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Abstract: This paper introduces and evaluates an innovative sensor for unobtrusive in-car respiration
monitoring, mounted on the backrest of the driver’s seat. The sensor seamlessly integrates into
the vehicle, measuring breathing rates continuously without requiring active participation from the
driver. The paper proves the feasibility of unobtrusive in-car measurements over long periods of time.
Operation of the sensor was investigated over 12 participants sitting in the driver seat. A total of
107 min of driving in diverse conditions with overall coverage rate of 84.45% underscores the sensor
potential to reliably capture physiological changes in breathing rate for fatigue and stress detection.

Keywords: unobtrusive monitoring; breathing rate; vital signs; continuous health monitoring;
automotive sensors

1. Introduction

In recent years, the integration of health monitoring systems into vehicles has gained
significant attention as a means to address the challenges posed by modern healthcare sys-
tems while enhancing driver safety and well-being. Among the physiological parameters
monitored, respiration rate is a crucial indicator of overall health and driver condition [1].
Accurate monitoring of respiration can provide insights into a driver’s physical and emo-
tional state [2], reflecting levels of stress [3], fatigue [4], and alertness [5]. Traditional
methods for monitoring respiration typically involve direct contact with the skin, using
devices such as chest straps or nasal cannulas [6]. These methods, while effective, are often
intrusive and impractical for continuous use in a driving environment.

Therefore, there is a need for a noninvasive, unobtrusive solution that can seamlessly
integrate into the vehicle and provide continuous monitoring without causing discomfort
or distraction to the driver.

Non-contact respiration monitoring systems, which do not require physical contact,
can be divided into acoustic [7], radar [8], optical [9,10], and thermal methods [11]. Each has
unique benefits and challenges. Acoustic systems utilize Doppler shifts in exhaled breaths
but are sensitive to environmental noise and patient movement. Radar methods, like
FMCW [12] and UWB [13] radars, detect chest movements but face accuracy issues with
spontaneous breathing and radio frequency exposure concerns. Optical methods, using
cameras to track chest wall movements, are costly and affected by lighting and motion
artifacts [14]. Thermal methods detect temperature changes from exhaled air but require
close proximity to the patient and are slow to process [15].

The magnetic coupling-based method presented in this paper offers distinct advan-
tages over other non-contact methods. This approach enables seamless integration into the
vehicle environment, providing continuous and unobtrusive monitoring without requir-
ing active participation from the driver. Unlike acoustic systems, it is less susceptible to
environmental noise. Compared to radar methods, it does not pose concerns related to
radio frequency exposure, and can maintain accuracy regardless of spontaneous breath-
ing patterns. Additionally, it avoids the high costs and sensitivity to lighting conditions
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associated with optical methods, and it does not necessitate slow processing like thermal
methods. All of this makes the magnetic coupling-based method a robust choice for in-car
respiration monitoring.

In this study, we introduce and evaluate a novel magnetic induction (MI) sensor de-
signed for unobtrusive in-car respiration monitoring. Unlike existing non-contact methods,
our sensor utilizes magnetic fields to detect breathing rate changes and is mounted on the
backrest of the driver’s seat, enabling operation through clothing.

Previous research has explored MI sensors [16–18], but this paper uniquely demon-
strates their feasibility for prolonged driving monitoring and for measuring respiration
rates over larger populations. Additionally, we employ a different size and winding number
for the coil, a crucial parameter of the sensor, compared to other studies.

The primary objective is to assess the sensor’s accuracy and reliability in real-world
driving conditions with 12 participants in an idle state and to demonstrate its feasibility
during prolonged drives with a single subject. For the prolonged drive, we conducted two
rides totaling 107 min to determine if the sensor can effectively overcome motion artifacts,
a common challenge for all non-contact sensors. This phase included diverse driving
conditions such as city traffic, rural roads, and highways to test the sensor’s sensitivity to
noise across various environments. This investigation aims to provide a practical solution
for continuous respiration monitoring in vehicles, contributing to the advancement of
driver assistance systems and enhancing road safety.

The following Methods section dives into the theory of operation and the experimental
design, while the Results section presents the measurements obtained during the study.

2. Methods
2.1. Theory of Operation

The core component of the MI sensor is a circuit based on a CMOS Colpitts Oscillator.
The circuit is depicted in Figure 1.

L1

C1 C2

Vout

Figure 1. Schematic of the Colpitts CMOS Oscillator circuit of the MI sensor.

This oscillator includes a coil, two capacitors, and an inverter, all working together to
meet the Barkhausen criteria for sustained oscillations. The circuit’s capacitances C1 and C2
are each 10 pF, while the coil, possesses an inductance of L1 = 177.84 µH. The resistance of
the coil is 10.76 Ω. The diameter of the coil is 20 cm and the coil has 50 windings. The width
of the wire is 1 mm and the spacing between the windings is also 1 mm. The oscillator
operates at a frequency of 2.4 MHz, with the coil being the varying—and hence, frequency
modulating—parameter of the sensor. A photograph of the coil is presented in Figure 2.

When alternating current flows through the coil, it generates a primary magnetic field.
This magnetic field interacts with the driver’s body, inducing eddy currents within the
body tissues. These eddy currents, in turn, generate their own magnetic field, known as the
secondary magnetic field. The interaction between the primary and secondary magnetic
field affects the reflective impedance of the coil [18].
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Figure 2. Photograph of the coil of the MI sensor.

The secondary magnetic field varies with changes in the bioimpedance of the driver’s
body, which is influenced by the respiration rate. As the driver breathes, the bioimpedance
fluctuates due to the expansion and contraction of the chest, altering the characteristics of
the secondary magnetic field. These changes in the secondary magnetic field modify the
reflective impedance of the coil.

The CMOS Colpitts Oscillator is sensitive to these impedance changes. As the reflective
impedance of the coil changes, the oscillator’s parameters are affected, leading to variations
in the frequency of the current flowing through the coil. These frequency shifts are directly
proportional to the changes in the reflective impedance of the coil, which in turn are
influenced by the driver’s breathing rate. The oscillator generates a square wave output,
which is then fed into a microcontroller for quantization. The microcontroller counts the
number of pulses within a specified time window, converting the frequency shifts into a
digital signal that can be monitored.

2.2. Setup

The MI sensor for unobtrusive in-car respiration monitoring was installed onto the
backrest of the driver’s seat. Figure 3 illustrates the spatial arrangement of the sensor
within the car seat. For reference, a strain gauge sensor wrapped around the chest of the
subjects was used. The strain gauge sensor, considered a gold standard in respiration
monitoring (Biopac Bionomadix BN-RSP2-T) was connected to the MP160 system from
Biopac Systems Inc. (Goleta, CA, USA). The acquisition sampling rate for the reference
system was set at 2 kS/s with 16 bit.

The investigated sensor, unlike the Biopac system, generated a digital signal. The out-
put of this sensor was the frequency of the oscillator. The frequency was calculated using
an Arduino system, employing a standard peak detection method. Peaks were detected
using a 33 ms window, within which all peaks were counted. The output from the Arduino
was connected via a UART-to-USB adapter to a computer, where data were logged using
CoolTerm software (version 2.1.1).

To establish links between sensor data and driving behaviors, two cameras were
installed within the cockpit. One camera was mounted to capture the street view through
the windshield, while the other one focused on the subject. An exemplary snapshot of the
camera views and the recorded data can be seen in Figure 4.
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Figure 3. Photograph of the MI sensor postioned on the driver seat’s backrest in a BMW 320 car.

Figure 4. Acquired data during on-road measurement: street view, driver view, and sensor signals
((top) gold standard (bottom) custom sensor signal).

2.3. Measurement Scenarios and Protocol

The study comprises two distinct parts, each designed to comprehensively evaluate
the performance of the sensor in varying driving conditions.

2.3.1. Validation of Sensor Performance

In the first part of the study, a population study was conducted involving 12 partici-
pants, comprising 8 men and 4 women. This initial phase focused on assessing the sensor’s
general functionality under idle conditions. Participants were seated in the driver’s seat
with the sensor installed, and data were collected to evaluate the sensor’s baseline perfor-
mance.

Participants provided informed consent, demonstrating their understanding of the
study’s objectives and protocols. The participant cohort consisted of healthy individuals
spanning ages 21 to 29 years. Throughout the experiments, participants adhered to a
single clothing layer to maintain consistency in the sensor’s measurements and minimize
potential confounding variables.
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2.3.2. On-Road Evaluation

The on-road evaluation consisted of two driving sessions: a 52 min drive and a 57 min
drive. During these sessions, the participant was tasked with navigating diverse road
conditions, including city driving, rural routes, and highway stretches. This setup allowed
for the assessment of the sensor’s performance in real-world driving scenarios, considering
factors such as road noise, vibrations, and varying driving behaviors. The first drive
focused on highway conditions, while the second drive concentrated on rural routes.

2.4. Data Processing and Statistical Methods

Recorded data were processed using Matlab 2023a to accurately extract the breathing
rate signal. A two-stage processing method was employed, ensuring robustness and
reliability in the analysis.

The signal underwent band-pass filtering within the frequency range of 0.15 Hz to
0.50 Hz to isolate the breathing rate signal from noise and artifacts. Subsequently, peak
identification was conducted using Matlab’s findpeaks function. Peaks in the signal were
identified, indicating individual breaths. Following peak extraction, the average peak-to-
peak time was computed within a sliding window of 120 s length, with a 10 s overlap.
This provided a measure of the breathing rate over time.

The rationale behind choosing a 120 s window was to balance between capturing
short-term variations and minimizing noise. Breathing rates can vary over short periods
due to various factors, such as minor physical movements or changes in breathing pat-
terns. Averaging over a 120 s window helps to smooth out these short-term fluctuations,
providing a more stable and reliable measure of the breathing rate. Additionally, this
duration is long enough to include multiple breathing cycles, ensuring that the calculated
average is representative of the overall breathing pattern while still being responsive to
longer-term trends.

Evaluation of sensor accuracy was conducted using Bland–Altman plots, a widely used
method for assessing agreement and potential biases between measurements. Each plot
visually illustrates the mean difference between the arithmetic mean of the sensor reading
and the reference reading on the horizontal axis, while the vertical axis represents the
measurement error, calculated as the difference between the reference system and the MI
system readings: [Reference System]− [MI System].

The plots display the mean difference along with the mean ± 1.96 times the standard
deviation, corresponding to a 95% confidence interval. This detailed visualization helps
to identify typical biases and potential disturbances such as signal loss due to maneuvers
or specific noise from road conditions that may cause deviations, particularly in long
interval regions.

To establish a clear benchmark for sensor accuracy, a predetermined acceptable error
margin of 5% was set. This allowed for the identification of any discrepancies between
the sensor readings and the reference readings, ensuring the reliability and validity of the
sensor’s measurements.

3. Results
3.1. Validation of Sensor Performance

An exemplary sensor signal captured during idle sitting conditions is illustrated in
Figure 5, alongside the corresponding reference signal.

The graphs illustrate the data captured over a period of 3 min.
Figure 6 illustrates the Bland–Altman plot comparing the breath-to-breath times

derived from the MI sensor with that extracted from the reference strain gauge sensor.
The plot comprises 292 data points, collected from all 12 subjects. Analysis of the data
reveals a mean difference in breath-to-breath time identification of −10.63 ms, indicating
minimal systematic bias between the sensor readings and the reference measurements.
Furthermore, the limits of agreement, with an upper limit of 109.50 ms and a lower limit of
−130.77 ms, demonstrate low deviation from the reference over the entire experiment.
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Figure 5. Exemplary excerpt of the signal and the reference breathing rate in idle conditions.

Figure 6. Bland-Altman plot over all twelve subjects comparing breath-to-breath intervals derived
from the MI sensor and reference breathing rate monitor during driving.

3.2. On-Road Evaluation

Table 1 shows the coverage rates of the continuous breathing rate data during both
driving sessions, categorized by the percentage of data falling below various error thresh-
olds. Overall, the sensor maintained a high coverage rate, with 84.45% of the data falling
below a 5% error threshold. Notably, highway drive exhibited significantly higher coverage
rates across all error thresholds compared to rural drive. Specifically, 96.81% of the data
from highway drive had an error rate below 5%, while only 72.08% of the data from rural
drive met this criterion. This trend was consistent across lower error thresholds as well,
with highway drive showing superior performance.
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Table 1. Coverage rates of the MI sensor during driving.

Percent of Data Below Error Threshold

<5% <4% <3% <2% <1%

Overall 84.45% 77.43% 68.33% 48.18% 29.74%

Highway Drive 96.81% 93.29% 82.43% 59.74% 41.85%
Rural Drive 72.08% 61.56% 54.23% 36.61% 17.62%

3.2.1. Highway Drive

Highway drive encompassed a route from Nørre Abby towards Middelfart, initially
traversing rural roads before entering the city. The driver then proceeded onto the highway
and continued towards Christiansfeld. The driving route is illustrated in Figure 7. During
this drive, the speed was typically maintained at 120 km/h, with occasional peaks reaching
up to 160 km/h.

Figure 7. Driving route—highway drive.

The accuracy of the MI sensor during this drive was evaluated using Bland–Altman
analysis, as shown in Figure 8. The Bland–Altman plot demonstrates that the sensor data
closely followed the reference data, with limits of agreement ranging from −127.39 ms
to 104.17 ms and a mean error of −11.61 ms. These limits of agreement constitute 3.47%
of the mean signal, indicating a high level of agreement between the sensor and the
reference standard.

Figure 8. Bland-Altman plot comparing breath-to-breath intervals derived from the MI sensor and
reference breathing rate monitor during highway drive.
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Additionally, the signal versus reference signal plot, depicted in Figure 9, provides
a time-based comparison of the recorded breathing rate against the reference standard.
The plot reveals that the monitored signal aligns closely with the gold standard method
throughout the drive. The fluctuations in breathing rate are clearly visible, and the sensor
accurately captures these changes. Notably, the data indicate a gradual increase in breathing
rate, which may suggest the onset of driver fatigue.

Figure 9. Extracted breath-to-breath intervals over the entire highway drive.

3.2.2. Rural Drive

Rural drive consisted of a journey from Odense to Faaborg, initially following a
highway route before transitioning to rural roads, which continued until the end of the
drive in Ørbaek. The driving route is visually represented in Figure 10. During this drive,
the speed was typically around 90 km/h, except when driving in populated areas where
the speed was reduced to approximately 50 km/h.

Figure 10. Driving route—rural drive.

The accuracy of the MI sensor during rural drive was assessed using Bland–Altman
analysis, as shown in Figure 11. The Bland–Altman plot reveals a mean error of −69.22 ms,
with limits of agreement ranging from −327.04 ms to 188.56 ms. These limits of agreement
represent 8.59% of the mean breath length, indicating a significant increase in error com-
pared to highway drive. The plot also shows that measurements of breath-to-breath values
higher than 3000 ms have a considerably larger error, while values smaller than 3000 ms
exhibit much smaller errors.

Additionally, the signal versus reference signal plot, depicted in Figure 12, provides a
time-based comparison of the recorded breathing intervals against the reference standard.
While the graphs do not exhibit significant errors, it is challenging to discern a clear trend
from the investigated signal. The alignment with the reference signal is less consistent
compared to highway drive, reflecting the increased variability and potential inaccuracies
in the sensor data during rural road conditions.
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Figure 11. Bland-Altman plot comparing breath-to-breath intervals derived from the MI sensor and
reference breathing rate monitor during rural drive.

Figure 12. Extracted breath-to-breath intervals over the entire rural drive.

The results from rural drive indicate that the in-car respiration monitoring sensor’s
performance is less reliable on rural roads compared to highway conditions. The higher
mean error and wider limits of agreement highlight the increased difficulty in maintaining
accurate readings under these variable driving conditions, despite the lack of significant
errors in the time-based comparison.

3.3. Influence of Driving Situation on Signal Quality

After presenting the overall data from both rides, it is essential to investigate how
the signal behaves under various road conditions such as turns, traffic lights, changes in
driving environment, and the differences between rural roads and highways. This section
aims to analyze the signal quality in different driving scenarios to understand the sensor’s
performance comprehensively.

3.3.1. Engine Idle vs. Highway Drive

First, we compare the signal changes when measured in an idle state with the engine
on versus during a highway drive. Figure 13 displays two charts. The top chart shows
the unfiltered signal from the highway over a span of five minutes, while the graph below
demonstrates how a filter with a bandwidth of 0.15 Hz to 0.5 Hz effectively eliminates
highway noise. It is evident that the high level of noise from the highway is significantly
reduced by the tight boundaries of the filter, resulting in a cleaner signal.
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Figure 13. The signal of the unobtrusive respiration signal while driving. (Upper diagram): raw
signal; (middle diagram): filtered signal; (lower diagram) reference signal.

Figure 14 illustrates the signal behavior in an idle state. The unfiltered signal in this
state is of much higher quality compared to the highway drive, with clearly visible peaks
that require minimal filtering. The filtered signal in the idle state is significantly higher in
quality than the filtered signal from the highway, indicating that the sensor operates more
accurately when the vehicle is stationary.

Figure 14. The signal of the unobtrusive respiration signal with engine in idle mode. (Upper diagram):
raw signal; (lower diagram): filtered signal.
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3.3.2. Rural Drive vs. Highway Drive

Next, we examine the signal quality during a transition from rural roads to the highway.
Figure 15 presents a graph depicting this transition. The red dashed line represents the
transition from rural ride to highway. The rural road section is characterized by much lower
noise levels compared to the highway, which is attributable to the lower speeds typical
of rural driving. In contrast, highway driving involves higher speeds and, consequently,
more noise.

Figure 15. Effect of road conditions on the sensor signal. The red line indicates the transition from
rural road to highway.

During the transition period, it becomes challenging to measure the breathing rate
accurately due to the varying noise levels. However, once the driver enters the highway
and maintains a steady speed, the signal stabilizes, and the noise levels decrease. This ob-
servation highlights the sensor’s sensitivity to motion artifacts, which significantly impact
signal quality during changes in driving conditions.

3.3.3. Deceleration, Stopping, and Starting at Traffic Lights

In this subsection, we analyze the behavior of the sensor during phases of deceleration,
stopping, and acceleration at traffic lights. The graph in Figure 16 illustrates the signal
during these different phases in a city driving scenario. The red dashed line represents
the beginning of the deceleration, the black dashed line represents stopping, the magenta
dashed line represents starting, and the violet line represents the end of the acceleration.

Figure 16. The signal of the MI sensor over the course of one stop and start. red: start decelaration;
black: total stop; magenta: start of acceleration; violet: end of acceleration. (Upper diagram): raw
signal; (middle diagram): filtered signal; (lower diagram): reference signal.
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The graph starts by showing the signal while driving in the city. This phase demon-
strates typical urban driving conditions, with the sensor capturing the breathing rate amidst
the moderate noise associated with city traffic. As the driver approaches a traffic light
and begins to decelerate, the signal becomes more challenging to interpret due to motion
artifacts introduced by the slowing down of the vehicle. These artifacts make it difficult to
accurately measure the breathing rate during the deceleration phase.

When the vehicle comes to a stop at the traffic light, the motion artifacts diminish,
and the sensor can more easily read the breathing rate. The signal during this idle phase
is significantly clearer, allowing for more precise respiration monitoring. This phase is
contrasted with the signal during city driving, highlighting the improved signal quality
when the vehicle is stationary.

As the traffic light turns green, the driver accelerates, reintroducing motion artifacts
that once again complicate the measurement of the breathing rate. However, once the
vehicle reaches a steady speed and the motion artifacts settle, the quality of the signal
returns to that of the initial driving phase. This demonstrates the sensor’s capability to
recover and provide accurate readings once the driving conditions stabilize.

3.3.4. Turning

In this final subsection, we examine the sensor’s behavior during turning maneuvers.
Figure 17 displays the signal captured during a turn, highlighting the impact of motion
artifacts on the sensor’s ability to accurately monitor the breathing rate. The red dashed
line represents the beginning of turning.

Figure 17. The signal of the MI sensor over the course of one turn. The start of turn is indicated
by the red line. (Upper diagram): raw signal, (middle diagram): filtered signal, (lower diagram):
reference signal.

The graph shows that during the turning phase, the signal is significantly affected
by motion artifacts, making it challenging for the sensor to provide accurate breathing
rate measurements. The physical movement associated with turning introduces noise and
instability in the signal, complicating the monitoring process.

However, once the turn is completed and the driver resumes a more stable position
with minimal movement, the quality of the signal improves. This post-turn phase allows
the sensor to again accurately measure the breathing rate, as the motion artifacts diminish
and the signal stabilizes.

4. Discussion

The successful implementation and evaluation of the MI sensor presented in this study
underscore its potential for real-world application. Our findings demonstrate that the sen-
sor, integrated into the driver’s seat backrest, can effectively track the driver’s breathing rate
without requiring active involvement. The coverage rate of 84.45% achieved over 107 min
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of driving across various conditions, including city drives, rural routes, and highways,
highlights the sensor’s robustness and adaptability to diverse driving environments.

However, our study also revealed challenges associated with motion artifacts, which
significantly influence the sensor’s performance. The sensor’s sensitivity to driver move-
ments, particularly during turning, acceleration, and deceleration phases, poses difficulties
in accurately monitoring breathing rates. Despite the effectiveness of tight filters in mini-
mizing external noise, such as speed-related disturbances, additional strategies are needed
to address motion artifacts effectively.

Future research directions may involve enhancing the sensor’s magnetic field strength
and exploring novel approaches for determining the oscillatory frequency to improve
signal quality [19]. Moreover, investigating alternative filtering and noise detection meth-
ods could help mitigate the impact of motion artifacts on sensor performance during
driving maneuvers.

Notably, our feasibility study identified the potential utility of the sensor for fatigue
and stress detection, as evidenced by the observed trend in one of the driving sessions.
However, it is essential to acknowledge the limitations of our study in this regard, partic-
ularly the small sample size. Future studies should aim to replicate our findings with a
larger and more diverse group of participants to ensure the generalizability of the results.

Our comparison between driving environments revealed that while highways present
fewer challenges for the sensor due to smoother driving conditions and easier noise filtra-
tion, rural roads pose greater difficulties. The increased frequency of driver movements
and turns on rural roads complicates breathing rate monitoring, despite the relatively lower
speed-related noise. This disparity is evident in the variation in coverage rates between
highway drive (96.81%, mainly highways) and rural drive (72.08%, mainly rural roads).
Notably, errors in rural road measurements can be readily identified, as measurements
above a certain threshold correlate with higher error rates.

Furthermore, the comparison between idle measurements and driving environments
highlights the impact of driving-related noise on signal deterioration. The significant degra-
dation in signal quality during driving underscores the need for continued research into
noise mitigation strategies to optimize sensor performance in dynamic driving conditions.

5. Conclusions

This paper evaluates an innovative in-car respiration monitoring sensor designed to
seamlessly integrate into the driver’s seat, offering unobtrusive monitoring of breathing
rates during driving. Through rigorous validation and on-road evaluation, the sensor
demonstrated commendable accuracy and reliability in tracking breathing rate signals
across various driving conditions, including city drives, rural routes, and highways. The re-
sults of the study highlight the sensor’s robust performance, with an impressive coverage
rate of 84.45% achieved over 107 min of driving, underscoring its potential for real-world
application in fatigue and stress detection.
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