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Abstract: Simultaneous Localization and Mapping (SLAM) is one of the key technologies with which
to address the autonomous navigation of mobile robots, utilizing environmental features to determine
a robot’s position and create a map of its surroundings. Currently, visual SLAM algorithms typically
yield precise and dependable outcomes in static environments, and many algorithms opt to filter out
the feature points in dynamic regions. However, when there is an increase in the number of dynamic
objects within the camera’s view, this approach might result in decreased accuracy or tracking failures.
Therefore, this study proposes a solution called YPL-SLAM based on ORB-SLAM2. The solution adds
a target recognition and region segmentation module to determine the dynamic region, potential
dynamic region, and static region; determines the state of the potential dynamic region using the
RANSAC method with polar geometric constraints; and removes the dynamic feature points. It
then extracts the line features of the non-dynamic region and finally performs the point–line fusion
optimization process using a weighted fusion strategy, considering the image dynamic score and the
number of successful feature point–line matches, thus ensuring the system’s robustness and accuracy.
A large number of experiments have been conducted using the publicly available TUM dataset to
compare YPL-SLAM with globally leading SLAM algorithms. The results demonstrate that the new
algorithm surpasses ORB-SLAM2 in terms of accuracy (with a maximum improvement of 96.1%)
while also exhibiting a significantly enhanced operating speed compared to Dyna-SLAM.

Keywords: dynamic environment; visual SLAM; YOLOv5s; point–line fusion; YPL-SLAM

1. Introduction

Visual Simultaneous Localization and Mapping (V-SLAM) plays a critical role in the
autonomous navigation of mobile robots. With advancements in robotics, an increasing
number of researchers are directing their focus towards SLAM technology [1–3]. Clas-
sical vision SLAM systems typically include sensor data acquisition, visual odometry,
backend optimization, map construction, and loop closure detection within their frame-
works [4]; these include PTAM [5], ORB-SLAM2 [6], ORB-SLAM 3 [7], VINS-Mono [8],
VINS-Fusion [9], etc. These algorithms are relatively stable in static environments; how-
ever, in dynamic environments, the interference of dynamic objects can trigger map drift
and complicate data association, which greatly affects the positioning accuracy and map
creation of the system. The miscorrelation of the data may even cause the system to crash.
Removing dynamic feature points in dynamic environments can reduce the number of
feature points, which can lead to object loss [10]. In scenarios with missing texture or
motion blur, line features show greater robustness and can represent the structural features
of the scene, providing intuitive visual information [11]. Therefore, it is crucial to study the
extraction of line features for point–line fusion in dynamic environments. Such research
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could help to address challenges such as missing map point tracking, degraded localization
accuracy, and map drift in dynamic scenes.

To address the problems of dynamic environments, which may lead to system tracking
failures and degraded localization accuracy, we propose a SLAM system called YPL-SLAM.
It is designed to address system failures and degraded localization accuracy due to insuffi-
cient feature point extraction or image blurring in dynamic environments. The YPL-SLAM
algorithm combines the YOLOv5s algorithm with the point–line feature fusion technique.
This greatly improves the localization accuracy of the system in dynamic scenes, enabling
it to extract line features in non-dynamic regions while removing dynamic feature points
to ensure that sufficient features are extracted to increase the stability of the system. We
improve the ORB-SLAM2 algorithm by detecting objects in the environment through target
detection and region segmentation threads, identifying dynamic, potentially dynamic, and
static regions in the image, and determining the state of the potentially dynamic situation.
Meanwhile, we remove dynamic feature points in the dynamic region and then extract line
features in the non-dynamic region. Line features can more comprehensively represent
structural features [12]. The main contributions of our work are summarized as follows:

1. We design an improved algorithm, YPL-SLAM, based on ORB-SLAM2, which com-
bines YOLOv5s with point–line feature fusion technology, increases the target detec-
tion and region delineation threads, and adopts multi-thread parallelism to ensure
the real-time performance and accuracy of the algorithm in a dynamic environment.

2. We construct a method to determine the potential dynamic region. The dynamic
region, potentially dynamic regions, and static regions are obtained after target detec-
tion and area division. Through processing, the states of the potential dynamic region
are determined and the dynamic feature points of the dynamic region are eliminated.

3. We use the weighted fusion strategy considering the image dynamic score and the num-
ber of successful feature point and line matches for point–line fusion optimization and
processing. The line feature points in the static region are extracted and the point and line
feature weights are processed according to the image dynamic score and the number of
successful feature point–line matches to obtain the optimized point–line fusion results.

2. Related Works

Currently, the visual SLAM algorithms used for visual odometry are divided into
three main categories: the feature point method, the optical flow method, and the direct
method. The feature point method extracts feature points between consecutive frames and
matches them; finally, it calculates the camera motion through the matching relationship.
The optical flow method extracts feature points without matching and solves the camera
motion based on the assumption of grayscale invariance. The direct method calculates the
camera motion by considering the pixel positions of the spatial points in two consecutive
frames based on the optical flow method, as well as building an error model.

The most commonly used algorithms for the extraction of feature points are SIFT [13],
SURF [14], and ORB [15]. While these methods boast high accuracy, they are susceptible
to instability or even failure when deployed in complex environments. Unlike these
feature point methods, the direct methods utilize pixel-level grayscale image information to
estimate the motion and scene structure by minimizing photometric errors. These methods
are usually more robust in weakly textured scenes. Examples include LSD-SLAM [16],
SVO [17], and DSO [18]. However, the direct methods include the assumption of grayscale
invariance, and the performance of these methods suffers in scenes with significant changes
in illumination. As a direct method, SLAM relies on an image gradient search to optimize
the pixel gray values. However, due to the highly non-convex nature of images, particularly
when significant camera motion is involved, the algorithm becomes susceptible to local
minima. To address these problems, line feature-based SLAM methods have been proposed.
Rong et al. [19] introduced PEL-SLAM, a point–line SLAM method leveraging ED-line [20]
to enhance environmental adaptation and accuracy. However, this approach simultaneously
escalates the computational complexity and heightens the sensitivity to dynamic scenes
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and illumination variations. Gomez-Ojeda et al. [21] introduced PL-SLAM, a visual SLAM
system that integrates both point and line features. This fusion of features enables PL-SLAM
to exhibit improved adaptability across diverse environments, particularly in scenarios
with limited features or structured scenes. Zhang et al. [22] introduced PL-GM, a SLAM
algorithm that merges 3D points and lines generated by RGB-D cameras with 2D point
and line features. PL-GM achieves comparable or better performance compared to SLAM
methods based on point–line features and point features. However, these methods may
exhibit instability or subpar performance when dealing with moving objects or when there
are dynamic changes in the scene. Given the important advances in deep learning for
target detection, SLAM, combined with deep learning techniques, could be more effective
in dynamic environments.

In dynamic environments, the primary objective of the visual SLAM system is to
effectively distinguish dynamic targets from outliers. This involves integrating SLAM
techniques with deep learning to leverage the capabilities of deep learning models for
accurately filtering out dynamic information. This section outlines the related research in
this area. On the one hand, SLAM is combined with semantic segmentation techniques.
For example, the Dyna-SLAM method, proposed by Bescos et al. [23], combines the Mask
R-CNN [24] algorithm with ORB-SLAM2 to effectively detect and segment dynamic objects.
However, the method relies on target detection and semantic segmentation for localization
tracking, which poses challenges, especially in real-time applications. Wang et al. [25]
combined the visual inertial SLAM technique with deep learning to determine the motion
probabilities of feature points by using semantic information extracted from images. This
improves localization accuracy by eliminating feature points with an overly high motion
probability. However, this motion probability grading model is constructed based on life
experience and may be limited in multi-target motion scenarios. Yu et al. [26] introduced
DS-SLAM, a semantic system that mitigates the influence of dynamic objects through a
combination of semantic segmentation and optical flow techniques. However, a decrease
in accuracy occurs when there is dense sampling in large-format images. On the other
hand, SLAM is combined with target detection techniques. For example, Wu et al. [27]
proposed YOLO-SLAM, which combines target detection methods and geometric constraint
methods in a tightly coupled manner, aiming to reduce the impact of dynamic targets by
adding a lightweight YOLOv3 network into the SLAM system. However, the lightweight
YOLOv3 network has limitations regarding dynamic target recognition in complex scenes.
Zhang et al. [28] employed a lightweight YOLOv5s network to enhance the system’s
operation speed. Additionally, they integrated a pyramid-shaped scene parsing network
split header at the YOLOv5s network’s head to achieve semantic extraction within the
environment. However, the fast detection speed of the lightweight YOLO target detection
algorithm may lead to less accurate results for small targets or heavily occluded targets.
Song et al. [29] introduced YF-SLAM, a method leveraging the YOLO-Fastest network
to rapidly identify dynamic target regions within dynamic scenes. Subsequently, they
employed depth geometric constraints to filter out dynamic feature points, thereby ensuring
the real-time operation of the SLAM system. However, when the camera moves in a
blurred scene, the depth information is affected, which impacts the localization and map
construction quality of the SLAM system. Gong et al. [30] proposed an algorithm for AHY-
SLAM using the optical flow method with filtering of the input keyframes in each frame.
It extracts the feature points of the keyframes using adaptive thresholding, eliminating
the dynamic points using YOLOv5. However, when there are multiple moving objects
in the scene, a large number of feature points are eliminated, and its robustness can be
limited. Thus, these techniques exhibit poor performance or failure in scenarios involving
multiple moving targets or motion blur in the camera. To address these issues, we propose
YPL-SLAM, a point–line feature-based SLAM system for dynamic environments.

YPL-SLAM integrates the YOLOv5s object detection technology with point–line fea-
ture fusion, removes feature points from dynamic regions, extracts line features from static
regions, and employs a weighted fusion strategy based on the image dynamic score and
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the number of successful matches of feature points and lines. This fusion aims to more
efficiently detect and track moving objects in dynamic scenes, thereby reducing the negative
impact of multiple dynamic objects on localization. Through this innovative approach,
we expect to significantly improve the robustness and accuracy of SLAM systems when
dealing with complex scenes exhibiting dynamic characteristics.

3. Methods

In this section, we introduce YPL-SLAM from four perspectives. First, we outline
the general framework of YPL-SLAM. The main element of the general framework is the
improvement of ORB-SLAM2. We then introduce target detection and region segmentation
using the YOLOv5s algorithm, which improves the real-time performance of the system by
identifying the region in which the target is located and dividing it into dynamic, potential,
and static regions, as compared to commonly used algorithms that incorporate semantic
segmentation. Then, the method for determining the state of the potential dynamic region is
presented. Finally, we use the LSD [31] algorithm with the LBD [32] descriptor to extract the
line features and matches within the static region and optimize the processing of point–line
fusion using a weighted fusion strategy that considers the image dynamic score and the
number of successful feature point–line matches.

3.1. Overview of the YPL-SLAM System

The ORB-SLAM2 algorithm consists of three threads: tracking, localization building,
and loop closing. It utilizes ORB feature extraction for localization building, which com-
bines FAST [33] key point detection and BRIEF [34] descriptors, offering rotational and scale
invariance. While ORB-SLAM2 exhibits strong performance in static environments with
localization accuracy, we chose to enhance it further. We add target detection and region
delineation modules. At the same time, we add a module for the processing of the dynamic
and potential dynamic regions in the tracking thread, determine the state of the potential
dynamic region, remove dynamic feature points, extract non-dynamic region line features
through these processes, and optimize the camera position via point–line fusion, as shown in
Figure 1. The processing of the dynamic and potentially dynamic regions contributes to the
better handling of moving objects during vision SLAM, and the point–line fusion approach
used to optimize the camera position is expected to improve the robustness and localization
accuracy of the system. Specific methods for these improvements will be detailed later.

Figure 1. The SLAM framework of the YPL-SLAM algorithm, with the additional threads for target
recognition and region delineation depicted in the blue box. Meanwhile, the yellow box illustrates
the line feature extraction and processing module.
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3.2. Target Recognition and Region Segmentation

The YOLOv5s algorithm operates by taking an RGB-D image as input, extracting
features through a convolutional neural network, and subsequently parsing these fea-
tures to determine the target object’s category and bounding box coordinates. Unlike the
two-stage detection algorithms of the RCNN series, YOLOv5s streamlines the process
by eliminating the step of predicting the positions of candidate boxes. Instead, it treats
the problem holistically as a regression task, utilizing convolutional networks for direct
end-to-end model training. This approach significantly enhances the speed, surpassing
that of other algorithms and ensuring the real-time operation of the entire SLAM system.
By leveraging convolutional networks and direct end-to-end training, YOLOv5s acceler-
ates target detection while also providing precise bounding box coordinate information.
Moreover, it utilizes regression targets based on pixel information from the entire image,
thereby minimizing false alarms in the background and enhancing the separation of the
detected targets from background areas.

The YOLOv5s algorithm is used to detect the target in the image and obtain its
bounding box location information, which is subsequently classified into three categories
according to the region in which the target is located: static regions, potentially dynamic
regions, and dynamic regions. The regions where the different targets are located are
classified according to the classification criteria in Table 1. Targets with subjective mobility,
such as humans and animals, are classified as dynamic regions, while objects that can easily
be moved, such as mice, keyboards, and chairs, are classified as potentially dynamic regions,
and objects that do not move easily, such as computer screens, cabinets, and windows, are
categorized as static regions. Figure 2 illustrates the information about the coordinates
of the regions obtained from the classification. Next, the segmented area’s coordinate
information is sent to the tracking thread for subsequent target tracking and analysis. This
process helps to identify and distinguish the different targets in the image more accurately
and provides the basis for further dynamic region analysis. By categorizing the dynamic
targets and potential dynamic regions, the system can respond more effectively to different
target types, providing targeted information for subsequent processing. This integrated
approach to target recognition and region segmentation is expected to improve the system’s
ability to perceive and understand dynamic environments.

Table 1. Regional division by target category.

Region Name Target-Semantic Information

Potential dynamic region keyboards, chairs, books, mouses, etc.
Dynamic region people, animals, mobile robots, etc.

Static region computer screens, cabinets, windows, etc.

Figure 2. The YOLOv5s algorithm recognizes the targets, obtains the targets’ semantic information,
and classifies these targets into static, dynamic, and potentially dynamic regions. (a,b) Recognizing
the targets; (c,d) categorizing the area in which the target is located. Dynamic indicates a dynamic
region, uncertain indicates a potential dynamic region, and static indicates a static region.



Sensors 2024, 24, 4517 6 of 17

3.3. Determination of the State of a Potential Dynamic Region

According to the target detection and region delineation module, we can obtain the
position information of the potential dynamic regions, dynamic regions, and static regions.
The camera position is calculated using the extracted feature points, with the exception of
the dynamic region, and RANSAC processing is performed to remove abnormal feature
points. Then, the dynamic and potential dynamic regions are processed to obtain the
state of the potential dynamic region, and the static feature points in the dynamic region
are retained. The status of the region containing the object is determined through target
detection. The base matrix F is computed for consecutive frames using ORB feature
points extracted from areas outside the dynamic region. Geometric constraints are then
applied to calculate the feature points within the potential dynamic regions, allowing for
an assessment of the region’s status. The static feature points within the dynamic regions
are retained. Figure 3 shows the geometric constraints on the poles.

Figure 3. Geometric constraints on the poles.

We can obtain the Epipolar Constraint Formula as follows:
E = t̂R
F = K−TEK−1

xT
2 Ex1 = pT

2 Fp1 = 0
(1)

In the equation, K represents the camera’s internal reference matrix, and R and t
signify the camera’s motion from the previous frame coordinate system to the next frame
coordinate system. p1 and p2 are characteristic points. x1 and x2 are normalized plane
coordinates. F represents the fundamental matrix and E represents the essential matrix. We
can obtain the following equation:

l2 =

 a
b
c

 = Fp1 (2)

We calculate the distance from the pixel point coordinate p2 to the polar line l2.

d =

∣∣pT
2 l2

∣∣
√

a2 + b2
(3)

where d denotes the distance from the point p2 to the line l2, where a, b, and c express the
direction vectors of the line l2.

Due to the effect of errors, we set a threshold for the distance from p2 to the straight line
l2 and adjust the threshold according to the specific application scenario and needs. When
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the calculated d exceeds this threshold, the point is considered an anomaly; otherwise, the
point is retained for subsequent calculations.

The polar geometric constraints allow us to determine the anomalous feature points,
and the boundary information allows us to determine the number of feature points ex-
tracted from different areas. We remove the dynamic feature points for dynamic regions,
while, for potentially dynamic regions, the state is then determined according to the follow-
ing equation:

T =
1

1 + e−(Nm+1)/Na
(4)

where Nm denotes the number of abnormal points in the center of the potential dynamic
region, and Na denotes the number of all feature points in the potential dynamic region.
When the calculation result exceeds the set threshold ε, it is considered that the region is
dynamic; otherwise, the target is considered stationary.

3.4. Extraction of Non-Dynamic Region Line Features

We have extracted the ORB feature points in the image and divided the image into
dynamic and potential dynamic regions, which will result in some feature points being
filtered out. We improve the stability of the algorithm by extracting the line features in
the static region again. In this study, we use the LSD algorithm based on the gradient
direction and gradient magnitude of the pixel points to extract the line segments. Then,
we use the baseline descriptor to represent the line segment feature information, calculate
the LBD vector value of each line feature for the adjacent two frames of the image, and
use the nearest neighbor method to solve the line feature matching pairs. When the LBD
ratio value of the line feature matching pair is greater than a set threshold value, the line
feature matching pair will be retained; otherwise, it is rejected as a mismatch. Finally, the
weighted fusion strategy based on the ratio of the image’s dynamic region and the number
of successful feature point–line matches assigns respective weights to the point–line errors
in the cost function to solve the problem of accuracy degradation due to the direct fusion
of different types of data errors. Figure 4 shows the results of our algorithm for different
processes performed on the same image frame, visually comparing the different effects of
the three steps of extracting the feature points in the image, removing the dynamic feature
points, and extracting the line features in the non-dynamic region.

We can see that extracting the feature points in the image leads to the extraction of
many dynamic feature points, which seriously affects the accuracy of the algorithm. After
performing the removal of dynamic points, if the view has a high percentage of dynamic
objects, this will filter out some of the feature points, leading to a reduction in the number
of extracted points, which reduces the accuracy of the algorithm or causes a tracking failure.
By extracting the line features in the non-dynamic region of the image, the problem of
missing feature points can be eliminated to better ensure the stability of the algorithm.

3.5. Point and Line Fusion

A line segment has four degrees of freedom in the three-dimensional coordinate
system, so the combination of the Plücker coordinates and orthogonal representation is
used to represent the spatial line segment. We define P1 and P2 as two points on a straight
line in the space, and the spatial straight line Plücker coordinates can be expressed as

Lw =

[
P1 × P2

w1P1 − w2P2

]
=

[
n
v

]
(5)

where w1 and w2 are chi-square factors, ν is the direction vector of the line, and n is the
normal vector of the plane formed by the coordinate origin and P1P2.
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Figure 4. The extraction of feature points, the filtering of dynamic feature points, and the extraction of
the non-dynamic region’s line features are compared. (a,d,g) are extracted feature points, where the
green dots represent the extracted feature points; (b,e,h) are the effects after removing the dynamic
feature points; and (c,f,i) are the extracted non-dynamic region’s line features, where the red lines
represent the extracted line features.

The straight line is converted from the world coordinate system to the camera coordi-
nate system and then represented using the Plücker coordinate system.

Lc = TcwLw =

[
Rcw (tcw )̂Rcw

0 R cw

][
nw
vw

]
=

[
nc
vc

]
(6)

where Lc represents a straight line in the camera coordinate system in Plücker coordinates,
Lw represents a straight line in the world coordinate system in Plücker coordinates, Tcw
is the transformation matrix from the world coordinate system to the camera coordinate
system, Rcw is the rotation matrix, tcw is the translation matrix, and (tcw)

ˆ represents the
antisymmetric matrix of tcw.

By projecting Lc onto the image plane coordinate system, we obtain

lc =

 fx 0 0
0 fy 0

− fxcx − fxcy fx fy

nc = Knc (7)

where lc represents the coordinates of the line in the image plane coordinate system. fx, fy,
cx, and cy are the camera’s internal reference, and K is the camera’s internal reference matrix.

The camera position Tk
cw, 3D spatial point Xk

w,i, and line Lk
w,i are taken as vertices, and

their relationships are taken as edges to construct the graph optimization model. It can be
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determined that the error in the camera position–3D point and the camera position–spatial
line segment is ek

p,i = xk
m,i − I

(
KTk

cwXk
w,i

)
ek

l,j = d
(

lk
m,j, KTk

cwLk
w,i

) (8)

where ek
p,i represents the projection error of the feature point, xk

m,i represents the correspond-
ing pixel coordinates of the feature point, and I is the projection function, which projects
the 3D point onto the 2D image plane. ek

l,j is the projection error of the line feature, and d is
used to compute the line segment error between the measured value and the computed
value, which is based on the distance of the endpoints of the line segment as a measure of
the error.

Setting the observation error as a Gaussian distribution, we can obtain the following
cost function:

C = λp∑
k,i

ρp

(
ek

p,i
T∑ x−1

k,i ek
p,i

)
+ λl∑

k,j
ρl

(
ek

p,j
T∑ l−1

k,j ek
l,j

)
(9)

where λp and λl are the observation error weighting coefficients of the point and line
features, respectively; ∑ xk,i and ∑ xl,i denote the observation covariances of the point and
line features; and ρp, ρl are the robust kernel functions used to suppress the outliers, which
are computed by the following formula:

ρm =


1
2 ek

m,i
2

∣∣∣ek
m,i

∣∣∣ ≤ δ

δ
(∣∣∣ek

m,i

∣∣∣− 1
2 δ
)

other
, m ∈ {p, l} (10)

The weight coefficients λp and λl are set according to Equations (11) and (12). We
synthesize and score each image to obtain Mk

p. The integrated score Mk
p of the image

consists of two parts: the ratio of the number of successful feature point–line matches rk
r

and the image dynamic score sk
r . 

rk
r = Nk

l
/Nk

p
Mk

p = βrk
r + sk

r
sk

r = µSk
d/S0

β = 1

e−Nk
p+1

(11)

where Sk
d is the area of the dynamic region of the image in the kth frame, S0 is the total area

of the image, and µ and β are the adaptive scale factors, where β is positively correlated
with Nk

p. The current kth keyframe image successfully matches the number of line features
Nk

l and the number of point features Nk
p. rk

r is the ratio of line features to point features that
are successfully matched.

λp =

{
Mk

p rk
r ≤ r

1.25 rk
r > r

, λl =
∣∣1 − λp

∣∣ (12)

where Mk
p is the average of the combined scores of the images, and rk

r is the average of the
ratios of line features and point features extracted from the images. r is a threshold value
that is used to control the growth of the coefficients in highly dynamic scenarios.

4. Results

In this section, we describe the use of publicly available datasets to validate our
algorithm’s effectiveness. Additionally, we compare our SLAM system with state-of-the-art
systems from other countries, assessing both their accuracy and real-time performance.
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4.1. Dataset and Algorithms for Comparison

YPL-SLAM is a SLAM system designed for dynamic scenes, where RGB-D images are
passed into the system and used to achieve simultaneous localization and map construction.
Therefore, we used the publicly available TUM dynamic object dataset for the system’s
evaluation. This dataset was captured by a Kinect camera using the TOF technique and
contains multiple color and depth images at a 640 × 480 resolution. The dataset is divided
into two classes based on the scene dynamics: class ‘w’ represents walking scenes, which
show high dynamic activity, and class ‘s’ represents sedentary scenes, which show lower
dynamic activity. The scenes include two people sitting at a table talking and making
gestures. The data were further categorized into four modes of camera motion: (1) the
static mode, in which the sensor was manually fixed in one position; (2) the xyz mode, in
which the sensor was moved along the x, y, and z axes, with the orientation held constant;
(3) the hemispherical mode, in which the sensor was moved in a hemispherical space with
a diameter of approximately one meter; and (4) the rpy mode, in which the sensor was in
the same position around a major axis’ (roll, pitch, yaw) rotation.

The YPL-SLAM algorithm uses these datasets for comparison with other algorithms.
When comparing the algorithms, we consider that YPL-SLAM is derived from the improve-
ments in ORB-SLAM2, which excels in static environments. Hence, we select ORB-SLAM2
for comparison. In dynamic scenes, where Dyna-SLAM and DS-SLAM are recognized as
advanced open-source SLAM systems, we include them in the comparison to demonstrate
the performance of our proposed algorithm.

4.2. Evaluation Method

We utilize the open-source assessment tool evo to compare the performance of the
algorithms. Evo offers a range of utilities for the assessment of SLAM system scripts and
measurements, enabling the comparison of different algorithms. It supports evaluations
using real-world datasets and provides visualization tools for the analysis of SLAM sys-
tems’ outputs. The absolute trajectory error (ATE) serves as a metric to evaluate SLAM
systems’ performance. It quantifies the difference between the trajectories output by the
SLAM algorithm and the true or reference trajectories, aiding in the assessment of the
system’s robustness and accuracy across varying environments and over extended periods.
Additionally, we compare the relative pose errors of the different algorithms, which are
commonly used to evaluate the drift in displacement estimation.

The following equation is primarily used in calculating the root mean square error of the
absolute trajectory error (ATE) between the estimated pose E and the ground truth pose G.

ATE − RMSE =

√
1
n

n

∑
i=0

∣∣∣∣trans(E)− trans(G)
∣∣|22 (13)

In this equation, n represents the total number of poses to be computed, trans(G)
represents the true pose of the camera, trans(E) represents the estimated pose of the
camera, and ||·|| denotes the Euclidean distance between these two poses.

The formula for RPE-RMSE is as follows:

RPE − RMSE =

√
1
m

m

∑
i=1

||trans(Q−1
i Qi+∆)

−1
(P−1

i Pi+∆)||22, m = n − ∆ (14)

where Qi denotes the ground truth pose, Pi denotes the estimated pose, and ∆ denotes the
time interval between two consecutive poses.

We evaluate the performance of our algorithm, YPL-SLAM, compared to ORB-SLAM2,
using the following equation:

η =
σ − τ

σ
× 100% (15)
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The above equation represents the performance comparison between our algorithm
and ORB-SLAM2, where σ denotes the error generated by ORB-SLAM2 and τ denotes the
error generated by the YPL-SLAM algorithm.

4.3. Tracking Accuracy Evaluation

Figure 5 illustrates the absolute trajectory error (ATE) and relative pose error (RPE)
values of ORB_SLAM2 and YPL-SLAM, computed using the evo tool in low dynamic
scenes. Notably, YPL-SLAM demonstrates a lower ATE and RPE, indicating higher accuracy
compared to ORB_SLAM2 in such scenarios. Furthermore, Figure 6 provides a comparison
of the trajectories estimated by YPL-SLAM with the real trajectories. It shows that the
trajectories estimated by YPL-SLAM closely align with the ground truth trajectory. An
examination of the X, Y, and Z axes, as well as the pitch, yaw, and roll views, reveals that
the estimated results of YPL-SLAM closely match the ground truth data.

Figure 5. In the fr3_s_hs sequence, we compare the absolute trajectory error (ATE) and relative pose
error (RPE) between ORB-SLAM2 and YPL-SLAM, particularly focusing on the translation drift. The
first and second columns of the table display the ATE results, while the third and fourth columns
show the RPE results.

Figure 6. In the fr3_s_hs sequence, we compare the ground truth and estimated trajectories. The first
column displays the comparison of the 3D trajectories, containing the ground truth and trajectories
estimated by both ORB-SLAM2 and YPL-SLAM. The second column presents the fitting results for
the X, Y, and Z axes, while the third column shows the fitting results for the roll, pitch, and yaw axes.



Sensors 2024, 24, 4517 12 of 17

Figures 7 and 8 depict images captured in highly dynamic scenes, showcasing the
stability and effectiveness of YPL-SLAM in such environments. These images offer a
detailed visual representation of YPL-SLAM’s performance in the context of highly dynamic
environments. Overall, these results demonstrate that YPL-SLAM achieves satisfactory
localization performance in both less and highly dynamic scenes.

Figure 7. In the fr3_w_xyz sequence, we compare the absolute trajectory error (ATE) and relative
pose error (RPE) between ORB-SLAM2 and YPL-SLAM, focusing on the translation drift performance.
The first two columns of the table display the ATE results, while the third and fourth columns show
the RPE results.

Figure 8. In the fr3_w_xyz sequence, we compare the ground truth and estimated trajectories.
The first column displays the comparison of the 3D trajectories, containing the ground truth and
trajectories estimated by both ORB-SLAM2 and YPL-SLAM. The second column presents the fitting
results for the X, Y, and Z axes, while the third column shows the fitting results for the roll, pitch, and
yaw axes.
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Tables 2–4 present the quantitative results of the comparison of YPL-SLAM with other
algorithms in terms of ATE and RPE. The root mean square error (RMSE) and standard
deviation (SD) are reported in the tables to better illustrate the localization accuracy and
system stability. The RMSE and SD provide a more intuitive understanding of the accuracy
of the results. Table 2 illustrates that the ATE calculated for YPL-SLAM improves across all
sequences. Compared to ORB-SLAM2, YPL-SLAM shows notably enhanced performance
in highly dynamic scenes, achieving a significant improvement in accuracy by an order of
magnitude. Particularly in the fr3_w_xyz sequence, which represents a highly dynamic
scenario, the average error and root mean square error show the most substantial improve-
ment, reaching 96.1% and 95.76%, respectively. This indicates that YPL-SLAM effectively
enhances the system’s performance in highly dynamic environments, particularly in terms
of accuracy and stability. In less dynamic environments, YPL-SLAM also exhibits signif-
icant improvements over ORB-SLAM2, yielding very favorable results. However, when
compared to Dyna-SLAM and DS-SLAM, the difference in the performance of YPL-SLAM
is not significant.

Table 2. Experimental results for absolute trajectory error (ATE [m]).

Sequences ORB-SLAM2 Dyna-SLAM DS-SLAM YPL-SLAM Improvement
against ORB-SLAM2

RMSE SD RMSE SD RMSE SD RMSE SD RMSE
(%) SD (%)

fr3_s_hs 0.066009 0.035507 0.028754 0.014252 0.027626 0.013821 0.028696 0.013893 56.53 60.87
fr3_w_hs 0.508235 0.234165 0.027093 0.01329 0.03139 0.016229 0.027681 0.013727 94.55 94.14
fr3_w_rpy 0.760449 0.37388 0.044161 0.021385 0.348257 0.235303 0.044471 0.025282 94.15 93.24
fr3_w_static 0.059643 0.034103 0.010198 0.004706 0.008354 0.003663 0.009897 0.004225 83.41 87.61
fr3_w_xyz 0.681858 0.339961 0.032547 0.017512 0.026653 0.016354 0.026567 0.014415 96.1 95.76

Table 3. Experimental results for translational relative trajectory error.

Sequences ORB-SLAM2 Dyna-SLAM DS-SLAM YPL-SLAM Improvement
against ORB-SLAM2

RMSE SD RMSE SD RMSE SD RMSE SD RMSE
(%) SD (%)

fr3_s_hs 0.035759 0.023872 0.024337 0.013665 0.023779 0.013261 0.016538 0.009941 53.75 58.36
fr3_w_hs 0.16326 0.130115 0.023624 0.012429 0.029535 0.015364 0.023474 0.012247 85.62 90.59
fr3_w_rpy 0.17649 0.135735 0.035798 0.020339 0.144131 0.106249 0.044562 0.030602 74.75 77.45
fr3_w_static 0.047703 0.041116 0.009643 0.004707 0.010264 0.005483 0.009058 0.004898 81.01 88.09
fr3_w_xyz 0.170089 0.115373 0.020675 0.01056 0.019706 0.011965 0.019335 0.009732 88.63 91.56

Table 4. Experimental results for rotational relative trajectory error.

Sequences ORB-SLAM2 Dyna-SLAM DS-SLAM YPL-SLAM Improvement
against ORB-SLAM2

RMSE SD RMSE SD RMSE SD RMSE SD RMSE
(%) SD (%)

fr3_s_hs 0.016118 0.008231 0.015482 0.0074 0.016714 0.008962 0.013464 0.006323 16.47 23.18
fr3_w_hs 0.084237 0.064951 0.015727 0.008289 0.019449 0.009518 0.015651 0.008309 81.42 87.21
fr3_w_rpy 0.086723 0.065983 0.018861 0.010664 0.065916 0.036591 0.02466 0.016516 71.56 74.97
fr3_w_static 0.02128 0.017428 0.006506 0.002736 0.006635 0.002994 0.006244 0.002915 70.66 83.27
fr3_w_xyz 0.081139 0.053901 0.011265 0.005714 0.010372 0.005463 0.011149 0.005722 86.26 89.38

Tables 3 and 4 present the results of the relative pose error (RPE) comparison between
YPL-SLAM and the other algorithms. Table 3 displays the results for the translational part of
the RPE, while Table 4 shows the results for the rotational part of the RPE. Compared with
ORB-SLAM2, YPL-SLAM shows an improvement in the RMSE and SD in the translational
part of the RPE of 74.75% to 88.63% and 77.45% to 91.56%, respectively, and in the rotational
part of the RPE by 70.66% to 86.26% and 74.97% to 89.38, respectively, in highly dynamic
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sequences. The experimental results for YPL-SLAM are superior in some sequences com-
pared to those of Dyna-SLAM and DS-SLAM. Through numerous tests, we have observed
that YPL-SLAM achieves stability and reliability in highly dynamic sequences.

4.4. Real-Time Evaluation

To assess the real-time performance of YPL-SLAM, a series of comparative experi-
ments involving ORB-SLAM2, Dyna-SLAM, and YPL-SLAM were conducted, processing
each image frame fully. YPL-SLAM and Dyna-SLAM were tested on identical computers
equipped with an Intel i7-12700 CPU and an NVIDIA RTX 2060 graphics card to ensure a
fair comparison. To evaluate the real-time performance on the same hardware, we com-
pared the processing speeds of Dyna-SLAM and YPL-SLAM. YPL-SLAM utilizes YOLOv5s
for target detection and employs parallel processing, making its processing time largely
independent of the target detection time. However, in the tracking thread, it is necessary to
utilize the results of target detection to extract line features in static regions. Therefore, we
add the processing time for target detection to the processing time of each frame. Table 5
presents the experimental results. Despite increasing the overhead for target detection,
YPL-SLAM maintains good real-time performance compared to ORB-SLAM2. Furthermore,
compared to Dyna-SLAM, YPL-SLAM demonstrates stronger real-time performance. This
indicates that YPL-SLAM can operate more efficiently when combining target detection
and line feature extraction, providing an advantage in quickly recognizing and removing
dynamic objects in real-time applications.

Table 5. Experimental results for tracking time(s).

Sequences ORB-SLAM2 Dyna-SLAM YPL-SLAM Improvement
against Dyna-SLAM (%)

fr3_s_hs 0.0191 1.7173 0.0791 95.39%
fr3_w_hs 0.0204 1.8274 0.0732 95.99%

fr3_w_rpy 0.0201 1.7785 0.0772 95.66%
fr3_w_static 0.0183 1.7647 0.0735 95.83%
fr3_w_xyz 0.021 1.7642 0.078 95.58%

5. Discussion

In this study, we proposed a SLAM method to cope with point–line feature func-
tions in dynamic environments: YPL-SLAM. Compared with ORB-SLAM2, YPL-SLAM
adds target identification and region delineation threads, as well as a line feature extrac-
tion module and a point–line fusion optimization module. Through its comparison with
other SLAM algorithms in the dynamic sequences of the TUM dataset, we obtained the
following insights:

• Compared with the ORB-SLAM2 method, the performance of YPL-SLAM in a highly
dynamic environment is more obvious, and the localization accuracy is improved by
more than 80%.

• In comparison with Dyna-SLAM and DS-SLAM, YPL-SLAM still has some short-
comings in highly dynamic scenarios, although the performance difference is not
significant in most cases. These shortcomings are mainly due to the fact that Dyna-
SLAM utilizes the a priori dynamic region information of each frame for pixel-level
semantic segmentation, which results in superior dynamic point filtering capabilities.

• Comparing the RPE results, it can be seen that the computation results obtained
via point–line fusion have fewer errors. The point–line fusion approach plays an
optimizing role in the calculation of the relative pose and reduces the error level of the
system. It has a significant effect in terms of improving the accuracy and reliability of
the attitude estimation process.

• Based on its ability to guarantee high accuracy, the speed of YPL-SLAM ensures its
real-time operation. Moreover, by utilizing YOLOv5s for target recognition and the
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division of the region where the target is located, and by extracting the line features of
the static region, the robustness and accuracy of the system are guaranteed.

6. Conclusions

Addressing the situation in which removing dynamic feature points in dynamic
environments with multiple moving objects may lead to a reduction in the number of
feature points, which in turn leads to the loss of the object, a new SLAM method, YPL-
SLAM, is proposed. It is based on ORB-SLAM2 and utilizes YOLOv5s to perform target
recognition. This method divides the target’s area to determine the dynamic region, and the
dynamic region’s feature points are removed; then, it extracts the line features of the non-
dynamic region and uses a weighted fusion strategy considering the image dynamic scores
and the number of successful feature point–line matches for point–line fusion optimization
and processing, takes advantage of the high robustness of the line features in the texture-
deficient or motion-blurring scenarios, ensuring the stability and accuracy of the system.
Compared with the ORB-SLAM2 method, the performance improvement provided by
YPL-SLAM in highly dynamic environments is more obvious, and the absolute trajectory
error is reduced by up to 96.1% in the highly dynamic sequences of the TUM dataset. In
the optimization process of point–line fusion, a weighted fusion strategy that combines
the dynamic score of the image and the number of successful feature point–line matches is
used for the point–line fusion optimization process. This solves the problems of reducing
the number of feature points, resolving the issue of lost objects to a certain extent, and
improving accuracy. Meanwhile, the speed of YPL-SLAM can ensure real-time operation.

Although YPL-SLAM has allowed significant progress in processing dynamic scenes,
we believe that there is potential for further improvement. In our study, the scene tests in
the TUM dataset were conducted under good lighting conditions. Given the critical role of
illumination in vision SLAM, we plan to integrate vision and LiDAR in our subsequent
work to fully utilize the advantages of LiDAR in poor lighting conditions. The point cloud
data provided by LiDAR are insensitive to light, which will help to compensate for the
shortcomings of vision SLAM in light-complex scenes. By combining the information
from vision and LiDAR, we expect to improve the stability of the SLAM algorithms under
various environmental conditions, which will bring greater performance improvements for
real-time localization and map building. At the same time, we will consider introducing
strategies that enable the system to adapt to different environmental conditions to ensure
good performance in various scenarios. Mechanisms for the automatic adjustment of the
algorithm’s parameters could be developed so that real-time adjustments can be made at
runtime in response to changes in the environment. Such a strategy will enable the system
to adapt to changes in illumination, scene complexity, and dynamics, thus improving its
robustness. This integrated approach is expected to further advance SLAM’s performance
in dynamic scenes and under complex lighting conditions.
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