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Abstract: Cooperative localization (CL) for air-to-ground robots in a satellite-denial environment
has become a current research hotspot. The traditional distance-based heterogeneous multiple-
robot CL method requires at least four unmanned aerial vehicles (UAVs) with known positions.
When the number of known-position UAVs in a cluster collaborative network is insufficient, the
traditional distance-based CL method has a certain inapplicability. A novel adaptive CL method
for air-to-ground robots based on relative distance constraints is proposed in this paper. Based on
a dynamically changing number of known-position UAVs in the cluster collaborative network, the
adaptive fusion estimation threshold is set. When the number of known-position UAVs in the cluster
cooperative network is large, the real-time dynamic topology characteristics of multiple robots’ spatial
geometric configurations are considered. The optimal spatial geometric configuration between UAVs
and unmanned ground vehicles (UGVs) is utilized to achieve a high-precision CL solution for UGVs.
Otherwise, in the event that the number of known-position UAVs in a cluster collaborative network
is insufficient, distance observation constraint information between UAVs and UGVs is retained
in real time. Position observation equations for UGVs’ inertial navigation system (INS) have been
constructed using inertial-based high-precision relative position constraints and relative distance
constraints from historical to current times. The experimental results show that the proposed method
achieves adaptive fusion estimation with a dynamically changing number of known-position UAVs
in the cluster collaborative network, effectively verifying the effectiveness of the proposed method.

Keywords: cooperative localization; relative distance; relative position; spatial configuration

1. Introduction

In the past decades, UAVs and UGVs, as highly intelligent agents, have been widely
used in the military and civilian fields due to their strong autonomy and flexibility. For
example, in the military field, they are used for strategic strikes [1,2], battlefield environ-
ment perception and monitoring [3,4], mission rescue [5], and other tasks. In the civilian
field, this technology is used for production, express transportation [6], etc. Guided by the
intelligent collaborative control strategy, clusters of multiple agents composed of UAVs and
UGVs can fully leverage the advantage of resources and effectively improve the success
rate of tasks in complex environments. Tasks that cannot be completed by a single agent
can be accomplished by way of multiple agents’ cooperation.

High-precision navigation information plays an important role in completing the
above tasks in UGVs and UAVs. INS is mounted on the UGVs and UAVs, as an independent
dead-reckoning system, because navigation positioning accuracy is difficult to achieve
in practical applications due to inertial measurement unit (IMU) error accumulation [7].
Thus, INS is often combined with in-vehicle navigation sensor information to improve
navigation positioning performance. When the satellite signals are available, the position
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and velocity information output from the satellite receiver are employed as observation
vectors to form the inertial/satellite loosely integrated navigation system [8]. In addition,
the original navigation information obtained from the satellite receiver, such as pseudo-
distance and carrier phase, are used to further improve UGVs’ positioning accuracy [9,10].
The actual operating environments of the UGVs are complex and changeable, and the
satellite signals are easily disturbed by external environments, which leads to the rejection
of satellite signals.

Apart from satellite receivers, internal navigation sensors such as the wheel speed
odometer (odo), vision, and radar are widely used in UGVs to provide accurate speed
and relative pose constraint information. Many researchers employ the onboard internal
navigation sensor information as the system observation constraints to suppress the di-
vergence of INS error and improve the UGV’s positioning performance [11,12]. However,
vision- and radar-based relative pose processing algorithms have certain requirements for
the operating environment characteristics. When the UGV operates in an area with poor
outdoor environment characteristics, the positioning performance of the UGV is difficult
to ensure. At the same time, such algorithms have higher requirements for the hardware
performance of navigation processors. The navigation system requires a large amount of
computation, making it difficult to meet practical application requirements in terms of the
real-time performance of navigation algorithms, to a certain extent. In addition, due to the
influence of the odometer scale’s factor error, the positioning error of a UGV accumulates
and diverges using only the INS/odo loosely integrated navigation system.

In addition to onboard internal navigation sensor information, the massive and rich
external relative distance perception information in the cluster collaborative network can
serve as observation constraints to improve the positioning accuracy of UGVs in a satellite-
denial environment. Under the condition of time synchronization between UAVs and UGVs
in the cluster cooperative network, distance perception information can be obtained by us-
ing the time-of-arrival (TOA) or time-difference-of-arrival (TDOA) [13,14] methods through
a datalink system. Many researchers in the field of cooperative navigation have proposed a
series of CL methods to realize multi-robot high-precision CL. For example, combined with
onboard magnetic sensor information, Yang proposed a multi-robot cooperative navigation
method based on relative distance and magnetic measurement observations [15]. Magnetic
sensor information and relative distance information are used as the system observations
to construct position observation equations. The positioning error of the dead-reckoning
system is effectively suppressed. In addition, Qu Y [16] proposed a CL method for low-cost
multi-UAV systems using a relative distance measurement. In the case of at least four
UAVs with known positions in the cluster cooperative network, the relative distance in-
formation between known-position UAVs and follower UAVs to be located is used as the
system observations to construct position observation equations. The principle of spherical
intersection is employed to obtain the position closed-form solution of the follower UAV.
The positioning performance of the follower UAV in a satellite-denial environment can
be effectively improved using the proposed method. In addition, some researchers have
applied the thinking logic of the satellite spatial geometry configuration to outdoor cluster
UAV formation [17]. By selecting the optimal configuration in real time for CL calculation,
the positioning accuracy of the follower UAV in a satellite-denial environment can be
improved to some extent.

The above CL methods require at least four UAVs in a cluster cooperative network with
known positions. When the number of known-position UAVs in the cluster cooperative
network is small and insufficient, traditional distance-based CL methods have a certain
inapplicability. In response to the limited number of known-position UAVs in a cluster
cooperative network, the airborne magnetic sensor, speed measured sensor, barometric
altimeter, and relative distance information are widely employed by researchers to achieve
a high-precision CL solution [7].

From the above analysis, we can conclude that current mainstream relative distance-
based CL methods are mainly based on the difference in the number of known-position
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UAVs; thus, the corresponding cooperative localization methods are studied. Considering
the number of known-position UAVs in an actual cluster cooperative network is dynami-
cally changed due to being target-driven. Traditional distance-based CL methods based
on the specific number of known-position UAVs are somewhat unsuitable. Therefore, this
article takes a cluster collaborative network composed of multiple UAVs and multiple
UGVs as an example, aimed at the dynamic change in the number of known-position UAVs
in a cluster collaborative network, and a novel adaptive CL method for heterogeneous air-
to-ground robots based on relative distance constraints is proposed in this paper. According
to the dynamic change in the number of known-position UAVs in a cluster collaborative
network, the proposed method can be dynamically switched by setting the corresponding
fusion threshold. On the basis of constructing a refined error model of UGVs’ INS, when
the number of known-position UAVs is large, the optimal spatial geometric configuration
is selected in real time using a spatial vector tetrahedron volume minimization mechanism.
The relative distance observations between known-position UAVs and UGVs to be located
under the optimal spatial geometric configuration are used to realize high-precision CL
calculation. On the contrary, when the number of known-position UAVs in a cluster col-
laborative network is insufficient, the position observation equations of the UGV INS are
constructed by saving relative distance observation data between known-position UAVs
and UGVs. Utilizing characteristics of high-precision relative position constraints of inertia-
based measurements in a short time period, position observation equations of the UGV
INS are constructed using relative distance constraints from historical time to current time
and inertia-based relative position constraints. Finally, the adaptive extended Kalman
filter (AEKF) is designed to perform optimal fusion estimation of the system state vector.
The method proposed in this paper can achieve high-precision adaptive CL solution with
dynamic change in the number of known-position UAVs in a cluster collaborative network.
Thus, the innovations of this paper are summarized as follows:

1. Aiming at dynamic change in number of known-position UAVs in a cluster collabora-
tive network driven by tasks, an adaptive CL method for heterogeneous air-to-ground
robots based on relative distance constraints is proposed in this paper. The proposed
method can achieve adaptive fusion estimation and high-precision CL solution with
dynamic change in the number of known-position UAVs.

2. In case of an insufficient number of known-position UAVs in a cluster collabora-
tive network, and without the assistance of internal navigation sensor information,
the proposed method makes full use of distance constraints from historical times
and inertia-based relative position constraints to achieve high-precision CL solution
for UGVs.

3. By introducing an adaptive fusion threshold, dynamic switching of the proposed
method in various CL scenarios can be achieved depending on the number of known-
position UAVs in a cluster collaborative network. The system’s adaptive fusion ability
is effectively improved using the proposed method.

The rest of the paper is organized as follows. In Section 2, the framework of the
proposed adaptive collaborative positioning method is introduced. The proposed adap-
tive cooperative localization method under various collaborative positioning scenarios is
designed in Section 3. In Section 4, the positioning performance of the proposed method
against the traditional distance-based CL method and mainstream CL method is compared
and analyzed. Finally, the conclusion of this study is summarized in Section 5.

2. The Framework of Proposed Adaptive Collaborative Positioning Method

In order to better describe the proposed adaptive collaborative positioning method,
the geographic coordinate system is defined as a navigation coordinate system in this paper.
In the navigation coordinate system, the x-axis points to the east direction, the y-axis points
to the north direction, the z-axis is determined by the right-hand rule. The origin of the
navigation coordinate system is located at the centroid of the carrier. The front and right
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directions in the body coordinate system are pointing to the x-axis and y-axis, respectively,
and the z-axis is determined by the right-hand criterion.

In this paper, a typical target-driven CL scenario for air-to-ground cluster robots based
on relative distance constraints in a practical environment is considered, as shown in
Figure 1. Indeed, the cluster collaborative network has N heterogeneous robots, of which
M are UAV nodes and the rest are UGV nodes. In Figure 1, (xi

u, yi
u, zi

u), i = 1, 2, . . . , M is
the location of the UAV, (xj

G, yj
G, zj

G), j = 1, 2, . . . , N − M is the location of the UGV to be
located, and dui

Gj is the distance between the UAV node i and UGV node j.
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Figure 1. Target-driven cooperative localization scenario for air-to-ground cluster robots based on
relative distance constraints.

In the above target-driven air-to-ground robot cooperative positioning scenario, the
aerial UAVs fly in the available area of satellite signals and are equipped with low-precision
Micro-Electro-Mechanical System IMU(MEMS-IMU) sensors, single-point Global Posi-
tioning System (GPS) receivers, and datalink communication devices. The UAVs adopt
INS/GPS loosely integrated navigation systems to obtain high-precision position informa-
tion. Due to the influence of external environmental factors such as satellite signal occlusion
and multipath effects, satellite signals are denied for UGVs. At the same time, the UGVs are
equipped with low-precision MEMS-IMU sensors and datalink communication devices.

We assume that the cluster cooperative network is time-synchronized using the
datalink time precision alignment method [18,19]. In the process of CL, UAVs share
and transmit their position information to UGVs in real time by datalink system terminals.
UGVs receive UAVs’ high-precision position information and measure relative distance
perception information with them by the TOA or TDOA method. The UAVs’ high-precision
position information and related relative distance constraint information are employed to
achieve high-precision CL calculation for UGV. We consider that, in a practical environ-
ment, the number of known-position UAVs is influenced by being target-driven, which
is dynamically changed over time. In order to realize a high-precision adaptive CL solu-
tion for UGVs under dynamic change in the number of known-position UAV nodes, an
adaptive cooperative localization method for heterogeneous air-to-ground robots based on
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relative distance constraints is proposed in this paper. By setting the adaptive adjustment
threshold based on the number of known-position UAV nodes, a high-precision adaptive
CL solution for UGVs is realized. When the number of known-position UAVs is large
in a cluster cooperative network, the spatial geometric configuration advantage between
known-position UAVs and UGVs is utilized. The geometric dilution of precision (GDOP)
optimization mechanism is used to select the optimal spatial geometric configuration. The
UAVs’ position and related distance observation information under the optimal spatial
geometric configuration is employed to construct a position observation equation of the
UGV INS. Otherwise, in the case that the number of known-position UAVs in the cluster co-
operative network is insufficient due to being target-driven, distance observation constraint
information between known-position UAVs and UGVs from historical times are maintained
in real time. The position observation equations of the UGV INS are constructed using
inertia-based high-precision relative position constraints and relative distance constraints
from historical times to the current time. The high-precision position closed-form solution
of UGV is obtained using the proposed method when the number of known-position UAV
nodes is insufficient. The method proposed in this paper has a good adaptive collabo-
rative fusion ability with dynamic change in the number of known-position UAV nodes.
The proposed method achieves adaptive CL calculation according to the dynamic change
in known-position UAV nodes in the cluster cooperative network. Aiming to locate a
UGV node in the cluster cooperative network, the principle schematic diagram of the pro-
posed adaptive cooperative localization method for air-to-ground robots based on relative
distance constraints is illustrated in Figure 2.
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In Figure 2, Pk
1, Pk+1

1 , Pk+2
1 are the positions of UAV node 1 at time tk, tk+1, and tk+2,

respectively. Pk
2, Pk+1

2 are the positions of UAV node 2 at time tk and time tk+1, respectively.
∆Pk+1

k , ∆Pk+2
k are the relative position constraints of UGV from time tk to tk+1 and tk+2,

respectively. dk, dk+1, dk+2 are the relative distance constraints between UAV and UGV at
time tk, tk+1, and tk+2, respectively.
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3. The Design of Proposed Adaptive Cooperative Localization Method under the
Various Cooperative Positioning Scenarios
3.1. Adaptive Fusion Threshold Setting Based on Number of Known-Position UAVs in Cluster
Cooperative Network

In order to enable the method proposed in this paper to achieve adaptive fusion esti-
mation with dynamic change in the number of known-position UAVs in a heterogeneous
cluster cooperative network, the dynamic switching of the proposed method is realized
by setting adaptive fusion threshold λ based on the number of known-position UAVs in
various CL scenarios. Indeed, in the process of CL, the UGV receives communication data
packets transmitted by UAVs in real time. The ID numbers and corresponding position
information of UAVs be obtained by UGV through the packet protocol analysis. According
to the ID number of the UAV, the vehicle navigation computer can automatically obtain in
real time the number of known-position UAVs in the cluster cooperative network. In the
case that the number of known-position UAVs in the cluster cooperative network is larger
than three, the adaptive fusion threshold of the proposed method is set to λ1. In addition,
when there are only two UAVs with known positions in the dynamic cooperative network,
the UGV INS lacks a sufficient number of distance observation constraints to construct
position observation equations. Combined with distance observation constraints between
known-position UAVs and UGVs from historical times, system position observation equa-
tions are constructed using inertia-based high-precision relative position constraints. The
adaptive fusion threshold in this CL scenario is set to λ2. Otherwise, the cluster cooperative
network has only one UAV with known position, and the adaptive fusion threshold of
the proposed method is set to λ3. By setting the adaptive fusion threshold, the method
proposed in this paper achieves dynamic switching and adaptive fusion estimation in
various CL scenarios. Under the condition that the measured accuracy of the relative
distance between UAVs and UGV is consistent, state estimation accuracy and positioning
performance of the UGV in a satellite-denial environment can be further improved using
the proposed method.

3.2. State Propagation Model

Based on the error characteristic of the UGV’s inertial sensor in a complex environ-
ment [20], the state recursive equation of the UGV INS is constructed in this paper. The state
propagation model of the proposed adaptive CL method can be constructed as follows:

X(k + 1) = f (X(k), k) + w(k) (1)

where
X(k) = [φE(k), φN(k), φU(k), δvE(k), δvN(k), δvU(k), δL(k),

δλ(k), δh(k), εbx(k), εby(k), εbz(k), εrx(k), εry(k),

εrz(k),∇ax(k),∇ay(k),∇az(k)]T
(2)

X(k) is the system state vector, which can be, respectively, expressed as follows:
platform misalignment angle error of UGV INS, velocity error of UGV INS, position
error of UGV INS, gyroscope constant bias, gyroscope first-order Markov white noise,
and accelerometer first-order Markov white noise. w(k) is the system noise input ma-
trix. We assume that w(k) is Gaussian white noise with mean value of zero and satisfies
E
{

w(k)wT(k)
}
= Q(k). The state transition Jacobian matrix F(k + 1, k) and system noise

control input Jacobian matrix W(k + 1, k) can be, respectively, expressed as:
F(k + 1, k) =

∂ f (X(k), k)
∂X

∣∣∣∣
X=X̂(k|k)

W(k + 1, k) =
∂ f (X(k), k)

∂u

∣∣∣∣
X=X̂(k|k)

(3)
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3.3. Position Observation Equation of UGV INS with a Large Number of Known-Position UAVs

Under the condition of time synchronization of the cluster cooperative network, the
spherical intersection principle can be used to achieve high-precision CL calculation using
the position information of three UAVs and related distance observation information [14].
Driven by UAV tasks, when the number of known-position UAVs in the cluster cooperative
network is larger than three, real-time dynamic topology change in the spatial geometric
configuration between UAVs and UGV is considered. The optimal spatial geometric
configuration is optimized using a GDOP optimization mechanism. The UAVs’ positions
and related distance observation information in the optimal spatial geometric configuration
are employed to realize the high-precision CL solution, which can effectively improve the
UGV’s positioning performance.

We assume that the three-dimensional position information of UAVs in Figure 1
is (x1, y1, z1), (x2, y2, z2), (x3, y3, z3), and (xi, yi, zi), i ≥ 3, respectively, obtained by the
INS/GPS loosely integrated navigation system. The position information of the UGV to
be located in Figure 1 is (xj, yj, zj), obtained by inertial integration operation. The UGV on
the ground obtains relative distance observation information with known-position UAVs
in real time by the TDOA method. The relative distance observation constraints between
known-position UAVs and UGV can be reported as follows:

(x1 − xj)
2 + (y1 − yj)

2 + (z1 − zj)
2 = d2

1j

(x2 − xj)
2 + (y2 − yj)

2 + (z2 − zj)
2 = d2

2j
· · ·

(xi − xj)
2 + (yi − yj)

2 + (zi − zj)
2 = d2

ij

(4)

where d2
1j, d2

2j, . . . d2
ij represent relative distance observation constraints between known-

position UAVs and the UGV to be located. The relative distance observation constraints
among robots are non-linear equations with strong nonlinearity. Thus, the linearization
Taylor expansion of Equation (4) is carried out, and Equation (4) can be rewritten as:

fi(X) = fi(X̂) +
∂ f (X)

∂X

∣∣∣∣X=X̂(X − X̂) + H.O.T (5)

where X is the system state vector composed of the error of the UGV INS. X̂ is the state
estimated value. fi(X) is the relative distance observation function related to the UGV’s
state. H.O.T is the high-order term above the second order of linearization Taylor ex-
pansion, which is not considered in this paper. In order to better describe the spatial
configuration optimization strategy proposed in this paper, Equation (5) can be rewritten
to the following form:

δΩ = HδX (6)

In Equation (6), δΩ = f (X) − f (X̂) is the distance observation residual, and
H = ∂ f (X)

∂X

∣∣∣
X=X̂

is the observation Jacobian matrix associated with relative distance observa-

tion constraints. δX = X− X̂ is the state estimation error. Considering the non-singularity of
the Jacobian matrix of the relative distance observations between the known-position UAVs
and UGV, state estimation error in Equation (6) can be expressed in the following form:

δX = H−1δΩ (7)

where H−1 represents the inverse matrix of relative distance observation Jacobian H. Thus,
the Root Mean Square Error (RMSE) matrix of the state estimation error is shown in
Equation (8).
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E
[
δX(δX)T

]
= E

[
H−1δΩ(δΩ)T(H−1)

T
]

= H−1E
[
δΩ(δΩ)T

]
(HT)

−1
= σ(HTH)

−1 (8)

The trace of the RMSE matrix is employed in this paper as the real time optimization
strategy for known position UAVs. In general, the trace of RMSE matrix is commonly
represented as GDOP. The spatial geometric configuration with the minimum GDOP value
is effectively selected as the optimal spatial geometric configuration in this paper. UAVs
with known positions and corresponding distance observation information in the optimal
spatial geometric configuration are used to realize the high-precision CL calculation of
UGV. Thus, the real-time optimization strategy based on the spatial geometric configuration
proposed in this paper is reported in Equation (9).

min
(

trace
(

σ
(

HTH
)−1

))
(9)

Using the configuration optimization strategy mentioned above, the known-position
UAVs and related distance observation information under the optimal spatial geometric
configuration are employed to construct a position observation equation of the UGV INS,
which can further improve state estimation accuracy and positioning accuracy of the UGV
in the satellite signal-denial area. We assume that relative distance measurement noises
between known-position UAVs and UGV in the dynamic cooperative network are mutually
independent, and satisfy Gaussian-type white noise with the mean value of zero, and
covariance of a certain value Rdistance. In the case of a large number of known-position
UAVs in a dynamic cooperative network, the position observation equation of the UGV
INS is constructed by first-order linearization Taylor expansion of Equation (4).

Zdistance
k = HkCn

e Xk + Vk

Hk =



∂ f1

∂x
∂ f1

∂y
∂ f1

∂z
∂ f2

∂x
∂ f2

∂y
∂ f2

∂z
∂ f3

∂x
∂ f3

∂y
∂ f3

∂z


(10)

where Zdistance
k is the system observation vector formed by the difference between the

relative distance calculated value and actual measured value. f = [ f1, f2, f3] illustrate
the relative distance measurement function between known-position UAVs and UGV in
the optimal spatial geometric configuration. Cn

e is the attitude transition matrix from
the earth coordinate system to the navigation coordinate system. Hk is the observation
Jacobian matrix corresponding to distance observation constraints under the optimal spatial
geometric configuration. Vk is the relative distance measurement noise matrix.

3.4. Position Observation Equation of UGV INS with Two Known-Position UAVs in Cluster
Cooperative Network

Under the control of the UAV target-driven strategy, the number of known-position
UAVs in the cluster cooperative network is dynamically changed in real time. When the
number of known-position UAVs is insufficient, and there are only two UAVs with known
positions in the cluster cooperative network, the UGV on the ground cannot obtain a
sufficient number of distance observations to construct the position observation equation
of the UGV INS. The positioning error of the UGV to be located accumulates and diverges
for a long time using the traditional distance-based CL method. In order to improve the
UGV’s state estimation accuracy and positioning accuracy in the case that the number of
known-position UAVs is insufficient, distance observation constraints between UAVs and
UGV from the historical time are saved in this paper. The position observation equation
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of the UGV INS is constructed by using inertia-based short-term high-precision relative
position constraint and relative distance constraints at adjacent times. The spatial position
relationship between the UGV and two known-position UAVs at adjacent times is reported
in Figure 3. In Figure 3, (xk

u1, yk
u1, zk

u1), (xk+1
u1 , yk+1

u1 , zk+1
u1 ) represent the position information

of UAV node 1 at times tk and tk+1, respectively, obtained by INS/GPS loosely integrated
navigation systems. (xk

u2, yk
u2, zk

u2) and (xk+1
u2 , yk+1

u2 , zk+1
u2 ) are the position information of

UAV node 2 at times tk and tk+1, respectively, obtained by INS/GPS loosely integrated nav-
igation systems. dk

u1,G, dk+1
u1,G, dk

u2,G, dk+1
u2,G are the relative distance observation constraints

between known-position UAVs and UGV at times tk and tk+1, respectively. At the same
time, (xk

G, yk
G, zk

G), (xk+1
G , yk+1

G , zk+1
G ) are the position information of the UGV to be located

at times tk and tk+1, respectively.
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Figure 3. The spatial position relationship between UGV and two known-position UAVs at adja-
cent times.

In the case of an insufficient number of known-position UAVs in the dynamic co-
operative network, inertia-based relative position constraints play an important role in
constructing the position observation equation of the UGV INS. When the initial position
and variance of the UGV are accurately known, the inertial sensor has a higher relative
position estimation accuracy in a short time period according to the inertial arrangement
mechanism. The inertial sensor is generally composed of a three-axis gyroscope and a
three-axis accelerometer, which is used for sensitive angular velocity and linear acceleration
information of the UGV. Affected by constant bias of the inertial sensor, the actual measured
value of the inertial sensor be expressed as:{

ω̃b
ib = ωb

ib + bg + ηg

ãb
ib = ab

ib + ba + ηa
(11)

where ω̃b
ib and ãb

ib are the actual measured value of the three-axis gyroscope and accelerom-
eter, respectively. ωb

ib and ab
ib are the true measurement value of the three-axis gyroscope

and accelerometer, respectively. bg and ba are the constant bias of the three-axis gyroscope
and accelerometer, respectively. ηg and ηa are the Gaussian measurement white noise of
the three-axis gyroscope and accelerometer. Under the condition that the initial state of the
UGV is accurately known, the next state of the UGV is predicted using Equation (12).

qk+1 = qk + 0.5qk
◦ωb

nbT

vn
k+1 = vn

k + (2ωn
ie + ωn

en)vn
k + (fn

k + gn)T

Lk+1 = Lk +
vN

k T
(RM+hk)

λk+1 = λk +
vE

k T
(RN+hk) cos Lk

hk+1 = hk + vU
k T

(12)
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where qk, qk+1, vn
k , vn

k+1 are the attitude quaternion and velocity information of the
UGV at times tk and tk+1, respectively. (λk, Lk, hk) and (λk+1, Lk+1, hk+1) are the position
information of the UGV at times tk and tk+1, respectively. ωb

nb is the projection of the angular
velocity of the body coordinate system relative to the geographic coordinate system in the
body coordinate system. ωn

ie is the projection of the angular velocity of the earth coordinate
system relative to the inertial coordinate system in the geographic coordinate system. ωn

en
is the projection of the angular velocity of the geographic coordinate system relative to
the earth coordinate system in the geographic coordinate system. RM and RN are the
curvature radius of the earth’s meridional and unitary circles, respectively. gn is the earth’s
gravity vector in the geographic coordinate system. T is the time interval period at adjacent
sampling of the UGV INS.

With the rapid development of modern intelligent sensor technology, the sampling
frequency of the inertial sensor is generally higher than the relative distance measurement
between the UAV and UGV. Indeed, the sampling frequency of the inertial sensor in
practical applications is generally 200 Hz, while the sampling frequency of the relative
distance measurement is 10 Hz. The time sequence schematic diagram of the inertial sensor
and relative distance observation between the UAV and UGV is illustrated in Figure 4.
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From Figure 4, we can conclude that in the adjacent sampling interval of the relative
distance observation, the UGV’s state requires multiple inertial integration calculations. At
the adjacent sampling interval of the relative distance observation constraint, the inertia-
based relative position constraint equation of the UGV from time tk to time tk+1 can be
derived and constructed as follows.

∆R̃
tk+1
tk

=
tk+1−1

∏
k=tk

exp[(ω̃b
ibk − bk

g − ηk
g)T]

∆ṽtk+1
tk

=
tk+1−1

∑
k=tk

RT
tk

Rk(ã
b
ibk − bk

a − ηk
a)T

∆p̃tk+1
tk

=
tk+1−1

∑
k=tk

[
RT

tk
(vk − vtk − gT)T +

1
2

RT
tk

Rk(ã
b
ibk − bk

a − ηk
a)T2

] (13)

where ∆R̃
tk+1
tk

, ∆ṽtk+1
tk

, ∆p̃tk+1
tk

are the relative attitude constraint, relative velocity constraint,
and relative position constraint of the UGV from time tk to time tk+1.

Combined with the relative distance observation constraints between UAVs and UGV
at adjacent times and the relative position constraint of the UGV from time tk to time
tk+1, the position observation equation of the UGV INS at time tk+1 can be derived and
constructed, as shown in Equation (14).

(xk+1
u1 − xk+1

G )
2
+ (yk+1

u1 − yk+1
G )

2
+ (zk+1

u1 − zk+1
G )

2
= (dk+1

u1,G)
2

(xk+1
u2 − xk+1

G )
2
+ (yk+1

u2 − yk+1
G )

2
+ (zk+1

u2 − zk+1
G )

2
= (dk+1

u2,G)
2

(xk
u1 − xk+1

G + ∆ p̃x)
2
+ (yk

u1 − yk+1
G + ∆ p̃y)

2
+ (zk

u1 − zk+1
G + ∆ p̃z)

2
= (dk

u1,G)
2

(xk
u2 − xk+1

G + ∆ p̃x)
2
+ (yk

u2 − yk+1
G + ∆ p̃y)

2
+ (zk

u2 − zk+1
G + ∆ p̃z)

2
= (dk

u2,G)
2

(14)
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where ∆p̃tk+1
tk

=
[
∆p̃x ∆p̃y ∆p̃z

]
denotes the three-axis relative position constraint of

the UGV from time tk to time tk+1. Considering that the distance observation constraints
between UAVs and UGV are nonlinear observations with strong nonlinearity, the first-order
linearization Taylor expansion of Equation (14) is made, ignoring the higher-order terms
above the second order. Under the condition that there are only two known-position UAVs
in the dynamic cluster cooperative network, the position observation equation of the UGV
INS at time tk+1 can be constructed as follows:

ZP
k+1 = HP

k+1Xk+1 + vp

HP
k+1 =

[
04×6 Hρ

4×3 04×6

]
4×18

Hp
4×3 =


−(RN + h)[ f11 sin L cos λ + f12 sin L sin λ] (RN + h)[ f12 cos L cos λ − f11 cos L sin λ] f11 cos L cos λ + f12 cos L sin λ + f13 sin L

−(RN + h)[ f21 sin L cos λ + f22 sin L sin λ] (RN + h)[ f22 cos L cos λ − f21 cos L sin λ] f21 cos L cos λ + f22 cos L sin λ + f23 sin L

−(RN + h)[ f31 sin L cos λ + f32 sin L sin λ] (RN + h)[ f32 cos L cos λ − f31 cos L sin λ] f31 cos L cos λ + f32 cos L sin λ + f33 sin L

−(RN + h)[ f41 sin L cos λ + f42 sin L sin λ] (RN + h)[ f42 cos L cos λ − f41 cos L sin λ] f41 cos L cos λ + f42 cos L sin λ + f43 sin L


(15)

where ZP
k+1 denotes the system position observation vector. HP

k+1 denotes the position
observation Jacobian matrix corresponding to the distance observation equation. Xk+1 is the
system state vector. vp represents the relative distance measurement noise matrix. fi1 = ∂ fi

∂x ,

fi2 = ∂ fi
∂y , fi3 = ∂ fi

∂z , i = 1, 2, 3, 4 are the directional cosines of the position observation
equation in three directions, respectively.

3.5. Position Observation Equation of UGV INS with Only Single Known-Position UAV in
Cluster Cooperative Network

In the case of a dynamic cooperative network with only one known-position UAV
node, the single relative distance observation information is received by the UGV in real
time. Without the assistance of onboard internal navigation sensor information, the UGV is
located on a spherical surface with the UAV’s position as the center and relative distance
as the radius. Using the single relative distance information as the observation constraint
of the UAV INS, the position closed-form solution of the UGV cannot be obtained in
real time. The positioning error of the UGV accumulates and diverges over time using
the traditional distance-based CL method. In order to improve the UGV’s positioning
accuracy under the condition of insufficient distance observation constraints, the distance
observation information between the UAV and UGV from historical times is preserved.
The position observation equation of the UGV INS at time tk+2 is constructed by using
historical distance observation constraints and inertia-based short-term high-precision
relative position constraints.

We aim to construct a dynamic cluster cooperative network composed of a known-
position UAV and a UGV to be located. The spatial position relationship between the UGV
and single UAV at three consecutive relative distance sampling periods is presented in
Figure 5.

In Figure 5, (dk
uG, dk+1

uG , dk+2
uG ) represent the relative distance observation constraints be-

tween UAV and UGV at times tk, tk+1, and tk+2, respectively. (xk
u, yk

u, zk
u), (xk+1

u , yk+1
u , zk+1

u ),
(xk+2

u , yk+2
u , zk+2

u ) are the position information of the UAV at times tk, tk+1, and tk+2, re-
spectively, obtained by the INS/GPS loosely integrated navigation system. (xk

G, yk
G, zk

G),
(xk+1

G , yk+1
G , zk+1

G ), (xk+2
G , yk+2

G , zk+2
G ) are the position information of the UGV at times tk,

tk+1, and tk+2, obtained by inertial integration operation.
We assume that the system time between the UAV and UGV is synchronized in

the dynamic cluster cooperative network. By retaining distance observation constraints
between the UAV and UGV for three consecutive sampling periods, we can conclude from
Figure 5 that the position closed-form solution of the UGV at time tk+2 is obtained using
the principle of multi-spherical intersection. Using high-precision position information of
the UAV from tk to tk+1, tk+2, the distance observation constraint information between the
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UAV and UGV at various sampling periods, and inertia-based relative position constraint
information from time tk to tk+1 and from time tk to tk+2, the position observation equation
of the UGV INS at time tk+2 is constructed. Thus, the position observation equation of the
UGV INS at time tk+2 can be derived and constructed as follows:

(xk
u − xk

G)
2
+ (yk

u − yk
G)

2
+ (zk

u − zk
G)

2
= (dk

uG)
2

(xk+1
u − xk+1

G )
2
+ (yk+1

u − yk+1
G )

2
+ (zk+1

u − zk+1
G )

2
= (dk+1

uG )
2

(xk+2
u − xk+2

G )
2
+ (yk+2

u − yk+2
G )

2
+ (zk+2

u − zk+2
G )

2
= (dk+2

uG )
2

(16)

where
xk+1

G = xk
G + ∆xk,k+1 xk+2

G = xk
G + ∆xk,k+2

yk+1
G = yk

G + ∆yk,k+1 yk+2
G = yk

G + ∆yk,k+2

zk+1
G = zk

G + ∆zk,k+1 zk+2
G = zk

G + ∆zk,k+2

(17)

In Equation (17), (∆xk,k+1, ∆yk,k+1, ∆zk,k+1) represent the inertia-based relative posi-
tion constraints of the UGV from time tk to time tk+1, obtained by Equation (13). Mean-
while, (∆xk,k+2, ∆yk,k+2, ∆zk,k+2) represent the inertia-based relative position constraints
of the UGV from time tk to time tk+2, also obtained by Equation (13). It can be seen from
Equation (16) that in the case of an insufficient number of UAV nodes and related distance
observation constraints in the dynamic cooperative network, inertia-based relative position
constraints play an important role in constructing the position observation equation of the
UGV INS at time tk+2. When the initial state X0 and variance P0 are accurately known
in advance, short-term relative position constraints based on an inertial recurrence mech-
anism have higher estimation accuracy. Under the condition of measurement accuracy
and sampling frequency of the UGV’s onboard inertial navigation sensor, the higher the
sampling frequency of the relative distance observation, the higher the estimation accuracy
of the relative distance constraint for cooperative positioning calculation. By fully utilizing
the characteristic of inertia-based short-term high-precision relative position constraints,
the position closed-form solution of the UGV at time tk+2 is obtained using the proposed
method. Without the assistance of the onboard endogenous navigation sensor informa-
tion, the positioning accuracy and cooperative positioning performance of the UGV in a
satellite-denial environment can be effectively improved using the proposed method.

Sensors 2024, 24, x FOR PEER REVIEW 12 of 24 
 

 

of the UAV INS, the position closed-form solution of the UGV cannot be obtained in real 
time. The positioning error of the UGV accumulates and diverges over time using the tra-
ditional distance-based CL method. In order to improve the UGV’s positioning accuracy 
under the condition of insufficient distance observation constraints, the distance observa-
tion information between the UAV and UGV from historical times is preserved. The posi-
tion observation equation of the UGV INS at time 2kt +  is constructed by using historical 
distance observation constraints and inertia-based short-term high-precision relative po-
sition constraints. 

We aim to construct a dynamic cluster cooperative network composed of a known-
position UAV and a UGV to be located. The spatial position relationship between the UGV 
and single UAV at three consecutive relative distance sampling periods is presented in 
Figure 5. 

 
Figure 5. The spatial position relationship between UGV and single known-position UAV at three 
consecutive relative distance sampling periods. 

In Figure 5, +1 +2( , , )k k k
uG uG uGd d d  represent the relative distance observation constraints 

between UAV and UGV at times kt  , 1kt +  , and 2kt +  , respectively. ( , , )k k k
u u ux y z  , 

1 1 1( , , )k k k
u u ux y z+ + +  , 2 2 2( , , )k k k

u u ux y z+ + +   are the position information of the UAV at times kt  , 

1kt + , and 2kt + , respectively, obtained by the INS/GPS loosely integrated navigation sys-
tem. 1 1 1( , , ), ( , , ),k k k k k k

G G G G G Gx y z x y z+ + + 2 2 2( , , )k k k
G G Gx y z+ + +  are the position information of the UGV 

at times kt , 1kt + , and 2kt + , obtained by inertial integration operation. 
We assume that the system time between the UAV and UGV is synchronized in the 

dynamic cluster cooperative network. By retaining distance observation constraints be-
tween the UAV and UGV for three consecutive sampling periods, we can conclude from 
Figure 5 that the position closed-form solution of the UGV at time k 2t +  is obtained using 
the principle of multi-spherical intersection. Using high-precision position information of 
the UAV from kt  to 1kt + , 2kt + , the distance observation constraint information between 
the UAV and UGV at various sampling periods, and inertia-based relative position con-
straint information from time kt  to 1kt +  and from time kt  to 2kt + , the position obser-
vation equation of the UGV INS at time 2kt +  is constructed. Thus, the position observa-
tion equation of the UGV INS at time 2kt +  can be derived and constructed as follows: 

2 2 2 2

1 +1 2 1 +1 2 1 +1 2 1 2

2 +2 2 2 +2 2 2 +2 2 2 2

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

k k k k k k k
u G u G u G uG
k k k k k k k
u G u G u G uG
k k k k k k k
u G u G u G uG

x x y y z z d
x x y y z z d
x x y y z z d

+ + + +

+ + + +

 − + − + − =


− + − + − =
 − + − + − =

 (16)

where 

Figure 5. The spatial position relationship between UGV and single known-position UAV at three
consecutive relative distance sampling periods.

The first-order linearization Taylor expansion of Equation (16) is made to construct
the position observation equation of the UGV INS at time tk+2, which can be expressed as:

Zp(k + 2) = Hp(k + 2)δP(k + 2) + V(k + 2) (18)
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where Zp(k + 2) is the position observation vector. Hp(k + 2) is the position observation
Jacobian matrix. δP(k + 2) is the position error of the UGV in the earth coordinate system.
V(k + 2) is the measurement noise matrix related to the relative distance observations.

Hp(k + 2) =


01×6

∂ fk
∂x

∂ fk
∂y

∂ fk
∂z

01×6

01×6
∂ fk+1

∂x
∂ fk+1

∂y
∂ fk+1

∂z
01×6

01×6
∂ fk+2

∂x
∂ fk+2

∂y
∂ fk+2

∂z
01×6


3×18

(19)

where [ fk, fk+1, fk+2] are the position observation equations in Equation (16). Considering
that the UGV’s position error in the system state vector is located at the geographic coor-
dinate system, according to the spatial attitude transformation relationship between the
geographic coordinate system and the earth coordinate system, the position observation
equation of the UGV INS at time tk+2 can be rewritten as:

Zp(k + 2) = Hp(k + 2)HT(k + 2)X(k + 2) + V(k + 2) (20)

where HT(k + 2) is the attitude transformation matrix between the geographic coordinate
system and earth coordinate system, which can be expressed as:

HT(k + 2) =

−(RN + h) sin L cos λ −(RN + h) cos L sin λ cos L cos λ

−(RN + h) sin L sin λ (RN + h) cos L cos λ cos L sin λ

[RN(1 − f )2 + h] cos L 0 sin L

 (21)

On the basis of constructing the above-mentioned system observation equations in
various CL scenarios, the optimal estimation of system state variables is another key
technology to improve the UGV’s positioning performance. From the perspective of
practical application, system real-time performance and computational complexity are
comprehensively considered in this paper, and the AEKF is designed to achieve optimal
estimation and online compensation of state variables. For details about AEKF, the reader
is referred to [21,22]. The pseudocode of the proposed adaptive cooperative localization
method for heterogeneous air-to-ground robots based on relative distance constraints is
illustrated in Algorithm 1.

Algorithm 1. The pseudocode of proposed adaptive cooperative localization method for
heterogeneous air-to-ground robots based on relative distance constraints

1. Initialization
Cooperative network time synchronization and state initialization X0, P0

2. Set adaptive fusion threshold λ based on dynamic change in number of known-position UAVs
in dynamic cluster cooperative network
3. State recursive equation of UGV based on Equation (1)
4. Construct position observation equation of UGV INS based on the different number of
known-position UAVs in cluster cooperative network

If (λ = λ1)
Construct position observation equation of UGV INS at time tk based on Equation (10)
Else if (λ = λ2)
Construct position observation equation of UGV INS at time tk+1 based on Equation (15)
Else if (λ = λ3)
Construct position observation equation of UGV INS at time tk+2 based on Equation (20)

5. State optimal fusion estimation based on AEKF
6. Optimal state estimation value of UGV
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4. Multiple Heterogeneous Robot Cooperative Localization Test and Results Analysis

In order to verify the effectiveness of the proposed method under a dynamic change
in the number of known-position UAV nodes in a cluster cooperative network, a cluster
cooperative network composed of five UAVs and a UGV to be located is used as an ex-
ample to verify the cooperative positioning performance of the proposed method on a
campus playground. Before the experiment, time synchronization between the UAVs and
UGV is completed using GPS system time. The initial position of the UGV is calibrated
using a single-point GPS receiver. In the experiment, the UAVs and UGV operated au-
tonomously at different altitudes according to preset waypoints. Each UAV is equipped
with a low-precision MTI-G-710 MEMS-IMU, a single-point Novatel GPS receiver, and an
Ultra-Wideband (UWB) navigation sensor. The position information of the UAV is gained
by the INS/GPS loosely integrated navigation system. The low-precision FSS-IMU6132
MEMS-IMU, differential mode Real-time Kinematic (RTK) satellite receiver, and UWB navi-
gation sensors are mounted on the UGV. In addition, in order to better compare and analyze
the CL performance of the proposed method against the current mainstream CL method,
the UGV is additionally equipped with a wheel speed odometer and a barometric altimeter
sensor. A UWB navigation sensor is also used in the experiment to measure the relative
distance perception information between the UGV and UAV. The sampling frequencies of
the UAV’s MEMS-IMU and UGV’s MEMS-IMU are set to 100 Hz. The sampling frequencies
of the wheel speed odometer, barometric altimeter, and UWB navigation sensors are set
to 50 Hz, respectively, while the sampling frequency of the GPS satellite receiver is set to
1 Hz. The performance parameters of the heterogeneous navigation sensors mounted on
the UGV in the experiment are shown in Table 1. The various navigation sensors mounted
on the UAV and UGV are illustrated in Figure 6.

Table 1. The sensor performance parameters used in the experiment.

Sensor Types Performance Parameters

Gyroscope of UGV’s MEMS-IMU Bias stability
15 (◦/h)

Random work error
0.2 (◦/

√
h)

Accelerometer of UGV’s MEMS-IMU Bias stability
10 µg

Random work error
10 (µg/

√
Hz)

Gyroscope of UAV’s MEMS-IMU Bias stability Random work error
10 (◦/h) 0.5 (◦/

√
h)

Accelerometer of UAV’s MEMS-IMU
Bias stability Random work error

15 µg 10 (µg/
√

Hz)
UWB/(m) 0.3

GPS receiver/(m) [1, 1, 2]
Barometric altimeter/(m) 0.8

RTK receiver/(m) [0.05, 0.05, 0.15]
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During the experiment, the adaptive collaborative fusion thresholds are set to λ1 = 3,
λ2 = 2, and λ3 = 1, respectively, according to number of known-position UAV nodes in
the dynamic cluster cooperative network. Before the experiment, the five UAV nodes have
the same attitude and velocity information. The initial attitude, initial velocity, and initial
position information of the UAV and UGV in the experiment is illustrated in Table 2.

Table 2. The initial attitude, initial velocity, and initial position information of UAVs and UGV in
the experiment.

State Parameters Parameters Setting

Initial attitude of UAV/(◦) [0, 0, 85]
Initial velocity of UAV/(m/s) [0, 0, 0]

Initial position of UAV1/(◦,◦,m) [118.474124, 31.563485, 21.7437]
Initial position of UAV2/(◦,◦,m) [118.474092, 31.563475, 31.7837]
Initial position of UAV3/(◦,◦,m) [118.474042, 31.563476, 41.7856]
Initial position of UAV4/(◦,◦,m) [118.474021, 31.563400, 52.9768]
Initial position of UAV5/(◦,◦,m) [118.473954, 31.563381, 62.1269]

Initial attitude of UGV/(◦) [0, 0, 80]
Initial velocity of UGV/(m/s) [0, 0, 0]

Initial position of UGV/(◦,◦,m) [118.474009, 31.563478, 12.9775]

It should be noted that position information output from the RTK satellite receiver is
only used as a reference for cooperative positioning performance evaluation, and does not
participate in CL calculation. During the experiment, relative distance observation infor-
mation between the UAV and UGV is measured in real time through the UWB navigation
sensor. The heterogeneous navigation sensor data are stored in the navigation computer
processor, and the cooperative positioning performance of the proposed method is verified
and analyzed by data post-processing. The CL scenario between UAV and UGV nodes
based on relative distance constraints on the outdoor campus playground is reported in
Figure 7. Three-dimensional autonomous motion trajectories of UAV and UGV nodes are
presented in Figure 8. The total CL time is about 210 s.

For the purpose of better validating the adaptive fusion ability of the proposed adap-
tive CL method under a dynamic change in the number of UAV nodes in the cluster
cooperative network, the various cooperative localization scenarios are simulated by utiliz-
ing distance observation constraint information with different numbers of UAV nodes.
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4.1. Experimental Verification and Analysis with Multiple UAV Nodes

When there is a larger number of known-position UAVs in the dynamic cluster coop-
erative network, the distance observation information received by the UGV is the largest.
The spatial geometric configuration between the UAVs and UGV is one of the key factors
affecting the positioning performance of the UGV. In order to improve the UGV’s position-
ing accuracy in a satellite-denial environment, the optimal spatial geometric configuration
between the known-position UAVs and UGV to be located is taken into account in this
paper. The corresponding distance observation constraint information under the optimal
spatial geometric configuration are employed to construct the position observation equa-
tion of the UGV INS, which can effectively improve the UGV’s positioning performance.
Figure 9 illustrates the GDOP value between UGV and UAV nodes in the experiment.
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In order to verify the cooperative positioning performance of the proposed configu-
ration optimization CL method, the RMSE of the UGV’s positioning error is used as an
evaluation reference [19]. Table 3 gives the RMSE of the UGV’s positioning error using
distance observation information in various spatial geometric configurations.

Table 3. Comparison of RMSE value of UGV’s positioning error using distance observation informa-
tion in various spatial geometric configurations.

GDOP RMSE.X/(m) RMSE.Y/(m) RMSE.Z/(m) RMSE/(m)

GDOP123 1.50 2.99 0.97 3.48

GDOP124 1.34 2.83 0.86 3.25

GDOP125 1.18 2.78 0.64 3.09

GDOP234 1.03 2.64 0.58 2.89

GDOP235 0.75 2.45 0.51 2.61

GDOP345 0.53 2.41 0.45 2.51

Min GDOP 0.45 2.39 0.42 2.47

In Table 3, GDOP123 represents the GDOP value between the UGV and UAV node 1,
UAV node 2, and UAV node 3. The definition of other GDOPs is consistent with GDOP123.

It can be seen from Table 3 that the configuration optimization CL method proposed
in this paper can fully utilize the configuration advantage between the UGV and UAVs to
perform a cooperative positioning solution. Under certain conditions of UAV positioning
accuracy and relative distance measurement accuracy of the UWB navigation sensor, we
use distance observation information under the optimal spatial geometry configuration
to construct the system observation equation, which can improve the UGV’s positioning
accuracy in a satellite-denial environment to a certain extent.

At present, the mainstream distance-based CL method mainly utilizes internal sensor
information and external relative distance perception information as system observation,
to construct system observation equations [7]. In this paper, the wheel speed odometer
information, barometric altimeter information, and distance perception information with
UAV nodes are used as system observation constraints. The velocity and position observa-
tion equations of the UGV INS are constructed using above navigation sources to verify
the performance of the proposed method.

For the purpose of better visually comparing and analyzing the performance of the
proposed configuration optimization CL method from different perspectives, taking the
spatial geometry configuration between UAV nodes 1, 2, 3 and the UGV as an example, the
positioning error curves of the UGV by using the traditional distance-based CL method,
proposed configuration optimization CL method, and mainstream CL method are shown
in Figure 10.

We can conclude from Figure 10 that the proposed configuration optimization CL
method achieves better positioning performance compared to the traditional distance-based
CL method. The analysis results based on the RMSE of the UGV’s positioning error are
consistent with analysis results based on the UGV’s positioning error curves. Considering
that the mainstream CL method has sufficient internal and external source observation con-
straints, the UGV can achieve better state estimation accuracy and positioning performance.
The RMSE of the UGV’s positioning error is 1.79 using the mainstream CL method. Under
the condition no assistance from internal sensor information, the proposed configuration
optimization CL method has a certain degree of accuracy loss compared to the mainstream
CL method. Under the condition of not significantly affecting the positioning performance
of the UGV, the number of navigation sensors used for cooperative positioning calculation
can be effectively reduced using the proposed method, which to some extent reduces the
cost of cluster cooperative positioning.
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4.2. Experimental Verification and Analysis with Two UAV Nodes

In the CL scenario where there are only two UAVs with known position in the dy-
namic cluster cooperative network, under the condition of no internal navigation sensor
information assistance, due to a lack of sufficient distance observation constraints, the
positioning error of the UGV to be located accumulates and diverges over time using the
traditional distance-based CL method. In order to verify the performance advantage of
the proposed method in this CL scenario, Figure 11 illustrates the positioning error curves
of the UGV by using the traditional distance-based CL method, proposed method, and
mainstream CL method.
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It can be seen from Figure 11 that under the condition of insufficient distance observa-
tion constraints in the dynamic cooperative network, the proposed method makes full use
of historical distance observation information saved in the navigation processor. Combined
with the characteristics of the inertia-based sensor with higher relative position estimation
accuracy in a short time period, the position observation equation of the UGV INS is con-
structed by using distance observation information from historical times and inertia-based
relative position constraint information between the UGV and UAVs at adjacent times.
The position closed-form solution of the UGV at time tk+1 can be obtained in real time
using high-precision position information of UAVs from time tk to time tk+1, distance
observation constraints at adjacent times, and inertia-based relative position constraint
from time tk to time tk+1. The position closed-form solution of the UGV can be used as
the observation vector to estimate the system state variables. Thus, the proposed method
achieves better state estimation accuracy and positioning performance compared to the
traditional distance-based CL method.

In this scenario, the mainstream CL method makes full use of internal source baromet-
ric altimeter information, wheel speed odometer, and external source distance observation
information with UAVs as the system observation vectors. The velocity and position obser-
vation equations of the UGV INS are constructed using the above-mentioned navigation
information sources in the cluster collaborative network. The AEKF is also designed to
estimate and compensate system state variables. In order to analyze the CL performance
of the proposed method against the mainstream CL method, Table 4 reports the RMSE of
the UGV’s positioning error by using the traditional distance-based CL method, proposed
method, and mainstream CL method.

Table 4. The comparison RMSE of UGV’s positioning error by using traditional distance-based CL
method, proposed method, and mainstream CL method.

Method RMSE.X/(m) RMSE.Y/(m) RMSE.Z/(m) RMSE/(m)

Traditional method 53.75 75.95 9.18 93.49

Proposed method 0.79 2.41 0.41 2.57

Mainstream method 0.69 0.74 0.48 1.12

Table 4 illustrates that in the case of a dynamic cooperative network with two known-
position UAVs and without the assistance of internal source navigation sensor information,
the proposed method has a certain degree of accuracy loss compared to the mainstream
CL method. The reason is that, due to a lack of sufficient internal source observation
constraints, the state estimation accuracy of the UGV using the proposed method cannot
be compared to the mainstream CL method. Secondly, the positioning accuracy of the
UGV is not only affected by the UAV’s position accuracy and measurement accuracy of the
UWB navigation sensor, but the inertia-based relative position constraint error will also be
coupled to the position error of the UGV, which reduces the positioning performance of
the UGV to a certain extent. However, without the assistance of internal source navigation
sensor information, and relying solely on two numbers of relative distance observation
constraints to realize the CL calculation, the positioning accuracy of the UGV using the
method proposed in this paper can basically meet the practical application requirements
in a satellite-denial environment. Under the condition of not significantly affecting the
positioning performance of the UGV, the method proposed in this paper can effectively
reduce the number of heterogeneous navigation sensors used for collaborative positioning
calculation, and reduce the cost of cluster cooperative positioning. In order to more
intuitively demonstrate the CL performance of the proposed method in this CL scenario,
the positioning error curves of the UGV to be located by using the proposed method and
the mainstream CL method are shown in Figure 12.
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4.3. Experimental Verification and Analysis with Single UAV Node

In the case of a dynamic cluster cooperative network with only one known-position
UAV, the traditional distance-based CL method employs a single piece of distance in-
formation with the known-position UAV as the observation constraint of the UGV INS;
the UGV’s position is located on a spherical surface with the UAV’s position as the cen-
ter and relative distance as the radius. Indeed, it is impossible for the UGV to gain a
three-dimensional spatial position by using a single distance observation constraint. There-
fore, the positioning accuracy of the UGV in a satellite-denial environment is difficult to
guarantee. The positioning error curves of the UGV to be located by using the traditional
distance-based CL method, proposed method, and mainstream CL method are illustrated in
Figure 13.

We can conclude from Figure 13 that under the condition of a dynamic cluster cooper-
ative network with single known-position UAV node and without the assistance of any
other internal source navigation sensor information, the proposed method can achieve
better positioning performance compared to the traditional distance-based CL method.
The reason is that distance observation information from historical times received by
the UGV are saved in the navigation processor. Combined with high-precision relative
position constraints of the inertial sensor in a short time period, the position observa-
tion equation of the UGV INS at time tk+2 can be constructed using distance observation
constraints for three consecutive sampling periods from historical times to the current
time and inertia-based relative position constraints from time tk to times tk+1 and tk+2.
Based on the principle of multi-spherical intersection, the method proposed in this pa-
per can obtain a high-precision position closed-form solution for the UGV at time tk+2.
The position closed-form solution of the UAV at time tk+2 can be used as an observa-
tion vector to estimate and compensate system state variables. Indeed, the cumulative
divergence speed of the UGV’s positioning error is effectively suppressed by using the
proposed method.
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single known-position UAV.

In this CL scenario, the mainstream CL method employs internal source barometric
altimeter information, wheel speed odometer information, and single distance observation
constraint information with the UAVs as observation vectors to construct the system velocity
and position observation equations. The AEKF is designed to estimate and compensate
system state variables. In order to more intuitively illustrate the suppression effect of
the proposed method on the UGV’s positioning error, Figure 14 reports the positioning
error curves of the UGV by using the proposed method and the mainstream CL method.
The RMSE values of the UGV’s positioning error using the traditional distance-based CL
method, proposed method, and mainstream CL method are shown in Table 5. It can be
seen from Figure 14 that within 210 s cooperative localization time, the positioning error of
the UGV to be located is basically maintained within 5 m by using the proposed method
and the mainstream CL method. Considering that the inertia-based relative position
constraint error at time tk+2 is also coupled to the position error of the UGV, compared
to the situation where there are two known-position UAVs in a dynamic cooperative
network, the positioning performance of the UGV has decreased to a certain degree using
the proposed method. However, the positioning accuracy of the UGV to be located can
basically meet practical application requirements in a satellite-denial environment. The
proposed method fully utilizes distance observation constraints from historical times to
construct system observation equations, which can effectively reduce the number of internal
source navigation sensors used for CL calculation.

Table 5. The RMSE comparison of UGV’s positioning error using traditional distance-based CL
method, proposed method, and mainstream CL method.

Method RMSE.X/(m) RMSE.Y/(m) RMSE.Z/(m) RMSE/(m)

Traditional method 89.33 108.51 30.45 143.81

Proposed method 1.57 2.42 0.81 2.96

Mainstream method 0.85 0.91 0.59 1.37
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5. Conclusions

The traditional distance-based CL method has a certain limitation on the number of
known-position UAVs in a cluster cooperative network. As a result of a dynamic change
in the number of known-position UAV nodes driven by tasks in the cluster cooperative
network, the traditional distance-based CL method becomes unsuitable. Aiming at a cluster
cooperative network composed of air-to-ground robots, an adaptive cooperative localiza-
tion method based on relative distance constraints is proposed in this paper. The adaptive
fusion threshold is set based on a dynamic change in the number of UAV nodes in the
cluster cooperative network. When there is a large number of known-position UAV nodes
in the cluster cooperative network, the GDOP-based configuration optimization strategy
is adopted to select the optimal geometric configuration for a cooperative positioning
solution. Otherwise, in the case that the number of known-position UAVs is insufficient,
the distance observation constraints between the UAV and UGV from historical times are
retained in real time. The position observation equation of the UGV INS is constructed
by using distance observation constraints from historical times to the current time and
inertia-based short-term high-precision relative position constraints. Adaptive extended
Kalman filtering is designed to achieve optimal fusion estimation and online compensation
of system state variables. The experimental results show that under the condition of a
dynamic change in the number of known-position UAV nodes in a cluster cooperative
network, the method proposed in this paper can achieve an adaptive CL solution for the
UGV, which has better positioning accuracy compared to the traditional distance-based CL
method, and reduces the number of internal source navigation sensors used for cooperative
localization calculation.

Author Contributions: Conceptualization, S.H.; methodology, S.H.; software, S.H.; validation, S.H.;
formal analysis, C.S.; investigation, Z.X. All authors have read and agreed to the published version of
the manuscript.

Funding: This research was funded by National Natural Science Foundation of China, grant number.
62073163, 62103285, 62203228.



Sensors 2024, 24, 4543 23 of 23

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data are contained within the article.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Shaferman, V.; Shima, T. Unmanned aerial vehicles cooperative tracking of moving ground target in urban environments. J. Guid.

Control Dyn. 2008, 31, 1360–1371. [CrossRef]
2. Zhang, Z.; Wu, J.; Dai, J.; Ying, J.; He, C. Cooperative Tactical Planning Method for UAV Formation. In Proceedings of the 39th

Chinese Control Conference, Shenyang, China, 27–29 July 2020; pp. 1542–1547.
3. Wang, Z.; Li, J.; Li, J.; Liu, C. A decentralized decision-making algorithm of UAV swarm with information fusion strategy. Expert

Syst. Appl. 2024, 237, 121444. [CrossRef]
4. Sofia, D.; Giuliano, A.; Gioiella, F.; Barletta, D.; Poletto, M. Modeling of an air quality monitoring network with high space-time

resolution. Comput. Aided Chem. Eng. 2018, 43, 193–198.
5. Sun, J.; Li, B.; Jiang, Y.; Wen, C.-Y. A camera-based target detection and positioning UAV system for search and rescue (SAR)

purposes. Sensors 2016, 16, 1778. [CrossRef] [PubMed]
6. Fan, B.; Li, Y.; Zhang, R.; Fu, Q. Review on the technological development and application of UAV systems. Chin. J. Electron. 2020,

29, 199–207. [CrossRef]
7. Zhu, X.; Lai, J.; Chen, S. Cooperative Location Method for Leader-Follower UAV Formation Based on Follower UAV’s Moving

Vector. Sensors 2022, 22, 7125. [CrossRef] [PubMed]
8. Raju, V.A.; Vasundhara, P.; Reddy, V.C.K.; Aiswarya, A.S. Improvement of position and orientation of Unmanned Arial Vehicle

(UAV) with INS/GPS. Int. J. Eng. Technol. 2018, 7, 642–646. [CrossRef]
9. Khalaf, W.; Chouaib, I.; Wainakh, M. Novel adaptive UKF for tightly coupled INS/GPS integration with experimental validation

on an UAV. Gyroscopy Navig. 2017, 8, 259–269. [CrossRef]
10. Huang, S.; Huang, J.; Tang, D.; Chen, F. Research on UAV flight performance test method based on dual antenna GPS/ins

integrated system. In Proceedings of the 3rd Communication and Information Systems (ICCIS), Singapore, 28–30 September 2018;
pp. 106–116.

11. Zhuang, Y.; Sun, X.; Li, Y.; Huai, J.; Hua, L.; Yang, X.; Cao, X.; Zhang, P.; Cao, Y.; Qi, L.; et al. Multi-sensor integrated
navigation/positioning systems using data fusion: From analytics-based to learning-based approaches. Inf. Fusion 2023, 95, 62–90.
[CrossRef]

12. Niu, X.; Peng, Y.; Dai, Y.; Chen, Q.; Guo, C.; Zhang, Q. Camera-based lane-aided multi-information integration for land vehicle
navigation. IEEE/ASME Trans. Mechatron. 2022, 28, 152–163. [CrossRef]

13. Yang, C.; Strader, J.; Gu, Y.; Hypes, A.; Canciani, A.; Brink, K. Cooperative UAV navigation using Inter-Vehicle Ranging and
Magnetic Anomaly Measurements. In Proceedings of the 2018 AIAA Guidance, Navigation and Control Conference, Kissimmee,
FL, USA, 8–12 January 2018; p. 1595.

14. Qu, Y.; Zhang, Y. Cooperative localization of low-cost UAV using relative range measurements in multi-UAV flight. In Proceedings
of the AIAA Guidance, Navigation and Control Conference, Toronto, ON, Canada, 2–5 August 2010; p. 8187.

15. Chen, M.; Xiong, Z.; Liu, J.; Wang, R.; Xiong, J. Cooperative navigation of unmanned aerial vehicle swarm based on cooperative
dilution of precision. Int. J. Adv. Rob. Syst. 2020, 17, 1729881420932717. [CrossRef]

16. Hanasz, S.; Kuklewski, M.; Kasprowicz, G.; Bieda, M.S.; Traczyk, K. Concept of an enhanced accuracy onboard time synchro-
nization via communication link. In Proceedings of the 2020 IEEE Aerospace Conference, Big Sky, MT, USA, 7–14 March 2020;
pp. 1–6.

17. Duan, Q.-H. A High Precision Time Synchronization Scheme for Avionics System. Telecommun. Eng. 2014, 54, 830–834.
18. Ranger, J.F.O. Principles of JTIDS relative navigation. J. Navig. 1996, 49, 22–35. [CrossRef]
19. Zhu, X.; Lai, J.; Zhou, B.; Lv, P.; Chen, S. Weight factor graph co-location method for UAV formation based on navigation

performance evaluation. IEEE Sens. J. 2023, 23, 13037–13051. [CrossRef]
20. Xu, J.; Xiong, Z.; Liu, J.; Wang, R. A dynamic vector-formed information-sharing algorithm based on two-state chi square detection

in an adaptive federated filter. J. Navig. 2019, 72, 101–120. [CrossRef]
21. Yang, B.; Yang, E.; Yu, L.; Niu, C. Adaptive extended Kalman filter-based fusion approach for high-precision UAV positioning in

extremely confined environments. IEEE/ASME Trans. Mechatron. 2022, 28, 543–554. [CrossRef]
22. Zhang, J.; Zhou, W.; Wang, X. UAV swarm navigation using dynamic adaptive Kalman filter and network navigation. Sensors

2021, 21, 5374. [CrossRef] [PubMed]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.2514/1.33721
https://doi.org/10.1016/j.eswa.2023.121444
https://doi.org/10.3390/s16111778
https://www.ncbi.nlm.nih.gov/pubmed/27792156
https://doi.org/10.1049/cje.2019.12.006
https://doi.org/10.3390/s22197125
https://www.ncbi.nlm.nih.gov/pubmed/36236224
https://doi.org/10.14419/ijet.v7i2.7.10914
https://doi.org/10.1134/S2075108717040083
https://doi.org/10.1016/j.inffus.2023.01.025
https://doi.org/10.1109/TMECH.2022.3192985
https://doi.org/10.1177/1729881420932717
https://doi.org/10.1017/S0373463300013060
https://doi.org/10.1109/JSEN.2023.3252019
https://doi.org/10.1017/S0373463318000565
https://doi.org/10.1109/TMECH.2022.3203875
https://doi.org/10.3390/s21165374
https://www.ncbi.nlm.nih.gov/pubmed/34450815

	Introduction 
	The Framework of Proposed Adaptive Collaborative Positioning Method 
	The Design of Proposed Adaptive Cooperative Localization Method under the Various Cooperative Positioning Scenarios 
	Adaptive Fusion Threshold Setting Based on Number of Known-Position UAVs in Cluster Cooperative Network 
	State Propagation Model 
	Position Observation Equation of UGV INS with a Large Number of Known-Position UAVs 
	Position Observation Equation of UGV INS with Two Known-Position UAVs in Cluster Cooperative Network 
	Position Observation Equation of UGV INS with Only Single Known-Position UAV in Cluster Cooperative Network 

	Multiple Heterogeneous Robot Cooperative Localization Test and Results Analysis 
	Experimental Verification and Analysis with Multiple UAV Nodes 
	Experimental Verification and Analysis with Two UAV Nodes 
	Experimental Verification and Analysis with Single UAV Node 

	Conclusions 
	References

