Switchable Terahertz Metasurfaces for Spin-Selective Absorption and Anomalous Reflection Based on Vanadium Dioxide
Abstract
:1. Introduction
2. Metasurface Design and Demonstrations
2.1. Meta-Atom Design
2.2. Phase Gradient Configuration
2.3. Spin-Selective Anomalous Reflection
3. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Huang, Y.; Xie, X.; Pu, M.; Guo, Y.; Xu, M.; Ma, X.; Li, X.; Luo, X. Dual-functional metasurface toward giant linear and circular dichroism. Adv. Opt. Mater. 2020, 8, 1902061. [Google Scholar] [CrossRef]
- Liu, M.; Plum, E.; Li, H.; Li, S.; Xu, Q.; Zhang, X.; Zhang, C.; Zou, C.; Jin, B.; Han, J.; et al. Temperature-controlled optical activity and negative refractive index. Adv. Funct. Mater. 2021, 31, 2010249. [Google Scholar] [CrossRef]
- Mishra, S.K.; Mac-Thiong, J.M.; Wagnac, È.; Petit, Y.; Ung, B. A Sensitive and Fast Fiber Bragg Grating-Based Investigation of the Biomechanical Dynamics of In Vitro Spinal Cord Injuries. Sensors 2021, 21, 1671. [Google Scholar] [CrossRef]
- Lee, Y.; Kim, S.J.; Park, H.; Lee, B. Metamaterials and Metasurfaces for Sensor Applications. Sensors 2017, 17, 1726. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Chen, Y.; Mao, J.; Yang, F.; Wang, N. Metasurface-Assisted Terahertz Sensing. Sensors 2023, 23, 5902. [Google Scholar] [CrossRef] [PubMed]
- Yang, F.; Pitchappa, P.; Wang, N. Terahertz Reconfigurable Intelligent Surfaces (RISs) for 6G Communication Links. Micromachines 2022, 13, 285. [Google Scholar] [CrossRef] [PubMed]
- Cheng, Z.; Liu, T.; Zhao, B.; Shen, F.; Jin, H.; Han, X. Recent advances in organic-inorganic composite solid electrolytes for all-solid-state lithium batteries. Energy Storage Mater. 2021, 34, 388–416. [Google Scholar] [CrossRef]
- Fan, R.H.; Xiong, B.; Peng, R.W.; Wang, M. Constructing metastructures with broadband electromagnetic functionality. Adv. Mater. 2020, 32, 1904646. [Google Scholar] [CrossRef] [PubMed]
- Lei, M.; Feng, N.; Wang, Q.; Hao, Y.; Huang, S.; Bi, K. Magnetically tunable metamaterial perfect absorber. J. Appl. Phys. 2016, 119, 244504. [Google Scholar] [CrossRef]
- Luo, H.; Cheng, Y. Dual-band terahertz perfect metasurface absorber based on bi-layered all-dielectric resonator structure. Opt. Mater. 2019, 96, 109279. [Google Scholar] [CrossRef]
- Sun, Z.; Liu, R.; Cao, H.; Gong, H.; Du, M.; Li, S. Dual-Axis Metasurface Strain Sensor Based on Polarization–Phase-Deformation Relationship. Sensors 2020, 20, 1307. [Google Scholar] [CrossRef]
- Wu, L.W.; Ma, H.F.; Gou, Y.; Wu, R.Y.; Wang, Z.X.; Wang, M.; Gao, X.; Cui, T.J. High-transmission ultrathin Huygens’ metasurface with 360° phase control by using double-layer transmitarray elements. Phys. Rev. Appl. 2019, 12, 024012. [Google Scholar] [CrossRef]
- Li, W.; Gao, S.; Cai, Y.; Luo, Q.; Sobhy, M.; Wei, G.; Xu, J.; Li, J.; Wu, C.; Cheng, Z. Polarization-reconfigurable circularly polarized planar antenna using switchable polarizer. IEEE Trans. Antennas Propag. 2017, 65, 4470–4477. [Google Scholar] [CrossRef]
- Gansel, J.K.; Thiel, M.; Rill, M.S.; Decker, M.; Bade, K.; Saile, V.; von Freymann, G.; Linden, S.; Wegener, M. Gold Helix Photonic Metamaterial as Broadband Circular Polarizer. Science 2009, 325, 1513–1515. [Google Scholar] [CrossRef]
- Song, Y.; Zhai, J.; Huo, S.; Zeng, Y.; Sun, X. Dual-function polarization converter of an all-dielectric metasurface with a chiral L-type meta-atom. J. Opt. Soc. Am. B 2022, 39, 3255–3262. [Google Scholar] [CrossRef]
- Li, W.; Coppens, Z.; Vazquez Besteiro, L.; Wang, W.; Govorov, A.; Valentine, J. Circularly Polarized Light Detection with Hot Electrons in Chiral Plasmonic Metamaterials. Nat. Commun. 2015, 6, 8379. [Google Scholar] [CrossRef]
- Ma, Z.; Li, Y.; Li, Y.; Gong, Y.; Maier, S.A.; Hong, M. All-dielectric planar chiral metasurface with gradient geometric phase. Opt. Express 2018, 26, 6067–6078. [Google Scholar] [CrossRef]
- Li, F.; Li, Y.; Tang, T.; Liao, Y.; Lu, Y.; Liu, X.; Wen, Q. Dual-band terahertz all-silicon metasurface with giant chirality for frequency-undifferentiated near-field imaging. Opt. Express 2022, 30, 14232–14242. [Google Scholar] [CrossRef] [PubMed]
- Zhao, W.; Chen, M.; Wang, X.; Han, W.; Li, R.; Shi, X.; Liu, J.; Teng, C.; Deng, S.; Yuan, L. Multidimensional tunable graphene chiral metasurface based on coherent control. Opt. Lett. 2023, 48, 5153–5156. [Google Scholar] [CrossRef] [PubMed]
- Zhao, D.; Tan, Z.; Zhao, H.; Fan, F.; Chang, S. Active terahertz beam deflection and nonreciprocal spin chirality selection based on magneto-optical P-B metasurface with stacked-graphene layers. Opt. Lett. 2022, 47, 818–821. [Google Scholar] [CrossRef]
- Fedotov, V.A.; Rose, M.; Prosvirnin, S.L.; Papasimakis, N.; Zheludev, N.I. Sharp Trapped-Mode Resonances in Planar Metamaterials with a Broken Structural Symmetry. Phys. Rev. Lett. 2007, 99, 147401. [Google Scholar] [CrossRef] [PubMed]
- Yang, S.; Liu, Z.; Hu, S.; Jin, A.Z.; Yang, H.; Zhang, S.; Li, J.; Gu, C. Spin-Selective Transmission in Chiral Folded Metasurfaces. Nano Lett. 2019, 19, 3432–3439. [Google Scholar] [CrossRef] [PubMed]
- Jing, L.; Wang, Z.; Maturi, R.; Zheng, B.; Wang, H.; Yang, Y.; Shen, L.; Hao, R.; Yin, W.; Li, E.; et al. Gradient Chiral Metamirrors for Spin Selective Anomalous Reflection. Laser Photonics Rev. 2017, 11, 1700115. [Google Scholar] [CrossRef]
- Li, Z.; Liu, W.; Cheng, H.; Choi, D.Y.; Chen, S.; Tian, J. Spin-Selective Full-Dimensional Manipulation of Optical Waves with Chiral Mirror. Adv. Mater. 2020, 32, 1907983. [Google Scholar] [CrossRef] [PubMed]
- Cheng, Y.; Li, Y.; Wang, H.; Wang, J.; Wan, W.; Yuan, Q.; Zheng, L.; Zhang, J.; Qu, S. Circular-dichroism enantiomers assisted Full-Poincaré Polarization wavefront manipulation metasurface. Opt. Express 2021, 29, 40819–40830. [Google Scholar] [CrossRef]
- Li, Y.; Pang, Y.; Wang, J.; Zheng, Q.; Zhang, J.; Zhang, J.; Jing, Y.; Zheng, L.; Feng, M.; Wang, H.; et al. Tailoring Circular Dichroism in an Isomeric Manner: Complete Control of Amplitude and Phase for High-Quality Hologram and Beam Forming. Adv. Opt. Mater. 2022, 10, 2101982. [Google Scholar] [CrossRef]
- Wu, X.; Feng, Y.; Zhang, C.; Liu, H.L. Three-dimensional chiral metasurfaces for circular-polarized anomalous beam steering. Opt. Lett. 2022, 47, 1794–1797. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Li, J.; Zheng, C.; Xu, H.; Yang, F.; Li, J.; Yue, Z.; Shi, W.; Zhang, Y.; Yao, J. Dual-band giant spin-selective full-dimensional manipulation of graphene-based chiral meta-mirrors for terahertz waves. Opt. Express 2022, 30, 22292–22305. [Google Scholar] [CrossRef] [PubMed]
- Shen, Z.; Fang, X.; Li, S.; Yin, W.; Zhang, L.; Chen, X. Terahertz spin-selective perfect absorption enabled by quasi-bound states in the continuum. Opt. Lett. 2022, 47, 505–508. [Google Scholar] [CrossRef]
- Tang, B.; Li, Z.; Palacios, E.; Liu, Z.; Butun, S.; Aydin, K. Chiral-selective plasmonic metasurface absorbers operating at visible frequencies. IEEE Photonics Technol. Lett. 2017, 29, 295–298. [Google Scholar] [CrossRef]
- Qureshi, U.; Khan, M.; Hu, B. Realizing efficient THz circular dichroism using ultra-thin chiral metasurface. Phys. Scr. 2023, 98. [Google Scholar] [CrossRef]
- Ha, S.D.; Zhou, Y.; Duwel, A.E.; White, D.W.; Ramanathan, S. Quick Switch: Strongly Correlated Electronic Phase Transition Systems for Cutting-Edge Microwave Devices. IEEE Microw. Mag. 2014, 15, 32–44. [Google Scholar] [CrossRef]
- Ahmadivand, A.; Karabiyik, M.; Sinha, R.; Pala, N. VO2-Based Reconfigurable Antenna Platform with Addressable Microheater Matrix. Adv. Electron. Mater. 2017, 3, 1700170. [Google Scholar] [CrossRef]
- Lv, T.; Li, Y.; Ma, H.F.; Zhu, Z.; Li, Z.; Guan, C.; Shi, J.; Zhang, H.; Cui, T. Hybrid metamaterial switching for manipulating chirality based on VO2 phase transition. Sci. Rep. 2016, 6, 23186. [Google Scholar] [CrossRef] [PubMed]
- Wen, Q.Y.; Zhang, H.W.; Xie, Y.; Yang, Q.H.; Liu, Y.L. Dual band terahertz metamaterial absorber: Design, fabrication, and characterization. Appl. Phys. Lett. 2009, 95, 241111. [Google Scholar] [CrossRef]
- Liu, H.; Lu, J.; Wang, X.R. Metamaterials based on the phase transition of VO2. Nanotechnology 2018, 29, 024002. [Google Scholar] [CrossRef]
- Wang, X.; Chen, M.; Zhao, W.; Shi, X.; Han, W.; Li, R.; Liu, J.; Teng, C.; Deng, S.; Cheng, Y.; et al. Terahertz broadband tunable chiral metamirror based on VO2-metal hybrid structure. Opt. Express 2023, 31, 22144–22156. [Google Scholar] [CrossRef] [PubMed]
- Zhao, P.; Ding, X.; Li, C.; Tang, S. Achieving Photonic Spin Hall Effect, Spin-Selective Absorption, and Beam Deflection with a Vanadium Dioxide Metasurface. Materials 2023, 16, 4259. [Google Scholar] [CrossRef] [PubMed]
- Lu, J.; Sang, T.; Chui, P.; Ouyang, S.; Jing, Z. Tailoring intrinsic chiroptical responses via twisted bilayer α-MoO3 separated by a VO2 film. APL Photonics 2024, 9, 046112. [Google Scholar] [CrossRef]
- Hashemi, M.R.M.; Yang, S.H.; Wang, T.; Sepúlveda, N.; Jarrahi, M. Electronically-Controlled Beam-Steering through Vanadium Dioxide Metasurfaces. Sci. Rep. 2016, 6, 35439. [Google Scholar] [CrossRef]
- Xu, X.; Xu, R.; Lin, Y.S. A voltage-controllable VO2 based metamaterial perfect absorber for CO2 gas sensing application. Nanoscale 2022, 14, 2722–2728. [Google Scholar] [CrossRef] [PubMed]
- Matos, R.; Pala, N. VO2-based ultra-reconfigurable intelligent reflective surface for 5G applications. Sci. Rep. 2022, 12, 4497. [Google Scholar] [CrossRef] [PubMed]
- Yang, F.; Tan, T.C.; Prakash, S.; Kumar, A.; Ariando, A.; Singh, R.; Wang, N.; Pitchappa, P. Reconfigurable Wide-Angle Beam-Steering Terahertz Metasurfaces Based on Vanadium Dioxide. Adv. Opt. Mater. 2024, 12, 2302047. [Google Scholar] [CrossRef]
- Zhou, Y.; Chen, X.; Ko, C.; Yang, Z.; Mouli, C.; Ramanathan, S. Voltage-Triggered Ultrafast Phase Transition in Vanadium Dioxide Switches. IEEE Electron Device Lett. 2013, 34, 220–222. [Google Scholar] [CrossRef]
- Anagnostou, D.E.; Torres, D.; Teeslink, T.S.; Sepulveda, N. Vanadium Dioxide for Reconfigurable Antennas and Microwave Devices: Enabling RF Reconfigurability Through Smart Materials. IEEE Antennas Propag. Mag. 2020, 62, 58–73. [Google Scholar] [CrossRef]
- Menzel, C.; Rockstuhl, C.; Lederer, F. Advanced Jones calculus for the classification of periodic metamaterials. Phys. Rev. A 2010, 82, 053811. [Google Scholar] [CrossRef]
- Pancharatnam, S. Generalized theory of interference, and its applications. Proc. Indian Acad. Sci. Sect. A 1956, 44, 247–262. [Google Scholar] [CrossRef]
- Yu, N.; Genevet, P.; Kats, M.A.; Aieta, F.; Tetienne, J.P.; Capasso, F.; Gaburro, Z. Light Propagation with Phase Discontinuities: Generalized Laws of Reflection and Refraction. Science 2011, 334, 333–337. [Google Scholar] [CrossRef]
VO2 Heating State | Beam Regulation at the Resonant Frequency | Beam Regulation at Non-Resonant Frequencies |
---|---|---|
Left: metallic Right: insulated | LCP: Absorbing RCP: Reflecting | LCP: Reflecting RCP: Reflecting |
Left: insulated Right: metallic | LCP: Reflecting RCP: Absorbing | LCP: Reflecting RCP: Reflecting |
Left: insulated Right: insulated | LCP: Reflecting 50% RCP: Reflecting 50% | LCP: Reflecting RCP: Reflecting |
Left: metallic Right: metallic | LCP: Reflecting RCP: Reflecting | LCP: Reflecting RCP: Reflecting |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mao, J.; Yang, F.; Wang, Q.; Chen, Y.; Wang, N. Switchable Terahertz Metasurfaces for Spin-Selective Absorption and Anomalous Reflection Based on Vanadium Dioxide. Sensors 2024, 24, 4548. https://doi.org/10.3390/s24144548
Mao J, Yang F, Wang Q, Chen Y, Wang N. Switchable Terahertz Metasurfaces for Spin-Selective Absorption and Anomalous Reflection Based on Vanadium Dioxide. Sensors. 2024; 24(14):4548. https://doi.org/10.3390/s24144548
Chicago/Turabian StyleMao, Jinxian, Fengyuan Yang, Qian Wang, Yuzi Chen, and Nan Wang. 2024. "Switchable Terahertz Metasurfaces for Spin-Selective Absorption and Anomalous Reflection Based on Vanadium Dioxide" Sensors 24, no. 14: 4548. https://doi.org/10.3390/s24144548
APA StyleMao, J., Yang, F., Wang, Q., Chen, Y., & Wang, N. (2024). Switchable Terahertz Metasurfaces for Spin-Selective Absorption and Anomalous Reflection Based on Vanadium Dioxide. Sensors, 24(14), 4548. https://doi.org/10.3390/s24144548