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Abstract: Robot navigation has transitioned from avoiding static obstacles to adopting socially
aware navigation strategies for coexisting with humans. Consequently, socially aware navigation in
dynamic, human-centric environments has gained prominence in the field of robotics. One of the
methods for socially aware navigation, the reinforcement learning technique, has fostered its advance-
ment. However, defining appropriate reward functions, particularly in congested environments,
holds a significant challenge. These reward functions, crucial for guiding robot actions, necessitate
intricate human-crafted design due to their complex nature and inability to be set automatically. The
multitude of manually designed reward functions contains issues such as hyperparameter redun-
dancy, imbalance, and inadequate representation of unique object characteristics. To address these
challenges, we introduce a transformable Gaussian reward function (TGRF). The TGRF possesses two
main features. First, it reduces the burden of tuning by utilizing a small number of hyperparameters
that function independently. Second, it enables the application of various reward functions through
its transformability. Consequently, it exhibits high performance and accelerated learning rates within
the deep reinforcement learning (DRL) framework. We also validated the performance of TGRF
through simulations and experiments.

Keywords: Artificial Intelligence; machine learning; reinforcement learning; robotic programming;
robots; reward shaping

1. Introduction

Over the years, persistent interest has been shown in robot navigation within the field
of robotics. Initially, research focused on basic obstacle avoidance and random navigation
strategies [1–3]. Advances in navigation techniques have led to simultaneous localization
and mapping (SLAM) [4–6], wherein robots estimate their positions and create maps for
effective movement. Strategies have expanded to address dynamic environments [7–17],
as robotics has consistently pursued advancements in navigation.

However, despite the coexistence of robots and humans, the effective avoidance of dy-
namic obstacles by robots remains a significant challenge. Unlike static environments [18],
socially aware navigation requires the integration of perception, intelligence, and behav-
ior, including adherence to social norms [19,20], necessitating the ability to differentiate
between static objects and humans.

Therefore, two main research directions to address this challenge have emerged: re-
active navigation [9–11,15] and navigation utilizing reinforcement learning (RL) [21–24].
Reactive navigation responds to real-time sensor data, with limitations in predicting future
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movements. RL employs the Markov decision process (MDP) and deep reinforcement learn-
ing (DRL) [12–14,16,17,25] to leverage deep neural networks for well-informed decisions
and enable robots to navigate safely in human environments.

However, the challenges in defining these reward functions become particularly
evident in crowded environments [21,26–28]. These reward functions essentially serve as
the guiding principles for steering the actions of agents by evaluating the potential value
of each action. As a result, human-crafted rewards have become indispensable because
they cannot be set automatically. However, as demonstrated in Figure 1, inadequately
designed reward functions can induce risky behaviors in human-robot interactions. (The
scenario in Figure 1 was simulated as described in Section 4). Moreover, the manual design
of numerous rewards presents several critical issues.

Figure 1. When the robot is equipped with inadequate reward functions in a crowd environment, it
chooses a dangerous route (a red arrow). However, when a transformable Gaussian reward function
(TGRF) is applied, the robot opts for a safe route (a blue arrow). The yellow star represents the goal.

First, the proliferation of distinct reward functions necessitates a redundant number of
hyperparameters [12–14,16,17,25,29–31]. Each reward function requires tailored functions
that align with its specific attributes, such as distance from humans, direction toward the
goal, or even human intentions. This can lead to extensive fine-tuning of hyperparameters
and reward imbalance issues. These problems can inadvertently steer robots toward
humans, thereby increasing the risk of collisions [12]. Therefore, simplifying the reward
functions and designing them for easy comparison and analysis is essential for enhancing
human safety and improving robot performance.

Second, the fixed form of the reward function is neither temporally nor experimentally
efficient. Static, context-specific reward functions have been used [12,14,16,17,32–35]; how-
ever, they often fail to adequately represent their unique characteristics. Even when the
same formula is employed, diverse attributes may not be captured accurately. Addressing
this discrepancy requires extensive empirical design and numerous experiments to achieve
higher performance.
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Third, the hurdles can be extended to effective learning [27]. Crafting appropriate
reward functions remains a significant challenge, which may lead to collisions and hinder
robot learning.

This paper proposes a transformable Gaussian reward function (TGRF) to address
these issues. This approach makes several crucial contributions. (1) A smaller number of
hyperparameters significantly alleviates the burden of parameter tuning. Each hyperparam-
eter has a distinct role, making tuning and the search for the optimal reward function more
efficient. (2) The TGRF demonstrated adaptability to various reward functions through
dynamic shape adjustments. In this paper, by adjusting only one hyperparameter, var-
ious forms of reward functions can be created. Such adaptability is in stark contrast to
previous models [13]. (3) The TGRF exhibits accelerated learning rates, notably in crowded
environments, effectively harnessing the potential of DRL.

To demonstrate the performance of the TGRF, we introduce the key points in reward
shaping and relevant papers for comparison in Section 2. In Section 3, we present back-
ground knowledge and characteristics of the TGRF and introduce the reward functions
using the TGRF. In Section 4, we present two experiments conducted to demonstrate
the performance of the TGRF and present the results of this study’s application to real
environments; finally, we conclude the paper in Section 5.

2. Related Works
2.1. Integration of Prior Knowledge through Human-Delivered Reward Functions

RL is a machine learning approach operating within the MDP [21], where an agent
interacts with a specific environment and receives rewards. The primary objective is to
achieve the maximum cumulative reward. Therefore, the reward function significantly
influences the agent’s decision-making process (policy).

However, in vast state spaces, the transitions between states and rewards may be
unknown or stochastic because agents typically lack complete information about all aspects
of the environment [36]. Moreover, the agent remains unaware of the consequences and
outcomes of the actions until they are executed.

Consequently, in such scenarios, agents require substantial experience to converge
on optimal policies for complex tasks in the absence of prior knowledge. To address this
challenge, research on RL has explored reward shaping, aiming to guide agents toward
making better decisions at appropriate times using suitable reward values [27,28]. This
approach aims to significantly reduce the learning time by fostering convergence to optimal
policies without explicit prior knowledge.

Previous studies extensively explored the incorporation of prior knowledge into
reward functions [26,28,37–40]. However, crafting reward functions encompassing general
prior knowledge, such as the apprehension of collision risks based on proximity to humans
or progress relative to the destination, is challenging because of various environmental
and psychological factors. These factors render it impossible to express knowledge simply
through mathematical formulations.

To address this challenge, recent research has focused on utilizing inverse reinforce-
ment learning (IRL), wherein humans intervene at the intermediate stages to provide
rewards [41]. In addition, a study utilizing natural language to communicate intermediate
reward functions with agents has emerged [42]. These studies involved humans evaluating
the actions of robots as rewards. They demonstrated the transmission of rewards imbued
with prior knowledge to agents during learning, thereby accelerating the learning process
and enhancing algorithm performance.

However, because of their reliance on human intervention, these approaches are
unsuitable for environments that require extensive learning or complex tasks without
direct human involvement. Therefore, there is a growing need for research on reward
shaping that considers prior knowledge and delivers high performance without direct
human intervention.
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2.2. Reward Function Analysis for Human Avoidance in Robot Navigation

In recent studies, reward functions commonly employ different formulas based on
objectives without direct human intervention and can be broadly classified into four
types [12–14,16,17,25,29–31]. These are rewards categorized as follows: reaching the des-
tination, rgoal(st); avoidance of collision with humans, rcol(st); distance from humans,
rdisc(st); and distance from the destination, rpot(st).

rgoal(st) and rcol(st) typically assume consistent values. On the other hand, rdist(st)
consistently imposes a larger negative reward as the distance between humans and robots
diminishes using linear, L2 norm, or exponential functions. This design aligns with the
psychological theory of proxemics [20], which evaluates discomfort based on interpersonal
distances and integrates prior knowledge about the potential discomfort associated with
varying distances between humans and robots.

In addition, rpot(st) incentivizes the robot’s faster arrival at the destination by applying
positive/negative rewards based on changes in the L2 norm distance between the robot and
the destination. These approaches reflect rational strategies by integrating prior knowledge
of discomfort levels associated with distances (proxemics) and apprehension regarding the
probability of collision with humans.

However, studies related to reward shaping and RL argue that it is crucial to verify
whether rewards take appropriate forms and maintain suitable proportions [27,28]. If the
shapes of the rewards are inadequate for the objectives or overly biased, the robot may
steer its learning process in a direction not determined by the algorithm, potentially leading
to the freezing robot problem [43]. In addition, an excessive number of hyperparameters
may hinder the search for optimal performance.

The aforementioned studies experimentally determined the reward functions and
counts of the hyperparameters. As a result, some were excessively simplistic, prevent-
ing researchers from intuitively adjusting rewards through hyperparameters, whereas
others exhibited complex structures that hindered the straightforward modification of
hyperparameters. This resulted in significant time consumption to achieve optimal per-
formance and limitations in adjusting inadequate rewards, necessitating a redesign of the
reward function.

For instance, in [13], researchers designed simple reward functions with redundant
hyperparameters. This resulted in a substantial nine-fold difference between rpred(st) and
rdisc(st). This leads to situations in which the robot favors actions with smaller negative
rewards from rdisc(st) over larger negative rewards from rpred(st), thereby resulting in
intrusion and collision.

This directly affects the learning process, rendering the task of identifying the appropriate
reward function and hyperparameters more challenging and requiring formula modification.

However, the TGRF allows for intuitive and versatile applications with fewer hyper-
parameters. Enabling researchers to adjust rewards intuitively reduces the time required
to explore suitable reward functions, and optimal performance can be ensured by finely
tuning reward balances. To substantiate this claim, we directly compared the reward
function used in socially aware navigation (SCAN) [16], a decentralized structural recurrent
neural network (RNN) (DS-RNN) [17], the Gumbel social transformer + human–human
attention (GST + HH Attn) [13,44–46], and crowd-aware memory-based RL (CAM-RL) [31].

3. Suggested Reward Function

In Section 3.1, we briefly introduce background knowledge regarding the model.
In Section 3.2, we elaborate on the proposed TGRF. Finally, in Section 3.3, we describe the
application of the TGRF to the reward functions within the environment and model of [13].

3.1. Markov Decision Process (MDP)

A Markov decision process (MDP) is a framework that mathematically represents
information to solve problems using reinforcement learning. A MDP consists of six com-
ponents: 〈S,A,P,R,γ,S0〉. The state S represents information about the environment that
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influences the agent’s decisions. The action A refers to the behavior that the agent decides
upon considering S. The transitional probability P represents the transition probability
between the current state and the state at the next time step. In this study, this proba-
bility distribution is unknown to the agent. The reward R evaluates the agent’s action
A. The discount factor gamma is used to adjust the value of future rewards. S0 is the
initial state.

In each episode, the individuals and the robot start from an initial position s0 ∈ S0,
and each selects actions at ∈ A according to their respective policies π(at|st) at time step
t. The robot then receives a reward rt ∈ R and transitions to the next state st+1 based on
the transition probability P(·|st, at). If the robot collides with an individual, reaches its
destination, or exceeds the maximum time T, the episode is terminated, leading to the
beginning of a subsequent episode.

In this study, S includes the robot’s state information, denoted as wt, and the positional
information of humans. wt comprises the robot’s current position (px, py), velocity (vx, vy),
destination (gx, gy), maximum velocity vmax, angle θ, and robot radius ρ. The positional
information of humans includes current and future positions. Defining the positional
information of the i − th person at time step t as ut

i , ut
i consists of the person’s current

position (pi
x, pi

y). Additionally, using a trajectory-prediction algorithm [44], we can predict
future positions from time steps t + 1 to t + K based on the positional information of
humans. This predicted state information is defined as ût+1:t+K

1 . Therefore, st can be
defined as st = [wt, ut

1, ût+1:t+K
1 , . . . , ut

n, ût+1:t+K
n ] encompassing wt and the positional

information of humans from 1 to n.
Reward functions R can vary depending on the objective. Positive/negative rewards

are given based on a design specified by the researcher at each time step. However, RL
is not conducted based on individual reward values but rather on multiple accumulated
rewards. Therefore, small changes in individual rewards influence the total sum of the
rewards, the prioritization of the agent’s actions, performance, and learning speed. That
is why meticulous reward shaping by the researcher is required, and parameter tuning is
challenging for researchers. This paper proposes the TGRF as a powerful reward function
to alleviate these problems.

3.2. Transformable Gaussian Reward Function (TGRF)

TGRF leverages the characteristics of a normal distribution [47], which allows it to
transform into various shapes using only two hyperparameters, mean (µ) and variance (σ).
This adaptability enhances the model’s flexibility to fit diverse prior knowledge and apply
it to reward functions, reducing the burden on researchers for hyperparameter tuning and
aiding in the swift identification of appropriate hyperparameters. The normal distribution,
N(µ, σ2), is symmetric around µ, peaks at µ, and its width is determined via σ, making it
highly versatile in shape with just these two parameters.

TGRF(hTGRF, σTGRF) =
hTGRF · N(µTGRF, σ2

TGRF)

Cnorm
,

Cnorm = max N(µTGRF, σ2
TRGF)

(1)

In (1), the TGRF involves three hyperparameters: hTGRF, representing the weight of
TGRF; µTGRF, meaning the mean; and σTGRF, indicating the variance. However, in this
work, we assumed that the mean µTGRF = 0 because µTGRF is less important than other
hyperparameters and 0 in normal cases. Thus, the TGRF can actually be adjusted with
two hyperparameters.

Cnorm ensures that the TGRF attains a maximum value of 1, irrespective of σTGRF. This
allows the scaling of the TGRF solely by hTGRF, enabling researchers to intuitively control
its maximum value.

Note that the scaling of the reward function is closely related to the prioritization
of actions mentioned in Section 3.1. The reward functions discussed in Section 2.2 were
not normalized, and their scaling maximum values were adjusted with more than one
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hyperparameter. Consequently, it was challenging for researchers to experimentally balance
these reward functions, leading to performance degradation, slower learning speeds,
and the freezing robot problem [43]. We designed the TGRF to eliminate as many redundant
hyperparameters as possible, allowing adjustments to be made independently with a single
parameter, making it easier to adjust the balance.

σTGRF determines the transformability. As limσTGRF→∞ TGRF(hTGRF, σTGRF), it takes on
a constant form insensitive to changes in xTGRF, while as limσTGRF→0 TGRF(hTGRF, σTGRF), it
resembles an impulse function. This versatility enables the creation of diverse forms of
the TGRF, such as constant, linear, nonlinear, and Gaussian, that are adaptable to specific
objectives. As a result, it ultimately represents a shape similar to that shown in Figure 2.

Figure 2. The TGRF. The X-axis denotes the X-position in meters, the Y-axis represents the Y-position
in meters, and the Z-axis indicates negative reward when hTGRF = 1, σTGRF = 2.

The reward functions described in Section 2.2 have limited flexibility. In particular,
for reward functions that continuously change according to variables such as distance,
finding the optimal shape is very challenging. Due to these problems, researchers must
redesign and tune the reward functions to achieve better performance. The TGRF offers
versatility in generating various shapes and better performance by only adjusting one
hyperparameter. This significantly reduces the time and effort required by researchers
while enabling fine-tuning to match the specific characteristics of objects.

Figure 3 illustrates the creation of different shapes using the same TGRF by simply
adjusting σTGRF. Figure 3a shows a TGRF that generates a continuous Gaussian distribution,
making it suitable for moving objects or humans via the application of varying negative
rewards. Figure 3b shows the discrete column-like shape. This configuration is suitable for
stationary reward functions and objects. These reward functions will be demonstrated in
practical applications in Section 3.3, and the results of their application will be shown in
Section 4.2.

3.3. Application of Transformable Gaussian Reward Function (TGRF)

In this subsection, we present an example of applying the TGRF to the reward functions
mentioned in Section 2.2.

Reward r(st, at) is categorized into five types. First, rgoal(st) = 10 represents the
positive reward when the robot successfully reaches its destination. Second, rcol(st) = −10
serves as a negative reward incurred upon colliding with another individual. Third, rdisc(st)
represents the negative reward for entering a danger zone. Fourth, rpot(st) corresponds to
the positive/negative reward contingent on the change in distance to the destination Sgoal .
Finally, rpred(st) denotes the negative reward invoked when entering a prediction.
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Figure 3. Transformability of the TGRF. The X-axis denotes the X-position in meters, the Y-axis
represents the Y-position in meters, and the Z-axis indicates a negative reward. In (a), hTGRF = 1,
σTGRF = 5. In (b), hTGRF = 1, σTGRF = 5000.

rdisc(st) is designed to prevent collisions with humans and maintain a safe distance.
In Figure 4a, the negative reward rdisc(st) is imposed when the robot enters the danger
zone (dmin is within ddisc) determined using the nearest human distance, denoted as dmin.
The formula used is as follows:

rdisc(st) = TGRF(hdisc, σdisc) (2)

In (2), hdisc and σdisc have different roles. Tuning hdisc directly scales the reward
function, establishing a linear correlation with rdisc(st), thereby enabling adjustment of the
overall reward balance to prioritize driving tasks. σdisc regulates the breadth of the Gaussian
negative reward concerning the distance between humans and the robot. This enables the
robot to react more sensitively or less sensitively to the distance from humans. Through
experiments, we found that hdisc is related to the probability of collisions with humans,
while σdisc affects the understanding of human movements and intentions. Therefore,
by tuning the hyperparameters according to the test cases, we were able to achieve higher
performance than the baseline. (This will be shown in Section 4.2).

The potential reward rpot(st) represents the positive reward associated with the poten-
tial field and is defined as follows:

rpot(st) = TGRF(1.5 · ∆d, σpot),

∆d = (−dt
goal + dt−1

goal)
(3)

rpot(st) plays a crucial role in guiding a robot toward its destination. However, high
values of rpot(st) can lead to the positions of humans being ignored, while low values can
lead to the freezing robot problem [21]. In addition, we found that continuously changing
reward functions resulted in both of these drawbacks. Therefore, we aimed to maintain a
constant TGRF as shown in Figure 4b by applying hpot = 1.5 · ∆d and high σpot.
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Figure 4. TGRF is applied to reward functions. The X-axis denotes the X-position in meters, the Y-axis
represents the Y-position in meters, and the Z-axis indicates a negative reward value. The central
cylinder represents rcol , and the surrounding distribution represents rdisc(st). Beyond ddisc, rdisc(st)

becomes 0 (st /∈ Sdanger zone). In (a), hTGRF = 8, σTGRF = 3. In (b), hTGRF = 10, σTGRF = 1000.

rpred(st) is the negative reward for the prediction and is defined as follows:

ri
pred(st) = min

k=1,...,K

(
1

t+k
i

rcol

2k

)
,

rpred(st) = min
i=1,...,n

ri
pred(st)

(4)

In (4), rpred(st) is used only in models that employ trajectory predictions. rpred(st)
denotes the negative reward value when the robot is positioned along the trajectory of
the i-th person. 1t+k

i indicates whether the robot is in the predicted position of the i-th
person at time t + k or not. Thus, rpred(st) takes the smallest negative reward among all
individual trajectory negative rewards that the robot takes. In our experiments, we adopted
rpred(st) from [13] to demonstrate the performance enhancement even with different re-
ward functions.

The final definition of the reward function is as follows:

r(st, at) =


+10, if st ∈ Sgoal

−10, if st ∈ Scollision

rpred(st) + rdisc(st), if st ∈ Sdanger zone

rpred(st) + rpot(st), otherwise

(5)
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In summary, the TGRF offers the distinct advantage of intuitive and efficient modifica-
tion of the reward function with fewer hyperparameters. This enables the robot to make
rational decisions and reduces time-consuming fine-tuning tasks.

4. Simulation Experiments
4.1. Environment and Navigation Methods
4.1.1. Simulation Environment

We employed a 2D environmental simulator as in previous studies [13]. This simulator
features a 12 × 12 m space with a 360° field of view and 5 m sensor range for LiDAR. A fixed
number of humans (20) was used to represent a crowded setting.

px[t + 1] = px[t] + vx[t]∆t,

py[t + 1] = py[t] + vy[t]∆t
(6)

Both humans and robots were operated using holonomic kinematics to determine
their velocities (at = [vx, vy]m/s) along the x- and y-axes. Holonomic kinematics refers
to a state in which degrees of freedom can move independently without any constraints.
This implies that robots and machines can move without limitations on their position or
orientation. As a result, the action space of a robot is continuous, allowing both robots and
humans to immediately achieve their desired speed within a time frame of ∆t, assuming
they operate within the maximum speed limit. Therefore, the positions of humans and
robots are continuously updated, according to (6).

The robot has attributes such as a size of ρ = 0.3 m and a maximum speed of
vmax = 1.0 m/s. Humans also have characteristics such as a size ranging from 0.3 to 0.5 m
and a maximum speed varying between 0.5 and 1.5 m/s. In addition, the locations and des-
tinations of the robot and humans were randomized, and the destinations were set to not be
excessively close. Humans perform subsequent actions based on their own characteristics
and information about the current positions and velocities of others.

4.1.2. Navigation Methods

To demonstrate the superiority of the TGRF across various models, experiments were
conducted using a total of five learning-based models employed in [13,17]:

• DS-RNN: A model utilizing an RNN. However, it does not predict trajectories.
• No pred + HH Attn: Attention-based model excluding trajectory prediction (rpred = 0).
• Const vel + HH Attn: The experimental case assumes that the trajectory-prediction

algorithm predicts the trajectories to move at a constant velocity.
• Truth + HH Attn: This experiment assumes that the robot predicts the actual human

trajectory.
• GST + HH Attn: Scenarios in which the robot predicts the human trajectory nonlinearly

using the GST.

However, in the simulations, humans moved using a reaction-based model, which is
different from the aforementioned methods. Humans exchanged their location information
with each other and calculated velocities based on their positions, engaging in collision
avoidance by altering their speed and direction using ORCA and SF [9–11].

Random seeding was applied during training, resulting in varying outcomes for
each training episode. To handle the varying outcomes, multiple training runs were
conducted with a total time step of 2 × 107 for the DS-RNN [17] and 1 × 107 for the other
algorithms [13,16,31]. The learning rate was set to 4 × 10−5 for all policies. Subsequently,
test data were acquired from 500 test episodes. The evaluation metrics applied to the test
data included the success rate (SR), average navigation time (NT) in seconds, path length
(PL) in meters for successful episodes, and intrusion time ratio (ITR).

The complete source code is available at https://github.com/JinnnK/TGRF, accessed
on 18 February 2024.

https://github.com/JinnnK/TGRF
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4.2. Results
4.2.1. Results in Different Navigation Methods

We compared the performance of the TGRF to the performance of the reward function
presented in [13]. Table 1 shows the performance when individuals adhered to ORCA,
whereas Table 2 outlines the performance when adhering to SF. The hyperparameters were
set to hdisc = 0.25, σdisc = 0.2, ddisc = 0.5, hpot = 1.5, and σpot = 1000. From Tables 1 and 2,
and Figure 5, we can identify three impacts of the TGRF.

Table 1. Navigation results using the reward function from [13] and the TGRF. Humans followed
ORCA.

Reward Navigation Method Mean (Sigma) of SR SR (%) NT (s) PL (m) ITR (%)

DS-RNN 35.5 (7.697) 44.0 20.48 20.58 15.45
No pred + HH Attn 59.636 (4.848) 67.0 17.49 20.30 17.22

Without Const vel + HH Attn 65 (8.023) 81.0 17.34 21.95 6.15
TGRF Truth + HH Attn 5.545 (1.616) 5.0 21.60 23.89 14.83

GST + HH Attn 77.1 (5.718) 88.0 14.18 20.19 7.38

DS-RNN 30.5 (4.843) 40.0 27.11 25.19 12.19
With No pred + HH Attn 59.364 (6.692) 72.0 18.17 21.92 14.16
TGRF Const vel + HH Attn 87.909 (3.029) 92.0 16.38 22.33 5.08
(Ours) Truth + HH Attn 84.909 (4.776) 92.0 17.13 22.52 5.30

GST + HH Attn 94.091 (2.843) 97.0 17.63 23.81 3.92

Table 2. Navigation results using the reward function from [13] and the TGRF. Humans followed SF.

Reward Navigation Method Mean (Sigma) of SR SR (%) NT (s) PL (m) ITR (%)

DS-RNN 29.8 (5.231) 36.0 23.26 27.13 13.38
Without No pred + HH Attn 12.091 (8.062) 28.0 26.52 34.98 12.78
TGRF Const vel + HH Attn 92.182 (3.588) 96.0 14.74 21.49 5.24

GST + HH Attn 91.636 (2.267) 95.0 13.74 20.47 5.37

DS-RNN 48.6 (9.013) 62.0 22.48 25.26 10.14
With No pred + HH Attn 77.364 (6.079) 87.0 16.19 21.95 13.43
TGRF Const vel + HH Attn 95.273 (1.911) 98.0 17.00 23.55 5.39
(Ours) GST + HH Attn 92.909 (3.579) 96.0 15.37 21.91 5.81

Figure 5. Comparison of scenarios with and without the TGRF. Yellow circles represent robots, blue
circles represent humans within the sensor range, red circles represent humans outside the sensor
range, and orange circles in front of the blue circles indicate trajectories predicted by the GST.

First, the TGRF results in higher performance by adjusting only two hyperparameters.
In previous research [13], there was a significant deviation between each reward value.
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This led to the agent ignoring actions with low reward values, resulting in the agent failing
to learn appropriate actions for different situations and thus producing a low SR.

In contrast, TGRF maintained an appropriate balance between each reward by adjust-
ing hTGRF, guiding the agent to choose actions suitable for the situation. As a result, SR
improved in most navigation methods. Notably, Table 1 shows that the TGRF achieved an
average SR of 94.091%, whereas [13] attained only 77.1% with the GST + HH Attn policy,
marking a notable 17% increase.

On the other hand, DS-RNN [17] showed poor performance regardless of the reward.
This is analyzed to be due to the navigation method lacking sufficient information required
for learning, given the complexity of the environment, preventing convergence to an
optimal policy.

Second, TGRF demonstrates suitable performance for socially-aware navigation. ITR
represents the proportion of time during which the robot invades a safe distance from peo-
ple throughout the entire navigation. In Table 1, TGRF showed improved ITR performance
in all metrics. This improvement is attributed to TGRF’s formula based on proxemics [20]
and a Gaussian distribution, unlike the linear rdisc in [13].

This signifies that the TGRF effectively incorporates prior knowledge based on the
role of the reward function, indicating resilience in the freezing robot problem [43]. Conse-
quently, it is evident that the robot demonstrates high performance by taking appropriate
actions according to the situation.

Third, the TGRF leads to enhanced recognition of human intent and collision avoid-
ance. Figure 5a shows the robot’s route when TGRF was not applied. The robot struggled
when confronted with crowds. Notably, in the test cases, the robot ventured into the crowd,
resulting in unintended collisions with humans while attempting to navigate the crowd.
This means that the robot selected aggressive or impolite behaviors, such as sidestepping,
to avoid human and unintentional collisions or made risky decisions to reach a destination
faster, resulting in collisions. This behavior reflects a deficiency in understanding the
broader intentions of humans.

However, the robot in Figure 5b proactively positioned itself behind the crowd before
converging at a single point. This means that reward functions using TGRF were well
balanced, enabling the robot to navigate effectively without colliding with individuals.

Notably, when Truth + HH Attn was used, ref. [13] showed an SR of 5% as the policy
did not converge optimally, whereas TGRF showed a high learning speed with an SR of
92% under the same amount of training episodes.

Consequently, this section signifies that the TGRF effectively incorporates prior knowl-
edge and that its priorities are well integrated into the policy. This suggests that the
performance of the algorithm can be further enhanced when the TGRF is applied. Further
evidence of this enhancement is reflected in the results in Tables 1 and 2, where the average
SR and standard deviation show similar or superior performance compared with previous
iterations. In the other test cases, we observed that the robot selected a more secure and
effective route rather than a faster and more dangerous route.

4.2.2. Performance Comparison with Other Reward Functions

In this section, we applied the reward functions from other studies [13,16,31] intro-
duced in Section 2.2. The navigation method employs GST + HH Attn. Participants adhered
to the ORCA approach by recording SR, NT, PL, and ITR every 2000 episodes. The total
number of episodes conducted was 20,000 for the GST + HH Attn. In this section, two
characteristics of TGRF can be identified.

First, we observed that the TGRF led to an overall performance improvement com-
pared with the other reward functions. As shown in Figure 6a, the TGRF was able to
drive the algorithm’s performance up to a maximum of 95% over 16,000 total episodes.
Conversely, the other reward functions achieved a maximum SR of 90%. This indicates that
the TGRF harmonizes appropriately with the other reward functions, assuming a shape that
aligns with the role of the rewards, thereby eliciting the algorithm’s maximum performance.
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As depicted in Figure 6b, the NT of TGRF decreased with repeated learning, ultimately
confirming the second lowest NT. Correspondingly, in Figure 6c, the second lowest PL
was observed. This is associated with the ITR, as lower NT and PL imply that the robot
tolerates negative rewards owing to rdisc(st) reaching the destination, resulting in a higher
ITR. For instance, in the orange graph, the highest ITR, along with the lowest NT and PL
values, can be observed. As shown in Figure 5a, this leads to the choice of shorter and
riskier paths, increasing the likelihood of not understanding human intentions and a higher
possibility of collisions. However, as shown in Figure 6d, the model incorporating the
TGRF maintained the lowest ITR in most cases. This demonstrates that the TGRF selects the
most efficient and safe paths compared to the other models while maintaining the highest
SR, reflecting the intentions of the algorithm, as shown in the results of Figure 5b.

Second, Figure 6 demonstrates the significant advantage of the TGRF in terms of
learning speed compared to the other reward function. As shown in Figure 6a, the three
models reached saturation after 6000 episodes. At this point, the model with the TGRF
achieved the highest SR. This indicates that the TGRF contributes to faster learning speeds.

However, the TGRF has limitations in crowded environments. It does not inherently
enhance the performance of the core algorithms. Comparable performance was achieved
for certain policies, as shown in Tables 1 and 2. This suggests that the TGRF expedites the
algorithm to achieve optimal performance rather than enhancing the algorithm itself.

Figure 6. Comparison of performance among four types of reward functions. The blue line represents
the reward function incorporating the TGRF, while the orange line corresponds to the reward function
in [13], green reflects [16], and red signifies [31]; (a) denotes SR, (b) represents NT, (c) stands for PL,
and (d) signifies ITR.

5. Real-World Experiments

This study extended beyond simulations to real-world experiments. The model trained
using the unicycle approach was applied to a physical robot in a real environment. Unicycle
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kinematics presents limitations in terms of direction and position control when compared
to holonomic kinematics. Our experimental setup consisted of a host computer equipped
with an Intel (Santa Clara, CA, USA) i5-10600 processor at 3.30 GHz and an NVIDIA (Santa
Clara, CA, USA) RTX 3070 GPU, which was integrated with a Turtle-bot3 (Seongnam-si,
South Korea). A LiDAR sensor, LDS-01 (Seongnam-si, South Korea), played a pivotal
role in human detection and robot position estimation. Robot positioning relies on SLAM
localization, and human detection is accomplished using a 2D people detection algorithm
based on 2D LiDAR data [35].

Although our study assumed the absence of static obstacles other than humans, our
real-world experiments were conducted in a confined space measuring approximately
3 × 5 m with static obstacles. These experiments involved scenarios in which the robot
navigated between predefined start and destination points and encountered one to four
pedestrians along its path. The maximum speed was approximately 0.6 m/s, and the
investigation covered scenarios involving four moving individuals.

As shown in Figure 7a, the robot faces diagonally upward as the pedestrian moves
from right to left. In this scenario, the robot rotated to the left, aligning with the pedestrian’s
direction of movement, instead of moving behind (to the right) the human. This decision
appears rational because both the destination and the robot’s current orientation are ori-
ented diagonally upward, making a leftward maneuver the most efficient choice when
considering the human direction, speed, and destination. Notably, in another experiment
involving three individuals, the robot was observed to halt temporarily instead of moving
to the left.

In Figure 7b, the robot encounters a pedestrian walking diagonally from left to right.
In response, the robot navigates to the left to avoid obstructing the path of the pedestrian.

In Figure 7c, the robot faces a human walking from left to right. Similarly, it predicts
the human’s trajectory and executes a leftward turn to avoid collisions while approaching
the destination.

Figure 7. Evasive actions performed by a robot in real-world scenarios and corresponding renderings
with four humans (from left to right). Green arrows represent the movement path of humans, while
red arrows indicate the movement path of the robot. In addition, yellow circles indicate robots, green
circles represent humans, and red stars indicate destinations. These illustrations showcase avoidance
strategies employed by the robot as it encounters successive individuals: (a) first, (b) second, (c) third,
and (d) fourth human.

In Figure 7d, the robot encounters a human crossing diagonally from left to right near
the destination. The robot smartly avoids humans by initially turning left, avoiding the
pedestrian, and then turning right to reach its destination.

These actions underscore the robot’s ability to make real-time decisions based on a
dynamic environment, considering factors such as the human path, velocity, and proximity
to the destination. The robot’s avoidance strategies prioritize efficiency while maintaining
safety and are influenced by various factors, including its current orientation and the over-
all context of the situation. These real-world experiments verified the adaptability of the
model in complex and dynamic environments, where human-robot interactions necessitate
responsive and context-aware behavior. Comprehensive renderings and additional experi-
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mental videos are available at https://youtu.be/9x24k75Zj5k?si=OtczdVXPUnbGwpv-,
accessed on 30 August 2023.

Two primary limitations were encountered during this experiment. The first is the
computation load: The use of DNNs for action and trajectory predictions significantly
increases the computational demands. Considering the number of pedestrians, particularly
for trajectory prediction, the time required for the next action was approximately 0.22 s.
This resulted in irregular robot movements and delayed pedestrian responses. The second
are the physical constraints: The accuracy of human detection and prediction is affected
by sensor noise, limitations in detection performance, and challenges in determining
human angles. These factors lead to occasional misidentification of obstacles as humans or
limitations in the precision of human location information, thereby reducing the accuracy
of trajectory prediction. In addition, noise from the LiDAR sensor and location information
errors caused by the movement of the robot accumulated over time, resulting in inaccuracies
in the location values as the experiment progressed.

6. Results and Future Research

This paper introduces a TGRF specifically designed for robots navigating crowded
environments. The TGRF offers several advantages, including high performance with
minimal hyperparameters, adaptability to diverse objectives, and expedited learning and
stabilization processes. These claims are supported by the success rates achieved and the
algorithm’s enhanced ability to discern human intentions when compared to previous
reward functions.

However, challenges have emerged in both the simulations and real-world exper-
iments. In the simulations, these challenges involved sensitivity to hyperparameters,
algorithmic limitations, a trade-off correlation between SR and NT, and the absence
of static obstacles. In the real-world tests, the challenges included sensor noise and
physical constraints.

Hence, in future research, we propose two key strategies. First, we will apply the
TGRF to various environments and different objects. While our study demonstrates its ef-
fectiveness primarily with human rewards, we plan to expand our experiments by applying
the TGRF to diverse objects, such as walls, obstacles, and drones. Second, we will devise a
TGRF that considers physical limitations. Although the TGRF performs exceptionally well
under ideal conditions, its performance decreases in reality due to computational load and
physical issues. Therefore, we aim to implement a dynamically adaptive TGRF that adjusts
according to the situation by incorporating knowledge regarding these physical limitations.
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