent few-shot learning
capabilities and efficiently learn and generalize under limited data. Meta-learning is a
commonly used learning framework for such methods, which enables machines to learn



Sensors 2024, 24, 4421 6 of 20

to learn and distinguish similarities and differences between things. Metrics-based meta-
learning, such as prototype networks [8] and relational networks [9], is a simple and
efficient method for solving few-shot problems. Reference [38] proposes a novel small
sample learning framework called Attention Relationship Network (AMCRN), which
introduces channel and spatial attention to learn more effective feature representations of
supporting samples and uses the relationship network as the learning architecture. The
experimental results show that even with only one supporting sample, this method can
achieve excellent performance in fine-grained signal modulation recognition and is robust
to low signal-to-noise ratio conditions. References [39,40] also proposed corresponding
small sample modulation-recognition frameworks based on relational networks. Both
use one-dimensional convolution and denoising autoencoder as embedding functions for
feature extraction. The experimental results show that compared with traditional FSL
algorithms, the method based on relational networks can achieve higher classification
accuracy in signal modulation recognition. In addition, reference [41] also proposed the
AMR-CapsNet method based on capsule networks to solve the problem of few-shot AMR
and achieved good classification results.

3. Signal Model and Basic Theory
3.1. Signal Model

AMR is a prerequisite for signal demodulation. The module for processing modulation
classification is usually deployed at the receiving end of the entire communication system,
sending the received modulation information to the demodulator, which then demodulates it.

In wireless communication systems, the received signal can be represented as [42]:

X(t) = h(t)× s(t) + n(t), (1)

where h(t) represents the wireless channel pulse response, s(t) represents the modulated
signal generated by the transmitter, and n(t) represents the most basic additive Gaussian
white noise (AWGN).

After orthogonal sampling by the receiver, the same I/Q signal X(n) is obtained:

X(N) =
[(

xI
1, xQ

1

)
,
(

xI
2, xQ

2

)
, . . . ,

(
xI

N , xQ
N

)]
, (2)

where N is the sampling length. Therefore, when I/Q signals are used as network inputs,
their data format can be written as:

Xinput =

[
xI

1 xI
2 . . . xI

N
xQ

1 xQ
2 . . . xQ

N

]
. (3)

AMR can be described as determining the modulation method of s(t) by observing the
signal X(t).

3.2. Description of DL-Based AMR Methods

In DL-based AMR tasks, the collected historical signals are usually used as training
data, and known modulation methods are used as labels to train deep neural networks and
obtain recognition models.

Given the training sample set

D = {(x1, y1), (x2, y2), · · · , (xm, ym)}, m = 1, 2, · · ·M, (4)

Among them, xm is the m-th sample data, ym is the true label of the m-th sample, with
a value range of label number, ym ∈ (0, 1, 2, · · · , L− 1). The training task is to obtain the
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optimal parameters of the given model by learning the training sample set under the given
optimization objective conditions:

θ = argmin
(xm ,ym)∈D

M

∑
m=1

loss(ŷm, ym) = argmin
(xm ,ym)∈D

M

∑
m=1

loss(Modelθ(xm), ym). (5)

Then, by applying the trained model parameters θ, substituting them into the Model
and testing the test sample set, we can infer the category of the test samples and obtain a
measure of the Model’s generalization ability.

However, the actual signal environment is very complex, and various electromagnetic
activities interact with each other, making it difficult to obtain sufficient high-quality labeled
samples. Therefore, the training samples cannot accurately represent the data distribution,
which makes it difficult for deep neural network models to learn appropriate parameters.
This results in significant classification model errors and poor generalization ability. This is
the few-shot dilemma faced by AMR.

3.3. Metrics-Based Meta-Learning

Meta-learning is an important method for solving few-shot problems. Unlike tradi-
tional deep learning methods, its purpose is to enable machines to learn to learn and have
the ability to distinguish similarities and differences between things, rather than learning a
classification model specific to a specific task. We assume that the training set Dm-train in
the source domain and the testing set Dm-test in the target domain have different categories.
The basic idea of meta-learning is to construct meta-tasks on the source domain training
set, and through training on different meta-tasks, make the machine have good general-
ization ability when facing different classification tasks, and thus have good recognition
performance on target domain testing tasks.

Metrics-based meta-learning consists of an embedding function and a metric function
defined in the representation space. As shown in Figure 1, the embedding function is used
to extract prototype features of different categories, and the measurement function is used
to measure the similarity between the test sample and different categories. The higher the
similarity, the closer it is to that category. In meta-learning, one training iteration is called
an Episodic, which is a C-Way K-shot classification task. C-Way K-shot task extraction refers
to randomly selecting C categories from the training set, with K samples taken from each
category to form a support set, and then extracting Q samples as a query set. The category
labels of the support set are known and are used to construct the embedding benchmark of
category C in the metric space, while the query set is the sample to be predicted.
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Figure 2 is a schematic diagram of signal modulation recognition using a relational
network in a 5-way 1-shot scenario. The embedding function and relation metric function
of the relational network are fθ and gφ, respectively. Assuming the support sample is xi and
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the query sample is xj, the embedding function calculates the embeddings fθ(xi) and fθ(xj),
and then concatenates the two feature maps:

Z
(

fθ(xi), fθ

(
xj
))

, (6)

and feed the results into the relationship metric function to calculate the relation score,
which is the similarity score:

ri,j = gφ(Z( fθ(xi), fθ(xj))). (7)
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Finally, the category of the query sample will be determined based on the relation
score. During the training process, minimize the objective function to seek the optimal
solution θ related to φ, which enables the network to optimize task modeling, and quickly
converge when accepting new small sample tasks.

4. The Proposed Method

This section will introduce the AMR method based on MCRN-CR in three parts: (1) the
framework of MCRN-CR, (2) the details of MCRN-CR and (3) the training steps.

4.1. The Framework of MCRN-CR

To solve the few-shot dilemma in AMR, this paper proposes a class reconstruction
relation network based on multi-level comparison (MCRN-CR), whose framework structure
is shown in Figure 3. MCRN-CR consists of two parts: class reconstruction and multi-
level comparison relation network. The class reconstruction part is used to generate low-
dimensional latent representations of input samples, which is the embedding of support
samples and query samples. The multi-level comparison relation network is an improved
version of the relation network, used to achieve recognition tasks under few-shot conditions.
It should be noted that Figure 3 is a schematic diagram. Although there are only 4-levels of
MCRN-CR in Figure 3, we can construct models at any level. In this article, we construct a
5-level MCRN-CR.
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During the training process, the class reconstruction part first generates a low dimen-
sional latent representation zs of the support sample xs. On the one hand, zs participates
in the similarity calculation between query samples. On the other hand, it needs to be
further fed into the decoder to generate the reconstruction support sample xs. To eliminate
the influence of noise, when further calculating the reconstruction loss Lre, a high signal-
to-noise ratio sample xs

+ with the same category as the supporting sample is used as the
reconstruction target,

Lre = E
(
∥xs − xs

+∥2
2

)
. (8)

Then, the classifier in the MCRN part predicts the class labels of the query samples
and calculates the cross-entropy classification loss with the real labels:

Lce = −E(y log ŷ). (9)

The class reconstruction part helps the encoder as an embedding function extract more
recognizable sample features, increase the differences between different class embeddings
and thus improve signal-recognition performance under few-shot conditions. In MCRN-
CR, Lre and Lce together constitute the model’s loss, with coefficients of λce and λre. We
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believe that classification loss is more important for model training in the classification task
of this article; therefore, λce and λre is set to 0.8 and 0.2, respectively.

L = λceLce + λreLre. (10)

4.2. The Details of MCRN-CR
4.2.1. The Structure of Improved Relational Networks MCRN

We believe that in order to match query samples and support categories accurately,
it is necessary to learn nonlinear distances at different feature levels on both deep and
shallow abstract features and comprehensively calculate relation scores. Therefore, in
response to AMR, this paper proposes a multi-level comparison relation network, as shown
in Figure 3. The multi-level comparison relation network includes an embedding module
and a relation-measurement module, where the embedding module is composed of the
encoder of the class reconstruction part.

Specifically, the support sample and query sample are, respectively, embedded to
generate the v-th level feature map zv

i = f v
θ (xi) and zv

j = f v
θ

(
xj
)
, then concatenate it into

[zv
i , zv

j ] and send it to the corresponding v-level relation module for comparison.
At the v − 1 level, the relation module outputs the similarity feature maps of samples

xi and xj. The v-th level relation module takes both the embedding outputs of the v-th level
support and query samples as inputs and the similarity feature maps of the v − 1 level
relation module as inputs:

gv
φ = g

([
zv

i , zv
j , gv−1

φ

])
. (11)

For the first level relationship module, since it does not have the input of the previous
one, it is assumed that

g1
φ = g

([
z1

i , z1
j

])
. (12)

Assuming q(.) represents average pooling and fully connected operations, the similar-
ity (relationship) score between the support samples and query samples output by each
relationship module in the feature map at level v is:

rv
i,j = q

(
gv

φ

)
. (13)

The similarity score between the further query sample xj and each supporting category
yc is:

rc,j =
V

∑
v=1

wv
j rv

c,j, c = 1, 2, . . . , C. (14)

Among them, wv
c,j = αv

(
gv

c,j

)
represents the scalar attention weight of the relation

scores at all levels, αv is a fully connected layer, the activation function is sigmoid and the
weight parameters of αv are included in the relationship module.

4.2.2. The Class Refactoring in MCRN-CR

The class reconstruction part includes two parts: the encoder and the decoder. The
encoder generates the potential feature-expression zs of the supporting sample xs, and
the decoder further reconstructs the supporting sample xs. After training, the smaller the
reconstruction error, the better zs can represent the sample features. Since complex neural
networks can handle data containing both real and imaginary parts, providing richer and
more diverse feature-expression capabilities than real neural networks, this paper adopts
complex convolution as the basic unit of encoders and decoders. As shown in Figure 4, the
structure of the encoder and decoder includes five layers of complex convolution.
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4.2.3. Relation Metric Module

The relation metric module calculates the nonlinear distance between query samples
and support categories, obtains the relationship score between each sample and different
category families and further determines the category of query samples. Table 1 shows the
specific structure of the relationship-measurement module.

Table 1. Structure of relationship module.

Layer Structure

RM1 Conv1d (out_channels = 64, kernel_size = 4, stride = 2)
ReLU + BN

RM2 Conv1d (out_channels = 64, kernel_size = 4, stride = 2)
ReLU + BN

RM3 Conv1d (out_channels = 64, kernel_size = 4, stride = 2)
ReLU + BN

RM4 Conv1d (out_channels = 64, kernel_size = 4, stride = 2)
ReLU + BN

RM5 Conv1d (out_channels = 64, kernel_size = 4, stride = 2)
ReLU + BN

4.3. Training Procedure

During training, C-way K-shot tasks will be extracted from the training set for each
iteration, obtaining the support set DS = {(xi, yi)}m

i=1 and query set DQ =
{(

xj, yj
)}n

j=1
for each training task, where m = K × C and n = Q × C.

Subsequently, according to Section 3.2, calculate the relationship score rc,j between
each query sample xj and each support category yc, and further determine the predicted
label ŷ for the query sample. Secondly, the hidden layer feature zs of the support sample
calculated by the encoder is further fed into the decoder to reconstruct the support sample
xS. Then, based on the predicted labels and reconstructed samples, the classification error
and reconstruction error are settled separately. Finally, the error is backpropagated, and
the encoder and decoder parameters of the class reconstruction part and the relationship
module parameters are updated. Algorithm 1 describes the complete training process of
MCRN-CR.
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Algorithm 1: Training process of AMR model based on MCRN-CR.

Symbol Description:

• E: The number of training iterations, the size of Episodic;
• Θ, θde, φ: Parameters are encoder, decoder and relationship module, respectively;
• lren, lrde, lrrm: Learning rates of the encoder, decoder and relation module, respectively;
• λce, λre: a scalar used to balance the overall training loss.

Training iteration:
1: For Episodic = 0 to E − 1:
2: Task Extraction from Dm-train, get Support set DS and Query set DQ;
3: x+ ← The mean value of the samples corresponding to the category of all supporting

samples in the current task at the highest SNR;
Forward propagation:

4: Calculate the levels of embeddings zv
i and zv

j for support samples and query samples:

zv
i = f v

θ (xi), zv
j = f v

θ

(
xj

)
;

5: Calculate support category feature embeddings:
zv

c ← The mean embedding of K supporting samples in each category;
6: Calculate the relationship score between query samples and support categories:

rc,j =
V
∑

v=1
wv

j rv
c,j, c = 1, 2, . . . , C;

7: Category labels for predicted query samples:

ŷ = argmax
(

rc,j

)
;

8: Calculate the output of the decoder:
x = f (θde, xs);

9: Calculate losses:
Lce= Lce(ŷ, y ),

Lre= Lre
(

x, x+ ),
L = λceLre + λreLre;

10: Error backpropagation, updating parameters:
θ ← Adam(∇θ , L, lren, θ)
θde ← Adam

(
∇θde

, L, lrde, θde
)
;

φ← Adam
(
∇φ, L, lrrm, θ

)
11:End for.

5. Experiment and Discussion
5.1. Dataset and Experimental Setup

To verify and evaluate the effectiveness of the proposed method, experiments were con-
ducted on the RML2018.01A modulated signal dataset in this paper. This dataset consists
of 24 types of modulation signals, with each signal sample containing two channels of I/Q
data in the format of [1024,2]1024 × 2, with a signal-to-noise ratio range of −20 dB~30 dB
and an interval of 2 dB. A single category has 4096 samples at each signal-to-noise ratio,
totaling 2,555,904 pieces of data.

Firstly, divide the dataset into 14 modulation categories as known source domain
training sets and the other 10 as target domain datasets. Due to the large size of the original
dataset, it is redundant for the experiment in this article. Therefore, only 1000 samples were
taken for each category under a single signal-to-noise ratio. The existing training samples
in the target domain are usually scarce in few-shot scenarios. Therefore, to comply with
this setting, a subset of the target domain dataset will be divided as a known small sample
dataset, with a quantity of 2% of the target domain samples. For each signal-to-noise ratio,
20 samples will be taken for a single modulation method. During each testing process, the
support set is extracted from that subset. The remaining part is the test set, from which
query samples are extracted during each test. The specific division is shown in Table 2.
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Table 2. Dataset partitioning.

Dataset Name Modulation Category Sample
Quantity

Source domain Training set
128QAM, 32PSK, 16APSK, 32QAM, FM,
GMSK, 32APSK, 64QAM, BPSK, 8PSK,

AM-SSB-SC, 4ASK, 16PSK, 64APSK
14 × 24 × 1000

Target domain

Support subset
128APSK, AM-DSB-SC, AM-SSB-WC,
QPSK, 256QAM, AM-DSB-WC, OOK,

16QAM, OQPSK, 8ASK
10 × 24 × 20

Test set
128APSK, AM-DSB-SC, AM-SSB-WC,
QPSK, 256QAM, AM-DSB-WC, OOK,

16QAM, OQPSK, 8ASK
10 × 24 × 980

The hardware environment for the experiment was as follows: Intel (R) Core (TM)
i7-10700k CPU@3.8GHz NVIDIA GeForce GTX3090 GPU. The software environment was
as follows: Python 3.8, PyTorch deep learning framework.

5.2. Comparison of Recognition Performance with Other Models

To verify the effectiveness and superiority of the proposed method under few-shot
conditions, we compared the recognition performance of MCRN-CR with other networks
under the 5-way 5-shot setting. The compared models include the most recent FS-AMR
methods, AMCRN [40], AMR-CapsNet [42], Prototype Networks (PNs) [8] and Relation
Networks (RNs) [9] for few-shot learning methods in the image domain. At the same time,
in order to demonstrate that the proposed method can solve the small sample dilemma
faced by traditional deep learning methods, a complex neural network-based automatic
modulation-recognition model AMR-CVNN is formed by adding a classifier to the structure
of the encoder mentioned above, and it is used as a comparison term. To ensure the fairness
of the experiment, AMR-CapsNet and AMCRN maintain the same settings as the original
text. The laboratory settings for PNs and RNs are consistent with MCRN-CR. AMR-CVNN
adopts the idea of transfer learning, first pre-training on the source domain dataset and
then fine-tuning the weight parameters on the target domain dataset.

Figure 5 shows the recognition accuracy of all comparison models on a given dataset
under all SNRs. It shows that when the SNR is greater than 0 dB, the proposed method
MCRN-CR has the best recognition performance. When the SNR is below 0 dB, the
recognition performance of all metric-based meta-learning methods is not significantly
different, but the recognition performance of MCRN-CR is much higher than that of AMR
CapsNet and AMR CVNN.

Table 3 presents more specific identification performance statistics for each compar-
ative model. The highest recognition accuracy of MCRN-CR reached 89.25%. Under all
SNRs, the average recognition accuracy of MCRN-CR reached 65.98%. When SNR > 0 dB,
the average recognition accuracy reached 87.41%. Compared to AMR-CVNN, the aver-
age recognition accuracy of MCRN-CR has increased by nearly 10% below 0 dB, 5.86%
above 0 dB and 8.04% above all signal-to-noise ratios. Therefore, it can be proven that the
MCRN-CR proposed in this article can effectively solve the small sample dilemma faced by
traditional deep learning methods in AMR problems.
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Table 3. Comparison of average recognition accuracy of different methods.

Model −20:2:−2 dB 0:2:30 dB −20:2:30 dB Highest
Accuracy

MCRN-CR 31.69% 87.41% 65.98% 89.25%
AMR-CapsNet [42] 19.22% 44.42% 34.73% 46.40%

AMCRN [40] 32.13% 83.09% 63.49% 86.25%
PN [8] 30.93% 83.00% 62.98% 85.41%
RN [9] 30.72% 84.08% 63.56% 86.68%

AMR-CVNN 20.16% 81.55% 57.94% 85.04%

Figure 6 shows the confusion matrix of all models at the 12 dB SNR. The horizontal
axis of the confusion matrix represents the actual modulation category, and the vertical
axis represents the modulation category predicted by the model. It can be seen that when
distinguishing between high-order digital modulation signals 16QAM and 256QAM, as
well as analog signals AM-DSB-SC and AM-DSB-WC, there is still some confusion in
MCRN-CR, which is the main reason for the bottleneck in model-recognition performance.
The same applies to models other than MCRN-CR. Therefore, we believe that the proposed
AMR method based on the meta-learning paradigm can solve the problem of small samples,
but for some easily confused signals, it is necessary to design a feature-extraction network
with stronger feature-extraction capabilities to extract finer features and achieve the goal of
distinguishing confused signals.
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5.3. Structural Effectiveness Analysis

This section analyzes the impact of multi-level comparison operations and the intro-
duction of class reconstruction modules in the proposed framework. Therefore, four control
groups were set up: MCRN-CR, MCRN, RN-CR and RN. Among them, MCRN, RN-CR
and RN, respectively, remove the class reconstruction part, the multi-level comparison part
and the class reconstruction part and multi-level comparison part.

Figure 7 shows the recognition performance curves of four control groups at all
SNRs, while Table 4 presents further experimental results and statistical data. It can be
seen that with the addition of class reconstruction modules and multi-level comparison
operations on the basis of the original RN model, the recognition performance has also been
correspondingly improved. Figure 8 shows the confusion matrix of four control models at
the 12 dB SNR. The figure shows that the basic model RN has more severe confusion for
modulation signals 16QAM and 256QAM, as well as modulation signals AM-DSB-SC and
AM-DSB-WC. The addition of class reconstruction modules and multi-level comparison
operations has somewhat alleviated their confusion. This proves that our design concept is
correct and effective, the addition of class reconstruction modules enhances the ability to
accurately express potential features of samples, while multi-level comparison operations
can make comprehensive decisions on the abstract expression of samples at different levels,
thereby improving the decision-classification ability of the model.

Table 4. Comparison of average recognition accuracy of different control models.

Model −20:2:−2 dB 0:2:30 dB −20:2:30 dB Highest
Accuracy

MCRN-CR 31.69% 87.41% 65.98% 89.25%
MCRN 31.42% 86.24% 65.15% 88.15%
RN-CR 31.02% 85.16% 64.34% 87.80%

RN 30.72% 84.08% 63.56% 86.43%
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5.4. Comparison of Recognition Performance under Different C-Way K-Shot Settings

This section conducted experimental exploration of different values of C and K to
further verify the impact of the number of categories C extracted during the construction of
the meta task and the number of samples K extracted for each category on the recognition
accuracy of the algorithm proposed in this paper.
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Firstly, we fix C = 5 and then take K = 1, 5, 10, 15 and 20 for experiments. As shown in
Figure 9, the recognition performance of the model varies with the SNR under different
sample sizes. From the graph, it can be seen that as the K value increases, the recognition
performance of the model also improves further. According to the aforementioned theory,
the method proposed in this article determines its category by comparing the relation scores
between query samples and category features in the metric space. Therefore, changing
the K value for training and testing will definitely impact recognition performance. More
specifically, the metric-based theory suggests that each category has a feature embedding
in the metric space that is far from each other. The mean of each category’s support sample
feature vectors is used in the relation network as the class feature embedding. As the K
value increases, the estimation of class feature embedding becomes more accurate, resulting
in smaller recognition errors when further determining the category of the test sample,
thereby improving the overall recognition performance. When the value of K increases
from 1 to 5, there is a significant improvement in recognition performance. However,
when K > 5, further increasing the value of K has a more gradual effect on recognition
performance. Specifically, when K increased from 1 to 5, the average recognition accuracy
of the model increased from 61.54% to 65.98% and the performance improved by 4.44%.
When K increased from 5 to 20, the average recognition accuracy of the model increased
from 65.98% to 66.86%, and the recognition performance only improved by 0.88%. This
also indicates that the algorithm proposed in this article does not require many supporting
samples, but it can still achieve excellent recognition performance.
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Secondly, fix K = 5 and conduct experiments with C = 3, 5 and 10 to verify the impact of
the number of supporting sample categories C on recognition performance. Figure 10 shows
the model-recognition accuracy variation curve with SNRs for different C values. It can be
seen from the figure that as the C value increases, the overall recognition performance of
the model decreases. When C increased from 5 to 10, the overall recognition accuracy of
the model decreased from 65.98% to 50.70%, and the recognition performance decreased by
15.28%. We believe that as the C value increases, i.e., the number of supporting categories
increases, the decision space for model category inference will become larger. On the one
hand, this increases the difficulty of learning the model. On the other hand, it increases the
difficulty of judging the relation between query samples and supporting categories in the
metric space, leading to a decrease in the overall recognition performance of the model.
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Figure 10. Recognition accuracy curves of models under different C values.

6. Conclusions

This article proposes a novel meta-learning method called Multi-level Comparison Re-
lationship Network (MCRN-CR) with class reconstruction to address the few-shot dilemma
in AMR. In this method, a multi-level comparison relation network structure is designed,
which outputs feature maps through embedding functions, comprehensively calculates
the relationship scores between query samples and support samples and determines the
modulation category. At the same time, a class reconstruction module is introduced for the
embedding function in the network. An autoencoder is used to reconstruct the supporting
samples, and its encoder is used as the embedding function. The meta-learning training
paradigm is used to train the model, combining classification error and reconstruction
error. The experimental results on the RadioML2018 dataset show that MCRN-CR can
significantly alleviate the small sample problem in AMR, and its performance is superior
to existing methods. This study provides new ideas for solving AMR problems under
few-shot conditions and has important application value in related fields such as wireless
security. However, it should be acknowledged that in the experiment of this article, the
category spaces of the source domain and the target domain are both small. Therefore,
in future work, we will collect more diverse training samples from the source domain
to support the model’s training and achieve good recognition performance on the target
domain test set with a larger category space.
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