Design of a Two-Degree-of-Freedom Mechanical Oscillator for Multidirectional Vibration Energy Harvesting to Power Wireless Sensor Nodes
Abstract
:1. Introduction
2. Fundamental Modelling and Simulations
2.1. Spiral Beam
2.2. Two-Beam Setup and Configuration
3. Design of the Prototype and Simulations
3.1. Details of the Prototype
3.2. Detailed Finite Element Validation
4. Experimental Work
5. Results and Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhao, L.; Yang, Y. On the modeling methods of small-scale piezoelectric wind energy harvesting. Smart Struct. Syst. 2017, 19, 67–90. [Google Scholar] [CrossRef]
- Ali, A.; Ali, S.; Shaukat, H.; Khalid, E.; Behram, L.; Rani, H.; Altabey, W.A.; Kouritem, S.A.; Noori, M. Advancements in piezoelectric wind energy harvesting: A review. Results Eng. 2024, 21, 101777. [Google Scholar] [CrossRef]
- Ali, A.; Sheeraz, M.A.; Bibi, S.; Khan, M.Z.; Malik, M.S.; Ali, W. Artificial neural network (ANN)-based optimization of a numerically analyzed m-shaped piezoelectric energy harvester. Funct. Mater. Lett. 2021, 14, 2151046. [Google Scholar] [CrossRef]
- Clementi, G.; Cottone, F.; Di Michele, A.; Gammaitoni, L.; Mattarelli, M.; Perna, G.; López-Suárez, M.; Baglio, S.; Trigona, C.; Neri, I. Review on Innovative Piezoelectric Materials for Mechanical Energy Harvesting. Energies 2022, 15, 6227. [Google Scholar] [CrossRef]
- Cleante, V.G.; Brennan, M.J.; Gatti, G.; Thompson, D.J. Energy harvesting from the vibrations of a passing train: Effect of speed variability. J. Phys. Conf. Ser. 2016, 744, 012080. [Google Scholar] [CrossRef]
- Brennan, M.J.; Gatti, G. Harvesting Energy From Time-Limited Harmonic Vibrations: Mechanical Considerations. J. Vib. Acoust. 2017, 139, 051019. [Google Scholar] [CrossRef]
- Wang, S.; He, L.; Wang, H.; Li, X.; Sun, B.; Lin, J. Energy harvesting from water impact using piezoelectric energy harvester. Rev. Sci. Instrum. 2024, 95, 021501. [Google Scholar] [CrossRef]
- Li, Z.; Roscow, J.; Khanbareh, H.; Haswell, G.; Bowen, C. Energy Harvesting from Water Flow by Using Piezoelectric Materials. Adv. Energy Sustain. Res. 2024, 5, 2300235. [Google Scholar] [CrossRef]
- Barua, A.; Salauddin Rasel, M. Advances and challenges in ocean wave energy harvesting. Sustain. Energy Technol. Assess. 2024, 61, 103599. [Google Scholar] [CrossRef]
- Singh, G.; Sharma, M.; Kiran, R.; Karmakar, S.; Vaish, R. Footwear for piezoelectric energy harvesting: A comprehensive review on prototypes development, applications and future prospects. Curr. Opin. Solid. State Mater. Sci. 2024, 28, 101134. [Google Scholar] [CrossRef]
- Zhang, H.; Shen, Q.; Zheng, P.; Wang, H.; Zou, R.; Zhang, Z.; Pan, Y.; Zhi, J.; Xiang, Z. Harvesting Inertial Energy and Powering Wearable Devices: A Review. Small Methods 2024, 8, 2300771. [Google Scholar] [CrossRef] [PubMed]
- Upendra, B.; Panigrahi, B.; Singh, K.; Sabareesh, G.R. Recent advancements in piezoelectric energy harvesting for implantable medical devices. J. Intell. Mater. Syst. Struct. 2023, 35, 129–155. [Google Scholar] [CrossRef]
- Oladapo, B.I. Review of flexible energy harvesting for bioengineering in alignment with SDG. Mater. Sci. Eng. R Rep. 2024, 157, 100763. [Google Scholar] [CrossRef]
- Zhou, S.; Lallart, M.; Erturk, A. Multistable vibration energy harvesters: Principle, progress, and perspectives. J. Sound Vib. 2022, 528, 116886. [Google Scholar] [CrossRef]
- Cao, L.-M.; Li, Z.-X.; Guo, C.; Li, P.-P.; Meng, X.-Q.; Wang, T.-M. Design and Test of the MEMS Coupled Piezoelectric–Electromagnetic Energy Harvester. Int. J. Precis. Eng. Manuf. 2019, 20, 673–686. [Google Scholar] [CrossRef]
- Hao, D.; Kong, L.; Zhang, Z.; Kong, W.; Tairab, A.M.; Luo, X.; Ahmed, A.; Yang, Y. An electromagnetic energy harvester with a half-wave rectification mechanism for military personnel. Sustain. Energy Technol. Assess. 2023, 57, 103184. [Google Scholar] [CrossRef]
- Kaliyannan, D. Nonlinear dynamics and parametric study of snap through electromagnetic vibration energy harvester using multi-term harmonic balance method. Energy Harvest. Syst. 2021, 7, 13–24. [Google Scholar] [CrossRef]
- Shabanalinezhad, H.; Malcovati, P.; Svelto, C.; Gatti, G. (Eds.) Nonlinear Dynamics of a Softening-Hardening Oscillator for Energy Harvesting in Industrial Applications. In Proceedings of the 2023 IEEE International Conference on Metrology for eXtended Reality, Artificial Intelligence and Neural Engineering (MetroXRAINE), Milan, Italy, 25–27 October 2023. [Google Scholar] [CrossRef]
- Chen, J.; Oh, S.K.; Nabulsi, N.; Johnson, H.; Wang, W.; Ryou, J.-H. Biocompatible and sustainable power supply for self-powered wearable and implantable electronics using III-nitride thin-film-based flexible piezoelectric generator. Nano Energy 2019, 57, 670–679. [Google Scholar] [CrossRef]
- Brusa, E. Design of a kinematic vibration energy harvester for a smart bearing with piezoelectric/magnetic coupling. Mech. Adv. Mater. Struct. 2020, 27, 1322–1330. [Google Scholar] [CrossRef]
- Brusa, E.; Carabelli, S.; Carraro, F.; Tonoli, A. Electromechanical Tuning of Self-Sensing Piezoelectric Transducers. J. Intell. Mater. Syst. Struct. 1998, 9, 198–209. [Google Scholar] [CrossRef]
- Sun, Y.; Chen, J.; Li, X.; Lu, Y.; Zhang, S.; Cheng, Z. Flexible piezoelectric energy harvester/sensor with high voltage output over wide temperature range. Nano Energy 2019, 61, 337–345. [Google Scholar] [CrossRef]
- Wu, N.; Wang, Q.; Xie, X. Ocean wave energy harvesting with a piezoelectric coupled buoy structure. Appl. Ocean Res. 2015, 50, 110–118. [Google Scholar] [CrossRef]
- Kim, H.S.; Kim, J.-H.; Kim, J. A review of piezoelectric energy harvesting based on vibration. Int. J. Precis. Eng. Manuf. 2011, 12, 1129–1141. [Google Scholar] [CrossRef]
- Brusa, E.; Carrera, A.; Delprete, C. A Review of Piezoelectric Energy Harvesting: Materials, Design, and Readout Circuits. Actuators 2023, 12, 457. [Google Scholar] [CrossRef]
- Bai, Q.; Zhou, T.; Gan, C.; Wang, Q.; Zheng, X.; Wei, K.-X. A triboelectric-piezoelectric hybrid nanogenerator for rotational energy harvesting based on bistable cantilever beam. Energy Convers. Manag. 2024, 300, 117971. [Google Scholar] [CrossRef]
- Du, X.; Chen, H.; Li, C.; Li, Z.; Wang, W.; Guo, D.; Yu, H.; Wang, J.; Tang, L. Wake galloping piezoelectric-electromagnetic hybrid ocean wave energy harvesting with oscillating water column. Appl. Energy 2024, 353, 122081. [Google Scholar] [CrossRef]
- Panyam, M.; Daqaq, M.F. Characterizing the effective bandwidth of tri-stable energy harvesters. J. Sound. Vib. 2017, 386, 336–358. [Google Scholar] [CrossRef]
- Sun, X.; Qian, J.; Xu, J. Compressive-sensing model reconstruction of nonlinear systems with multiple attractors. Int. J. Mech. Sci. 2024, 265, 108905. [Google Scholar] [CrossRef]
- Zhou, K.; Dai, H.L.; Abdelkefi, A.; Ni, Q. Theoretical modeling and nonlinear analysis of piezoelectric energy harvesters with different stoppers. Int. J. Mech. Sci. 2020, 166, 105233. [Google Scholar] [CrossRef]
- Liu, C.; Zhang, W.; Yu, K.; Liao, B.; Zhao, R.; Liu, T. Gravity-induced bistable 2DOF piezoelectric vibration energy harvester for broadband low-frequency operation. Arch. Civ. Mech. Eng. 2023, 23, 208. [Google Scholar] [CrossRef]
- Zhang, J.; Zhang, J.; Zhang, B.; An, Y.; Yang, X.; Hu, N.; Ma, L.; Peng, Y.; Wang, B. Broadband multifrequency vibration attenuation of an acoustic metamaterial beam with two-degree-of-freedom nonlinear bistable absorbers. Mech. Syst. Signal Process. 2024, 212, 111264. [Google Scholar] [CrossRef]
- Li, X.; Zhang, J.; Li, R.; Dai, L.; Wang, W.; Yang, K. Dynamic responses of a two-degree-of-freedom bistable electromagnetic energy harvester under filtered band-limited stochastic excitation. J. Sound. Vib. 2021, 511, 116334. [Google Scholar] [CrossRef]
- Zhang, B.; Li, H.; Zhou, S.; Liang, J.; Gao, J.; Yurchenko, D. Modeling and analysis of a three-degree-of-freedom piezoelectric vibration energy harvester for broadening bandwidth. Mech. Syst. Signal Process. 2022, 176, 109169. [Google Scholar] [CrossRef]
- Kim, J.; Lee, D.; Ryu, H.; Kim, Y.; Kim, H.; Yoon, H.; Kang, M.; Kwak, S.S.; Kim, S. Triboelectric Nanogenerators for Battery-Free Wireless Sensor System Using Multi-Degree of Freedom Vibration. Adv. Mater. Technol. 2024, 9, 2301427. [Google Scholar] [CrossRef]
- Sun, W.-P.; Su, W.-J. Design and analysis of an extended buckled beam piezoelectric energy harvester subjected to different axial preload. Smart Mater. Struct. 2024, 33, 055007. [Google Scholar] [CrossRef]
- Nicolini, L.; Castagnetti, D. A wideband low frequency 3D printed electromagnetic energy harvester based on orthoplanar springs. Energy Convers. Manag. 2024, 300, 117903. [Google Scholar] [CrossRef]
- Rosso, M. Intentional and Inherent Nonlinearities in Piezoelectric Energy Harvesting; SpringerBriefs in Applied Sciences and Technology; Springer: Cham, Switzerland, 2024. [Google Scholar] [CrossRef]
- Stanton, S.C.; McGehee, C.C.; Mann, B.P. Reversible hysteresis for broadband magnetopiezoelastic energy harvesting. Appl. Phys. Lett. 2009, 95, 174103. [Google Scholar] [CrossRef]
- Tang, Y.; Xu, J.-Y.; Chen, L.-Q.; Yang, T. Nonlinear dynamics of an enhanced piezoelectric energy harvester composited of bi-directional functional graded materials. Int. J. Non-Linear Mech. 2023, 150, 104350. [Google Scholar] [CrossRef]
- Mousselmal, H.D.; Cottinet, P.J.; Quiquerez, L.; Remaki, B.; Petit, L. (Eds.) A Multiaxial Piezoelectric Energy Harvester. In Proceedings of the SPIE Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring, San Diego, CA, USA, 10–14 March 2013. [Google Scholar] [CrossRef]
- Lou, H.; Wang, T.; Zhu, S. Design, modeling and experiments of a novel biaxial-pendulum vibration energy harvester. Energy 2022, 254, 124431. [Google Scholar] [CrossRef]
- Alghisi, D.; Dalola, S.; Ferrari, M.; Ferrari, V. Triaxial ball-impact piezoelectric converter for autonomous sensors exploiting energy harvesting from vibrations and human motion. Sens. Actuators A 2015, 233, 569–581. [Google Scholar] [CrossRef]
- Shabanalinezhad, H.; Malcovati, P.; Svelto, C.; Gatti, G. (Eds.) Vibration Energy Harvesting from Planar Excitations in Industrial Machines. In Proceedings of the 2023 IEEE International Conference on Metrology for eXtended Reality, Artificial Intelligence and Neural Engineering, MetroXRAINE 2023—Proceedings, Milan, Italy, 25–27 October 2023. [Google Scholar] [CrossRef]
- Zhao, L.; Hu, G.; Zhou, S.; Peng, Y.; Xie, S.; Li, Z. Magnetic coupling and amplitude truncation based bistable energy harvester. Int. J. Mech. Sci. 2024, 273, 109228. [Google Scholar] [CrossRef]
- Priya, S.; Inman, D.J. Energy Harvesting Technologies; Springer: New York, NY, USA, 2009. [Google Scholar] [CrossRef]
Young’s Modulus [GPa] | Density [kg/m3] | Poisson’s Ratio | Tip Mass [kg] |
---|---|---|---|
3.5 | 1240 | 0.33 | 0.02 |
Mass Ratio | Mode 1 [Hz] | Mode 2 [Hz] | Mode 3 [Hz] | Relative Deviation [%] |
---|---|---|---|---|
∞ | 22.844 * | 26.334 | 26.492 | 0.60 |
10 | 11.350 * | 12.746 | 13.247 | 3.85 |
5 | 15.747 * | 17.254 | 18.503 | 6.99 |
2 | 23.567 * | 24.286 | 28.231 | 15.02 |
1 | 29.432 | 30.669 * | 37.787 | 24.86 |
Rotation Angle [°] | 50 | 60 | 70 | 80 | 90 | 100 | 110 | 120 | 130 |
---|---|---|---|---|---|---|---|---|---|
Mode 1 [Hz] | 28.447 | 28.802 | 29.22 | 29.696 | 30.167 | 29.741 | 29.281 | 28.867 | 28.508 |
Mode 2 [Hz] | 29.725 * | 30.192 * | 30.654 * | 30.691 | 30.296 | 30.796 | 31.382 | 31.973 | 32.544 |
Mode 3 [Hz] | 32.596 | 32.066 | 31.582 | 31.577 * | 32.121 * | 32.776 * | 33.467 * | 34.172 * | 34.864 * |
Part Name | Mass [g] |
---|---|
Nut X4 | 0.91 |
Thrust bearing X4 | 3.42 |
Threaded rod (0.07 m) | 2.62 |
Disc | 20.6 |
Total tip mass | 27.55 |
Frequency [Hz] | 22 | 23 | 24 | 25 | 26 | 27 | 28 |
---|---|---|---|---|---|---|---|
Acceleration [m/s2] | 3.82 | 4.17 | 4.55 | 4.93 | 5.34 | 5.76 | 6.19 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shabanalinezhad, H.; Svelto, C.; Malcovati, P.; Gatti, G. Design of a Two-Degree-of-Freedom Mechanical Oscillator for Multidirectional Vibration Energy Harvesting to Power Wireless Sensor Nodes. Sensors 2024, 24, 4531. https://doi.org/10.3390/s24144531
Shabanalinezhad H, Svelto C, Malcovati P, Gatti G. Design of a Two-Degree-of-Freedom Mechanical Oscillator for Multidirectional Vibration Energy Harvesting to Power Wireless Sensor Nodes. Sensors. 2024; 24(14):4531. https://doi.org/10.3390/s24144531
Chicago/Turabian StyleShabanalinezhad, Hossein, Cesare Svelto, Piero Malcovati, and Gianluca Gatti. 2024. "Design of a Two-Degree-of-Freedom Mechanical Oscillator for Multidirectional Vibration Energy Harvesting to Power Wireless Sensor Nodes" Sensors 24, no. 14: 4531. https://doi.org/10.3390/s24144531
APA StyleShabanalinezhad, H., Svelto, C., Malcovati, P., & Gatti, G. (2024). Design of a Two-Degree-of-Freedom Mechanical Oscillator for Multidirectional Vibration Energy Harvesting to Power Wireless Sensor Nodes. Sensors, 24(14), 4531. https://doi.org/10.3390/s24144531