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Abstract: Traditionally, monitoring insect populations involved the use of externally placed sticky
paper traps, which were periodically inspected by a human operator. To automate this process, a
specialized sensing device and an accurate model for detecting and counting insect pests are essential.
Despite considerable progress in insect pest detector models, their practical application is hindered by
the shortage of insect trap images. To attenuate the “lack of data” issue, the literature proposes data
augmentation. However, our knowledge about data augmentation is still quite limited, especially in
the field of insect pest detection. The aim of this experimental study was to investigate the effect of
several widely used augmentation techniques and their combinations on remote-sensed trap images
with the YOLOv5 (small) object detector model. This study was carried out systematically on two
different datasets starting from the single geometric and photometric transformation toward their
combinations. Our results show that the model’s mean average precision value (mAP50) could be
increased from 0.844 to 0.992 and from 0.421 to 0.727 on the two datasets using the appropriate
augmentation methods combination. In addition, this study also points out that the integration of
photometric image transformations into the mosaic augmentation can be more efficient than the
native combination of augmentation techniques because this approach further improved the model’s
mAP50 values to 0.999 and 0.756 on the two test sets, respectively.

Keywords: automated trap; insect counting; data augmentation; YOLOv5

1. Introduction

In the realm of agricultural pest management, defending crops from insect pests is
a continuous challenge. The impact of insect pests on crop yields is substantial, leading
farmers to employ insecticides at predetermined intervals, irrespective of the actual pest
population size [1,2]. Spraying serves as the primary control method against most insect
types. For example, the authors of [3] stated that 70 percent of the applied spraying was
directed at codling moths in apple orchards. A more efficient approach than periodic
spraying would be to only use insecticides at times when the pest population rises above
a predefined threshold. This requires an accurate forecast of the pest population and
brings both environmental benefits (reduced insecticide use) and economic advantages
(cost savings, etc.). To obtain quantitative data for predicting pest density, different trap
types (pheromone-based, light traps, etc.) can be employed [4,5]. In pheromone-based
traps, a pheromone capsule attracts male insects to the trap, where they become stuck on
sticky paper. Cydia pomonella (codling moth) is the most harmful pest of apple and pear in
Hungary and in other countries [6,7]. Therefore, we collected and analyzed trap images of
this pest, also focusing on the type of trap image.

Manual monitoring of these sticky papers conducted by experts who count trapped insects
has well-documented drawbacks, including the need for skilled personnel, time consumption,
and high costs [8,9]. Moreover, manual counting lacks continuous feedback, resulting in
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low temporal resolution for insect pest population tracking. Recognizing these limitations,
researchers and industrial members turned toward smart solutions, leading to the development
of embedded system-based automated traps supported by machine learning [10,11].

Apart from image capturing devices, a high-precision insect counting method is also
crucial. Viewing insect counting as a special case of object detection, researchers have found
that the widely used one- and two-stage-deep object detectors can be effectively used for this
task [9,12,13]. Among these, the You Only Look Once (YOLO) single-stage object detector
model has been applied many times. Li et al. [14] recommended YOLOv5 based on its high
accuracy (above 99%) on the images of the Baidu AI insect detection database [15]. Reference [16]
compared various deep object detectors, including a Faster Region-based Convolutional Neural
Network (R-CNN) and Single-Shot Multibox Detector (SSD). Out of those models, the Faster
R-CNN achieved the highest mean average precision (mAP) but with longer decision times,
while the SSD was the fastest, with a lower mAP. mAP is a widely accepted performance metric
for object detectors. This metric comes from the average precision (AP) across all classes in the
test set where AP is determined by the area under the precision–recall curve [10].

Despite the results in earlier studies being encouraging, many studies suffer from
the lack of trap images, which is a general issue in the field of insect detection and
counting [17,18]. To address this problem, data augmentation is an obvious option. Over
time, numerous data augmentation approaches have been introduced. Many of them
have also been employed in studies related to pest detection. For example, researchers
such as Albanese et al. [19] and Kasinathan and Uyyala [20] utilized image transformation
techniques (e.g., image translation, flipping) on training images. Even though the idea of
artificial data enrichment has appeared in more articles dealing with insect pest detection
and counting, relatively little is known about how the possible combinations of augmenta-
tion techniques affect the performance of object detectors [9]. Therefore, we conducted an
experimental study including six widely used data augmentation techniques to examine
how the methods and their combinations modify the detector model’s performance.

In a significant portion of practical applications, the model is embedded into the remote
sensing device. It is well known that the computational capacity of such edge devices is
limited, making the usage of complex object detector models non-optimal. Moreover, many
edge devices are not even capable of running more complex object detector models. Therefore,
as test model, the popular YOLO version 5 (YOLOv5) object detector was employed, trained
on a limited set of own trap images and tested on two different sets of trap images. Starting
from the individual augmentation methods through their different combinations, we arrived
at a data enrichment approach that integrates photometric image transformation methods
into the mosaic augmentation. The contributions of this study are the following:

• Our findings indicate that by using the appropriate combination of augmentation meth-
ods, YOLOv5’s mean average precision value (mAP50) could be further increased from
0.844 to 0.992 and from 0.421 to 0.727 on the two remote-sensed trap image datasets.

• This study reveals that incorporating photometric image transformations into the
mosaic augmentation can be more effective than the standard combination of augmen-
tation techniques.

• The experimental results show that this approach surpasses the native combination of
augmentation techniques and YOLOv5’s built-in image enrichment process with HSV
(hue, saturation, and value) and mosaic augmentations in efficiency.

2. Materials and Methods
2.1. The YOLO Model Family

Insect counting belongs into the object detection research field, which is a highlighted
area in computer vision. Object detection typically involves identification of visual object
categories such as faces, humans, or vehicles. In the last decade, various detector algorithms
have been proposed for this task. These methods belong to different classes: computer
vision-based [21], single-stage object detectors like the models of YOLO [22], and two-stage
object detectors like Fast and Faster R-CNN [23]. The evolution of CNN-based object
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detection started with the R-CNN in 2014. It was followed by several single- and multi-
stage deep object detector models. Currently, the latest members of the YOLO family
are considered state-of-the-art models due to their fast decision time and accurate object
localization ability. Therefore, we employed the YOLOv5 as object detector in this study.

YOLOv5 is an improved version of the predecessor YOLOv3 developed by Glen
Jocker (Ultralytics) in 2020. The fifth version of YOLO includes various model architectures
(YOLOv5s (small), YOLOv5m (medium), YOLOv5l (large), and YOLOv5x (extra-large))
that differ mainly in the number of convolutional layers. All members of the YOLOv5
family are trained on the COCO dataset (https://cocodataset.org/#home, accessed on
4 March 2024). Considering that pest counting occurs in the edge device in many monitoring
systems, factors such as inference time (critical for battery life) and computational resource
requirements (e.g., volatile memory) become crucial. Taking these facts into consideration,
we selected the small version (YOLOv5s) as reference model.

The model was trained using minibatch-based stochastic gradient descent (SGD). The
mini-batch size was adjusted to the GPU memory in the used computer, which was 16.
The SGD parameters included a momentum of 0.9 and a weight decay of 0.0001, with an
initial learning rate set at 0.01. The training process incorporated a stopping criterion of
“no improvement in 20 epochs”. Although the epoch limit was 300, the training process
has not reached this limit in most test cases.

2.2. Data Augmentation

In machine learning, it is widely recognized that enhancing the quantity of data
contributes significantly to improving the generalization performance of a model. Data
augmentation is particularly important in situations where the number of samples in the
training set is limited since deep models are rather “data hungry”, requiring a substantial
volume of information for fine-tuning weights. Consequently, the process of data augmen-
tation (also known as artificial data enrichment) holds a pivotal role in the learning process
by extending the available training dataset.

Due to the diverse sticky paper (and image) regions where moths can be captured,
achieving translation invariance is crucial for an insect counter model. Additionally, to manage
size discrepancies, the model must be scaling invariant. Therefore, geometric augmentation
methods play a vital role in enhancing the generalization capability of the detector model. In
addition to geometric augmentation methods, photometric augmentation techniques, such as
noise pollution and adjustment of brightness and contrast, aid in addressing texture differences
among captured insects. Although photometric augmentation helps in better handling texture
differences among the same and different pest species, our experience shows that the difficulty
arises from the fact that insects of the same type adhere to the sticky sheet in different poses,
resulting in their textures not being completely identical.

Object detectors created in recent years already incorporate geometric (random scal-
ing, translation, flipping, and rotation) and photometric augmentation techniques (e.g.,
brightness, contrast, saturation adjustment). Moreover, modern object detectors consider
additional augmentation methods like random erase, mixup, or mosaic augmentation.
From the standpoint of insect detection, mosaic augmentation can help handling the “small
object detection problem”. This approach involves generating a new image by combining
specific ratios of four other images [24,25]. The newly created image displays many more
objects at a reduced size. This creates more complex and diverse training examples, which
can improve the model’s performance for small-sized objects.

In our experimental investigations, the translation, rotation, and mosaic augmentations were
used out of the geometric methods. The number of horizontal and vertical translations (∆x, ∆y)
is randomly selected from a uniform distribution ∆x, ∆y ∈ U(−0.2, 0.2) where the maximum
translation can be 0.2 times the original image size. The degree of image rotation is also randomly
selected, θ ∈ U(−90, 90). In the case of the mosaic image generation, the four images are randomly
selected where the crop offset could be up to 30% of the “merged” image size.

https://cocodataset.org/#home


Sensors 2024, 24, 4502 4 of 12

Images captured by traps in the field are affected by diverse illumination conditions
due to variations in daylight, weather conditions, and landscape elements causing shad-
ows [26]. To mitigate the illumination differences between images, brightness–contrast
adjustment and gamma correction [27] are employed. Gamma correction transforms each
pixel of an image as described by (1), where f(x,y) represents the scaled input pixel (between
0 and 1), and c is the gain. In our experiment, c was the constant one without change, while
gamma comes from the following uniform distribution: γ ∈ U(0.2, 3.0). Depending on γ,
the transformation converts the original pixel intensities into different output ranges.

f ∗(x, y) = c f (x, y)γ (1)

Brightness and contrast adjustments are commonly used image processing techniques
that can be performed in the same step (2). In the formula, α and β are called gain and bias,
respectively. The former is responsible for contrast while the latter adjusts the brightness of
the output image. In our experimental analysis, both parameters were randomly selected:
α ∈ U(0.5, 2.0) and β ∈ U(−50, 50).

g(x, y) = α f (x, y) + β (2)

The automated trap-based image capturing is also affected by noise due to oscillations
and impurities on the camera. If only a small training set is available, deep models cannot
handle noisy test samples well in real applications [28]. Moreover, models that are trained
on high-quality images often produce inferior results, as they struggle to handle the inherent
variability. In this case, an opportunity for improvement is to train the model by adding some
type of random noise to the training dataset [29]. Adding noise to the images means that the
model is less able to memorize training samples because they slightly change randomly. The
three widely used noise types are the Gaussian (or white noise), Speckle, and Salt and Pepper
noise. In this work, we used Gaussian noise as one of the image augmentation techniques. Here,
a significant question is the noise amount, taking into consideration that too small an amount of
noise has no effect, whereas too much noise suppresses the useful information in the image. We
used a Gaussian distribution for noise generation with mean 1 and standard deviation of 0.2.
An illustration of the data augmentations used in this study can be seen in Figure 1.
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2.3. Datasets

In remote sensing applications, image quality can vary significantly depending on
factors such as the type of image capture device used and environmental lighting conditions.
These factors are significant, and they need to be taken into consideration at the time of
model construction because image quality discrepancy influences the recognition accuracy.
This is especially true for the data available to us because there is a significant quality
difference between the images in the two test datasets due to the different conditions of
image-taking and differences between remote sensing devices.

The training dataset used in this study consists of 330 sticky paper images acquired
by our own special sensing device dedicated to remote insect pest monitoring [30]. It
comprises a Raspberry Pi Zero W, a special plug-in board dedicated to automated sticky
traps, and a Raspberry Pi Camera v2. A representative figure of the device is depicted in
Figure 2. The images in one out of the two test sets were also acquired by the same device.
It contains 150 sample images.
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Figure 2. Our remote sensing unit used for image acquisition: (a) front and (b) back sides.

In order to present a general picture about the effectiveness of data augmentation, a
second test set was also included in the investigation. It comes from the Roboflow’s public
repository and incorporates 233 remote-sensed stick paper images with the annotation files
(available at: https://github.com/suto-jozsef/trap_images.git, accessed on 8 May 2024).
Visually, the images in this set differ from the elements of the training set, but even so,
those images were the most similar to our remote-sensed trap images among the publicly
available images (Figure 3). Since the image capture conditions and devices were different
in the case of the two test sets, the possible positive effect of image augmentation was even
more noticeable.
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2.4. Evaluation Metrics

Inside the insect pest detection and counting research field, a critical question arises:
how can the efficiency of the insect detector model be measured? In 2016, automated insect

https://github.com/suto-jozsef/trap_images.git
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detection and counting was a quite rudimentary research field, lacking a standardized
protocol for evaluating insect counting algorithms [31]. Consequently, researchers turned
to metrics from other areas of computer vision, such as pedestrian detection. One widely
accepted performance metric for object detectors in computer vision is the mean average
precision (mAP), calculated as the average precision (AP) metric of each class, where the
average precision comes from the area under the curve of precision (3) and recall (4) with
threshold value k.

p(k) =
# true positive detections

total number o f detections
(3)

r(k) =
# true positive detections

total number o f ground truth boxes
(4)

For precision–recall curve generation, we must have information on the number of
true and false detections. The determination of true and false detections is based on the
intersection-over-union (IoU), which is a metric of the overlapping areas between the
ground truth box and the predicted box. In most studies, a proposed bounding box is
considered a true positive if the IoU value is equal to or higher than 0.5. Otherwise, it is
classified as a false positive [16,32]. In this paper, we utilized two versions of mAP to assess
the performance changes in the YOLO model. The first version uses the popular 0.5 IoU
threshold value (mAP@50) while the second version calculates the average AP from 0.5 IoU
to 0.95 IoU with a step size of 0.05 (mAP@50-95).

3. Results and Discussion

The investigation started with the determination of initial mAP values that came
from the performance of the YOLOv5s on the test sets with the original without data
augmentation. Thereafter, the gamma correction, brightness and contrast adjustment, noise
pollution, translation, rotation, and mosaic augmentation methods were examined one-by-
one with gradually increasing data enrichment (multiple of the original training data size).
As mentioned in Section 2, there is a strong randomness in the augmentation process. In
order for experiments to be repeatable, the same random seed was used. Gamma correction
and brightness–contrast adjustment can be applied channel-wise on images and can even
be used in different ways on bit planes of a multi-channel image. After the examination of
the red, green, and blue color histograms of images in the training and test sets, it was well
visible that they had similar color distribution in each channel (Figure 4). Therefore, the
same mapping function was used for all of them.
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Figure 4. Color histogram the test images from the training set (left), first test set (center), and second
test set (right). The red, green, and blue colors refer to the RGB color spaces.

The experimental results with the individual augmentation methods and without
augmentation can be seen in Figures 5 and 6. In all cases, when augmentation is used, the
original training set is also incorporated into the augmented training set. The former figure
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shows the performance of the model on the first test set while the latter is the result on
the second test set. Both the mAP50 and mAP50-95 metrics are visualized to understand
better the effects of augmentation. In both figures, the straight line indicates the mAP50
and mA50-95 values of the model without augmentation. During the experiments, the
training dataset size was increased continuously. At first, the original training set size was
duplicated using the augmentation methods. Since the size of the original training set was
small, we decided to increase it by a multiple in each step. In every case, the model was
initialized in the same way, and the highest test result was recorded.
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Due to the randomness in the augmentation techniques, the graphs are rather wavy.
However, by carefully observing the figures, some interesting conclusions can be drawn.
On the first test set, the model achieved significantly higher mAP values than on the second
set. This can be explained by the higher similarity between the images in the training set
and the elements of the first test set. In addition, the second set contains more images with
lower image quality.

On the first test set all image augmentation techniques increased the model’s mAP50-
95 values. In the case of the second set, a similar trend can be observed but the gamma
correction was not as efficient as in the first case. Comparing the graphs, we can also see
that the mosaic augmentation stands out among the augmentation techniques.
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The degree of data enrichment is another important question. In the case of the first
test set, the increasing data enrichment did not bring a clear improvement while a slightly
improving mAP trend could be observed in the case of the second set.

Continuing the investigation, we tested the augmentation methods in pairs. A total of
330 images were generated, with all augmentation techniques and their combinations plus
the original training set used to train YOLOv5. Since here the size of the training set did
not change (only its composition), the achieved metrics are presented in Tables 1 and 2. In
the case of the first test set, each augmentation method pair was examined, while in the
case of the second set, the gamma correction was omitted from the investigation due to the
earlier finding. If we compare the content of Table 1 with the results in Figure 5, we see
that only the mosaic–noise pair and the combination of the mosaic and brightness–contrast
adjustment techniques brought considerable efficiency growth.

Table 1. Measurement results with augmentation method pairs on the first test set.

Augmentation Strategy mAP50 mAP50-95 Number of Images

Gamma + brightness–contrast 0.922 0.605

990

Gamma + noise 0.914 0.609
Gamma + translation 0.878 0.591

Gamma + rotation 0.897 0.567
Gamma + mosaic 0.981 0.679

Brightness–contrast + noise 0.920 0.599
Brightness–contrast + translation 0.924 0.615

Brightness–contrast + rotation 0.919 0.595
Brightness–contrast + mosaic 0.989 0.683

Noise + translation 0.928 0.605
Noise + rotation 0.949 0.616
Noise + mosaic 0.992 0.672

Translation + rotation 0.968 0.639
Translation + mosaic 0.985 0.668

Rotation + mosaic 0.980 0.675

Table 2. Measurement results with augmentation method pairs on the second test set.

Augmentation Strategy mAP50 mAP50-95 Number of Images

Brightness–contrast + noise 0.514 0.349

990

Brightness–contrast + translation 0.471 0.335
Brightness–contrast + rotation 0.451 0.323
Brightness–contrast + mosaic 0.695 0.459

Noise + translation 0.606 0.409
Noise + rotation 0.549 0.362
Noise + mosaic 0.701 0.481

Translation + rotation 0.540 0.362
Translation + mosaic 0.647 0.447

Rotation + mosaic 0.594 0.383

If we examine Table 2, we clearly see that the noise and mosaic augmentation pair
was the most efficient, bringing substantial improvement in both metrics. Besides this
pair, the brightness–contrast plus mosaic pair and the translation plus mosaic pair seem
a successful pairing (considering the number of images). The results also show that the
mosaic augmentation method is the most efficient out of the tested methods. Since the
mosaic and noise pollution-based augmentation pair proved effective on both test datasets,
we continued the investigation with this pair.

In the next phase, the mosaic–noise pair is extended with an additional augmentation
technique. Therefore, the current training set consists of the original 330 training images
plus the augmented images generated by the methods. The results of this approach can
be found in Tables 3 and 4. This approach already had a different effect on the two test
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datasets. Merging the three augmentation methods did not prove effective on the first set.
However, it further increased the mAP50 and mAP50-95 metrics on the second test set
where the combination of the mosaic, noise, and brightness–contrast adjustment was the
most efficient. It may seem obvious to add one more augmentation method to this trio, but
our further investigation showed that this causes performance degradation. We believe
that the reason for this is the significant shift in the proportion of images in the training
dataset towards generated images compared to the original dataset. In the augmented set,
the generated images constitute multiple times the number in the original image set. Since
noise is introduced during augmentation, excessive data augmentation can lead to model
overfitting instead of improving the model’s generalization ability.

Table 3. Measurement results with three augmentation methods on the first test set.

Augmentation Strategy mAP50 mAP50-95 Number of Images

Mosaic + noise + gamma 0.981 0.647

1320
Mosaic + noise + brightness–contrast 0.988 0.686

Mosaic + noise + translation 0.985 0.654
Mosaic + noise + rotation 0.979 0.678

Table 4. Measurement results with three augmentation methods on the second test set.

Augmentation Strategy mAP50 mAP50-95 Number of Images

Mosaic + noise +
brightness–contrast 0.727 0.466

1320Mosaic + noise + translation 0.709 0.460
Mosaic + noise + rotation 0.714 0.464

The implementation of the YOLOv5 training process also includes different kinds of
augmentation techniques that can be optionally used and parameterized. In order to obtain
a clear picture of the effectiveness of the augmentation method combinations presented
above, the model was tested with the “built-in” image augmentation process incorporating
the HSV and mosaic techniques. The model supported by the built-in augmentation
achieved 0.973 mAP50 and 0.678 mAP50-95 on the first test set and 0.659 mAP50 and 0.454
mAP50-95 on the second test set, respectively. The comparison of the reference values with
the content of Table 1 to 4 points out that the model’s performance can be further increased
if we use additional carefully selected augmentation methods, not only the YOLO’s built-in
mechanism.

Modified Mosaic Augmentation

Since the mosaic augmentation technique was the most efficient out of the tested meth-
ods, we introduced an additional augmentation strategy (modified mosaic) where the ele-
ments of the mosaic image were randomly modified by the earlier-used brightness–contrast
adjustment and noise pollution (Figure 7). The probabilities of using brightness–contrast
adjustment and noise pollution were 0.8 and 0.3.

In the last experiment, we used only those specific mosaic images to extend the original
training set. Similarly, as in the case of the single-augmentation methods, the original
training set size was increased by a multiple in each step. The mAP50 and mAP50-95
values achieved on the two test sets can be seen in Figures 8 and 9.

The figures show that the modified mosaic augmentation brought higher mAP50 and
mAP50-95 than any single augmentation technique. Similarly to Figures 5 and 6, in the
case of the first test set, the increasing data enrichment did not bring a clear improvement
while a slightly improving trend can be observed in the case of the second test set. Finally,
it also can be observed that the modified mosaic augmentation can be even more efficient
than merging different augmentation techniques (see Tables 3 and 4).



Sensors 2024, 24, 4502 10 of 12Sensors 2024, 24, x FOR PEER REVIEW 11 of 13 
 

 

 

Figure 7. A sample mosaic image where brightness–contrast adjustment and noise pollution are 

randomly applied on the sub-images. 

The figures show that the modified mosaic augmentation brought higher mAP50 and 

mAP50-95 than any single augmentation technique. Similarly to Figures 5 and 6, in the 

case of the first test set, the increasing data enrichment did not bring a clear improvement 

while a slightly improving trend can be observed in the case of the second test set. Finally, 

it also can be observed that the modified mosaic augmentation can be even more efficient 

than merging different augmentation techniques (see Tables 3 and 4).  

The effectiveness of the modified mosaic augmentation lies in integrating the ad-

vantages of geometric and texture augmentations into the original mosaic augmentation. 

This creates even more complex and diverse training examples compared to the original 

method, further enhancing the model’s generalization ability.  

 

Figure 8. mAP50-95 and mAP50 values achieved with the modified mosaic augmentation on the 

first test set. 

Figure 7. A sample mosaic image where brightness–contrast adjustment and noise pollution are
randomly applied on the sub-images.

Sensors 2024, 24, x FOR PEER REVIEW 11 of 13 
 

 

 

Figure 7. A sample mosaic image where brightness–contrast adjustment and noise pollution are 

randomly applied on the sub-images. 

The figures show that the modified mosaic augmentation brought higher mAP50 and 

mAP50-95 than any single augmentation technique. Similarly to Figures 5 and 6, in the 

case of the first test set, the increasing data enrichment did not bring a clear improvement 

while a slightly improving trend can be observed in the case of the second test set. Finally, 

it also can be observed that the modified mosaic augmentation can be even more efficient 

than merging different augmentation techniques (see Tables 3 and 4).  

The effectiveness of the modified mosaic augmentation lies in integrating the ad-

vantages of geometric and texture augmentations into the original mosaic augmentation. 

This creates even more complex and diverse training examples compared to the original 

method, further enhancing the model’s generalization ability.  

 

Figure 8. mAP50-95 and mAP50 values achieved with the modified mosaic augmentation on the 

first test set. 

Figure 8. mAP50-95 and mAP50 values achieved with the modified mosaic augmentation on the first
test set.

Sensors 2024, 24, x FOR PEER REVIEW 12 of 13 
 

 

 

Figure 9. mAP50-95 and mAP50 values achieved with the modified mosaic augmentation on the 

second test set. 

4. Conclusions 

In this paper, we applied gamma adjustment, brightness–contrast adjustment, noise 

pollution, translation, rotation, and mosaic image augmentation methods and their com-

binations to manually increase the original training data size. To investigate the efficiency 

of different augmentation approaches, we used the YOLOv5 small object detector. To 

measure the effectiveness of the YOLOv5 model, the mAP50 and mAP50-95 metrics were 

used. The experimental results from two test sets that consisted of remote-sensed trap 

images presented how the individual augmentation methods are capable of increasing the 

mAP of the model relative to its performance without augmentation. The results also 

demonstrated that the YOLOv5 model’s performance can be further increased if addi-

tional carefully selected augmentation methods, and not only the built-in mechanism, are 

used. Finally, we proposed the integration of photometric image transformations into the 

mosaic augmentation and our experimental results show that this approach can be even 

more efficient than the native combination of augmentation techniques. 

Funding: This research was funded by the Hungarian National Eötvös Scholarship. Contract no. 

MAEO 2023-24/183910. 

Data Availability Statement: The training and the first test datasets analyzed during the current 

study are not publicly available due to the restriction of the data owner. 

Acknowledgments: The author would like to thank the help of the eKÖZIG Regionális Informatikai 

Szolgáltató Központ Zrt. 

Conflicts of Interest: The authors declare no conflicts of interest. 

References 

1. Damos, P.; Colomar, L.A.E.; Ioriatti, C. Integrated fruit production and pest management in Europe: The apple case study and 

how far we are from the original concept. Insects 2015, 6, 626–657. 

2. Marlic, G.; Penvern, S.; Barbier, P.M.; Lescourret, F.; Capowiez, Y. Impact of crop protection on natural enemies in organic apple 

production. Agron. Sustain. Dev. 2015, 35, 803–813. 

3. Cirjak, D.; Miklecic, I.; Lemic, D.; Kos, T.; Zivkovic, P.I. Automatic pest monitoring systems in apple production under changing 

climate conditions. Horticulture 2022, 8, 520. 

4. Schrader, M.J.; Smytheman, P.; Beers, E.H.; Knot, L.R. An open-source low-cost imaging system plug-in for pheromone traps 

aiding remote insect pest population monitoring in fruit crops. Machines 2022, 10, 52. 

5. Pezhman, H.; Saeidi, K. Effectiveness of various solar light traps with and without sex pheromone for mass trapping of tomato 

leaf miner (Tuta absoluta) in tomato field. Not. Sci. Biol. 2018, 10, 475–484. 

6. Tóth, M.; Jósvai, J.; Hári, K.; Pénzes, B.; Vuity, Z.; Holb, I.; Szarukán, I.; Kecskés, Z.; Dorgán-Zsuga, I.; Koczor, S.; et al. Pear 

easter based lures for the codling moth Cydia pomonella L.—A summary of research effort in Hungary. Acta Phytopathol. Et 

Entomol. Hung. 2014, 49, 37–47. 

7. Juszczak, R.; Kuchar, L.; Lesny, J.; Olejnik, J. Climate change impact on development rates of codling moth (Cydia pomonelly L.) 

in the Wielkopolska region, Poland. Int. J. Biometeorol. 2012, 57, 31–44. 

Figure 9. mAP50-95 and mAP50 values achieved with the modified mosaic augmentation on the
second test set.



Sensors 2024, 24, 4502 11 of 12

The effectiveness of the modified mosaic augmentation lies in integrating the advan-
tages of geometric and texture augmentations into the original mosaic augmentation. This
creates even more complex and diverse training examples compared to the original method,
further enhancing the model’s generalization ability.

4. Conclusions

In this paper, we applied gamma adjustment, brightness–contrast adjustment, noise
pollution, translation, rotation, and mosaic image augmentation methods and their combi-
nations to manually increase the original training data size. To investigate the efficiency
of different augmentation approaches, we used the YOLOv5 small object detector. To
measure the effectiveness of the YOLOv5 model, the mAP50 and mAP50-95 metrics were
used. The experimental results from two test sets that consisted of remote-sensed trap
images presented how the individual augmentation methods are capable of increasing
the mAP of the model relative to its performance without augmentation. The results also
demonstrated that the YOLOv5 model’s performance can be further increased if additional
carefully selected augmentation methods, and not only the built-in mechanism, are used.
Finally, we proposed the integration of photometric image transformations into the mosaic
augmentation and our experimental results show that this approach can be even more
efficient than the native combination of augmentation techniques.
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