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Abstract: Recently, the low-rank representation (LRR) model has been widely used in the field of
remote sensing image denoising due to its excellent noise suppression capability. However, those
low-rank-based methods always discard important edge details as residuals, leading to a common
issue of blurred edges in denoised results. To address this problem, we take a new look at low-
rank residuals and try to extract edge information from them. Therefore, a hierarchical denoising
framework was combined with a low-rank model to extract edge information from low-rank residuals
within the edge subspace. A prior knowledge matrix was designed to enable the model to learn
necessary structural information rather than noise. Also, such traditional model-driven approaches
require multiple iterations, and the solutions may be very complex and computationally intensive.
To further enhance the noise suppression performance and computing efficiency, a hierarchical
low-rank denoising model based on deep unrolling (HLR-DUR) was proposed, integrating deep
neural networks into the hierarchical low-rank denoising framework to expand the information
capture and representation capabilities of the proposed shallow model. Sufficient experiments on
optical images, hyperspectral images (HSI), and synthetic aperture radar (SAR) images showed that
HLR-DUR achieved state-of-the-art (SOTA) denoising results.

Keywords: low-rank; hierarchical model; remote sensing image denoising; deep unfolding; edge
preservation

1. Introduction

Remote sensing data acquisition often relies on sensors mounted on satellites or
aircraft, which can capture electromagnetic spectra in different bands, including visible
light, infrared, microwaves, etc. Due to its capability to cover vast geographical areas and
provide continuous observations, remote sensing technology has important applications
in numerous fields such as agriculture, forestry, geology, meteorology, environmental
protection, and urban planning [1]. However, remote sensing images are inevitably affected
by various factors during acquisition and transmission, leading to the presence of noise in
the images [2].

In recent years, the rapid development of deep learning has injected new vitality into
various fields [3,4], particularly in the domain of image processing [5–7]. Utilizing the
powerful learning and representational capabilities of deep neural networks can more
effectively solve many challenges and problems in image processing [8], which also brings
inspiration to the issue of remote sensing image denoising. Compared to traditional image
processing methods, deep learning, through an end-to-end training process, can automat-
ically learn high-level, semantically rich feature representations from a large amount of
data. These learned features not only have better robustness and generalization capability
for image-denoising tasks but also provide richer image descriptions and understanding.
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Deep learning methods have been proven to have significant effects in the task of
denoising remote sensing images. For optical remote sensing images, a method of re-
mote sensing image denoising based on a Generative Adversarial Network (GAN) named
“Restoration Generative Adversarial Network with ResNet and DenseNet” (RRDGAN) was
proposed [9]. This method acquires better-quality images by incorporating denoising and
SR into a unified framework. Huang et al. integrated deep convolutional neural network
(DCNN) denoiser prior into a unidirectional variation (UV) model, named UV-DCNN, to
simultaneously destripe and denoise optical remote sensing images [10]. For hyperspectral
images (HSI) images, Xie et al. introduced the Deep Spatio-Spectral Bayesian Posterior
Network (DSSBPNet) for hyperspectral images [11]. DSSBPNet combines Bayesian varia-
tional posterior with deep neural networks, where a deep spatial-spectral network divides
the input image into three parts, generating spatial-spectral gradients for each. Different
convolutions are used in different parts of the DSS network. Meanwhile, noise estimation
of the original data, noise distribution, and sparse noise gradients constitute the Bayesian
posterior approach. Finally, the forward-backward propagation method is used to con-
nect DSS with the Bayesian posterior. A novel, deep-learning framework for 3-D HSI
denoising [12] was proposed, which decomposes 3-D filtering into 2-D spatial filtering
and 1-D spectral filtering. This method can achieve substantial savings on the number of
network parameters to keep the computational complexity low. For synthetic aperture
radar (SAR) images, a novel two-component deep learning (DL) network was proposed for
SAR despeckling [13]. First, the texture estimation subnetwork is constructed to produce
the texture level map (TLM), which evaluates the randomness and scale of the texture
distribution. Then, the noise removal subnetwork learns a spatially variable mapping
between the noise and clean images with the help of TLM.

However, we cannot ignore the important role of traditional models in the field
of denoising. Low-rank representation (LRR) models have been widely explored and
improved in the field of remote sensing image denoising [14,15]. A method called NAIL-
RMA [16] proposed an iterative regularization framework aiming to achieve denoising of
signal subspaces. In NAILRMA, an adaptive iteration factor selection method based on
noise variance was applied to each band of the hyperspectral image (HSI). Additionally,
some tensor-based low-rank denoising methods [17–19] have also demonstrated satisfac-
tory results. The Fisher–Tippett distribution-based WNNM (FT-WNNM) [20] attempts
to recover underlying low-rank components from patch group matrices. The Composite
Regularization Method for Spot Noise Reduction (CRM-SR) [21] introduces regularization
terms, including TV regularization and NLLR regularization. However, determining the
regularization parameters involved in the CRM-SR model is challenging. The NLLR frame-
work [22] decomposes speckle noise into low-rank components with proposed truncation
and weighted nuclear norm regularization. Considering the effectiveness of the LRR model,
more and more denoising algorithms have combined low-rank models with deep learning
denoising methods.

Zhang et al. proposed a Deep Low-Rank Prior (DLRP) [23] for remote sensing image
denoising, firstly using the low-rank characteristics of nearby non-local self-similar blocks
arranged in dictionary order to model the Global Objective Function (GOF). Secondly,
with the help of an alternating iterative strategy, GOF can be easily decomposed into two
independent sub-problems. Among them, the low-rank minimization denoising problem
can be solved through learning with a deep convolutional neural network. Nguyen et al.
proposed an HSI denoising method using deep image prior with sparse and low-rank
prior [24]. However, hyperparameter selection in this method is still an open question. Sun
et al. proposed a HSI denoising via LRR and CNN denoiser [25]. The sparse-based low-rank
representation can explore the global correlations in both the spatial and spectral domains,
and the CNN-based denoiser can represent the deep prior, which cannot be designed by
traditional restoration models. However, such denoising methods often have a common
problem, that is, they will filter out significant edge signals as noise, which will degrade
the quality of images. Zhang et al. developed a self-supervised HSI denoising method
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via integrating a model-driven strategy with a data-driven strategy [26]. The proposed
framework simultaneously cooperates with the spectral low-rankness prior and deep
spatial prior (SLRP-DSP) for HSI self-supervised denoising. Regarding the characteristics
of SAR images, more novel deep networks were proposed. Xiong et al. decomposed the
SAR image in the SAR imaging-despeckling observation model into a sparse matrix and a
low-rank matrix, and then established an optimization problem with the corresponding
sparse and low-rank priors [27]. A despeckling model was proposed that uses deeper
convolutional neural networks [28], which was never used before, as far as authors are
concerned, for diminishing speckles in noisy SAR images. Multiple skip connections from
the ResNet model are also employed in the authors’ proposed architecture. However,
these denoising methods often do not take into account the issue of edge preservation in
the denoising results, leading to the loss of some important structural information in the
denoised images.

In this paper, we combine the shallow low-rank denoising model with an autoencoder,
following the method in [29], to construct a two-level deep encoder. By applying deep
unfolding, the shallow LRR denoising model was introduced into the realm of deep
learning. Thus, a hierarchical low-rank denoising model based on deep unrolling (HLR-
DUR) was proposed. Integrating the characteristics of autoencoders, a two-level deep
autoencoder was established to optimize the iterative solution process for the low-rank
and edge components of remote sensing images. Utilizing the advantages of deep neural
networks, the model captures more complex patterns in the data, thereby enhancing the
effectiveness of image denoising. Finally, experiments conducted on optical remote sensing
images, hyperspectral images, and SAR images demonstrated that HLR-DUR significantly
outperforms shallow models across various metrics.

The main contributions can be summarized as follows:

1. We think the residuals of traditional low-rank models contain not only noise but also
high-frequency edge information that has been filtered out. Therefore, we tried to re-
extract edge information from the residuals to construct a hierarchical low-rank model
for denoising remote sensing images. To better achieve edge extraction, we introduced
manifold learning into the model, ensuring that useful structural information, rather
than noise, is extracted in the edge subspace. Additionally, a new prior knowledge
regulation was designed to distinguish between clean pixels and noisy pixels, guiding
the model to learn useful information during the denoising process;

2. Due to the number of iterations required, traditional LRR models usually take a long
time to process large-sized remote sensing images. To tackle this problem, we designed
a hierarchical denoising model based on deep unfolding by combining shallow models
with deep autoencoders. By mapping traditional iterative optimization algorithms
onto the structure of neural networks, each iterative step was transformed into a
layer of the network. This technique enhances the interpretability of neural networks,
making each layer no longer a black box model but rather corresponding to a specific
optimization step;

3. Experiments conducted on three types of images—optical remote sensing images,
hyperspectral images, and SAR images—demonstrated the effectiveness of our pro-
posed HLR-DUR model. HLR-DUR not only enhances denoising performance but
also better preserves sufficient edge detail compared to existing methods, achieving
better edge-preserving denoising.

2. Related Work

Wang et al. proposed that a low-rank prior and a fully convolutional Auto Encoder
(AE) can be incorporated through modeling an energy minimization problem [30], which is
similar to the Robust Principal Component Analysis (RPCA) model.

Given a data matrix X, it can be decomposed as [31]:

X = Z + E (1)
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where Z represents the low-rank part and E is a sparse matrix, which represents residual. Z
and E can then be optimized by solving the following energy minimization problem:

min
Z,E

∥Z∥∗ + λ∥E∥1

s.t.X = Z + E
(2)

where ∥·∥∗ denotes nuclear norm, ∥·∥1 denotes l1 norm, and λ is the regularization parameter.
Based on this model, the low-rank prior and a fully convolutional AE are incorporated

by modeling an energy minimization problem, which can be mathematically depicted
as follows:

min
Z,θ

1
2∥( fθ(Y)− X)W∥2 + λ∥Z∥∗

s.t.Z = fθ(Y)
(3)

where Y has the same dimensionality as the hyperspectral image, fθ(Y) is the network
which uses the uniform distribution as a prior to generate a reconstruction of the back-
ground, and W is the adaptive-weighted map.

Then, the problem can be solved by the Alternating Direction Method of Multipliers
(ADMM). The model can be described as

min
Z,θ

1
2
∥( fθ(Y)− X)W∥2 + λ∥Z∥∗ +

µ

2
∥Z − fθ(Y)∥2 + ST(Z − fθ(Y)) (4)

where S stands for the Lagrange multiplier, and µ is a penalty parameter.
Finally, the above-shown optimization problem can be split into three subproblems,

and each subproblem can be solved alternately in an iterative procedure.

3. Proposed Methodology

As previously mentioned, the presence of noisy data can destroy the low-rank structure
of the data. So, the LRR model splits the data into clean parts and noisy parts, separating
the noisy data while maintaining the low-rank structure of the data. However, the LRR
model has a drawback that cannot be ignored. Specifically, it strives to maintain a low-rank
structure by filtering out useful high-frequency information, which then causes important
image edges to be discarded as part of residuals. Motivated by this phenomenon, we first
try to construct a hierarchical low-rank model to extract edge details from residuals. Then,
we try to combine the proposed hierarchical model with deep neural networks to further
improve the denoising effect.

3.1. Hierarchical Low-Rank Model
3.1.1. Model Formulation

To address the issue of traditional low-rank models failing to preserve structural edge
information, we modify the traditional low-rank model using a prior knowledge matrix.
This modification allows the model to better distinguish between clean and noisy pixels.
The model can be represented as

min
Z,E

∥Z∥∗ + λ∥E∥2,1

s.t. H ◦ X = H ◦ Z + E
(5)

where X represents the original noisy image, Z represents the low-rank component, and
E represents the low-rank residual. H is the prior knowledge matrix used in this model,
“◦” denotes the Hadamard product, and λ is an adjustable parameter used to balance the
residual term.
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It is crucial to extract the edge information that has been filtered out from the residuals.
Building on (5), we innovatively introduce a constraint term H ◦ E = H ◦ E1 + H ◦ E2,
where E1 represents the edge part extracted from the residual, and E2 represents the noise
component in the residual. By further decomposing the residual, the filtered edge infor-
mation can be obtained, thereby enhancing the quality of the denoising results. However,
considering the different requirements for extracting residuals and low-rank components,
we further set up hierarchical prior knowledge information, implemented through different
coefficients, to meet different requirements. Specifically, when extracting the low-rank part,
the goal is to achieve as clean denoising results as possible, that is, the less noise, the better,
even if it means that the low-rank part of the image may have blurred edges and lose some
detail. When extracting edge structures, the focus is more on effectively extracting rich
edge information, even if some noise is introduced in the process of extracting edges. To
achieve this goal, we further propose a hierarchical prior knowledge to better extract the
edge details from the residuals, with the model presented as follows:

min
Z,E,E1,E2

∥Z∥∗ + λ∥E∥2,1

s.t. H1 ◦ X = H1 ◦ Z + E
H2 ◦ E = H2 ◦ E1 + E2

(6)

It is noteworthy that in the constraints of (6), H matrices with different subscripts
appear, as a special design of the hierarchical model. Here, H1 is used to obtain the clean
low-rank part from the noisy image, while H2 is used to find more edge details from the
residuals. As mentioned above, H1 should be more stringent to ensure that as much noise
as possible is eliminated. In contrast, the constraints on H2 are relatively lenient because
H2 needs to extract more useful information from the residuals.

However, extracting sufficient edge information from residuals containing a large
amount of noise is not an easy task. To ensure that our model learns the required edge
information rather than noise, and to ensure that good data geometric structures are
captured within the model, a manifold learning framework was also introduced to the
proposed model [32]. Manifold learning is a machine learning technique that explores and
exploits the underlying low-dimensional structures of high-dimensional data, based on the
idea that while data may be presented in high-dimensional spaces, they actually distribute
along some low-dimensional manifolds. The purpose of manifold learning is to reveal
these low-dimensional structures to better understand the essential characteristics of the
data. By introducing manifold learning, robust subspace projections V = (v1, v2, . . . , vr)
can be learned from the residuals E1, allowing for the extraction of edge subspaces. By
introducing dynamic affinity graph regularization, manifold learning can be incorporated
into the original model, with the formula represented as follows:

min
V,Z,W,E,E1,E2

1
2 ∑

i,j
∥VTe1,i − VTe1,j∥

2
2Wij+λ∥W∥2

F

s.t. H1 ◦ X = H1 ◦ Z + E
H2 ◦ E = H2 ◦ E1 + E2
VTV = I
W1 = 1, Wii = 0, W ≥ 0

(7)

where e1,i and e1,j represent the values of corresponding samples in the residual E1, and

1/2∑i,j ∥VTe1,i − VTe1,j∥
2
2 is an increased coupling term. It is a part of our model because

we do not know which part of the data is affected by noise.W is the dynamic affinity graph
matrix, and λ is an adjustable parameter used to balance the dynamic affinity graph.

For two similar samples xi and xj, if the values of corresponding e1,i and e1,j are very
small, this also suggests that the distance between them will be very small. Therefore, it
can be considered that they primarily contain edge information, which are the edge details
to be extracted from the residual E. Conversely, if they are part of the noise, the distance
between them will be increased. Based on this assumption, a weighting coefficient Wij is
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introduced to adaptively learn projections V with similar residuals. When two residual
samples are similar, Wij is set to non-zero. Otherwise, Wij is set to zero to mitigate the
impact of noise. At the same time, three non-negative constraints Wii = 0, W ≥ 0, and
W1 = 1 are also added to the model, and these three constraints are used to ensure that the
affinity graph will be normalized. Finally, the complete model is as follows:

min
V,Z,W,E,E1,E2

1
2 ∑

i,j
∥VTe1,i − VTe1,j∥

2
2Wij+λ1∥Z∥∗ + λ2∥E∥2,1 + λ3∥W∥2

F

s.t. H1 ◦ X = H1 ◦ Z + E
H2 ◦ E = H2 ◦ E1 + E2
VTV = I
W1 = 1, Wii = 0, W ≥ 0

(8)

where λ1, λ2, λ3 are adjustable parameters used to balance the different terms.
To solve (8), we employed the Augmented Lagrange Multiplier method (ALM).

The coupling term 1/2∑i,j ∥VTe1,i − VTe1,j∥
2
2 can be rewritten as tr(VT(FLÊT

)V), where
L = D − W is the graph Laplacian operator of W, and D = diag∑i Wij is the diagonal
matrix. Then, a relaxation variable S to denote Z, a relaxation variable E1 to denote Ê and a
relaxation variable R to denote E are introduced to make (8) easier to solve. Additionally,
another variable F is introduced to avoid the Sylvester equation during the solution process
for E. Therefore, (8) is reformulated as

min
V,Z,W,E,E1,E2

tr(VT(FLÊT
)V) + λ1∥Z∥∗ + λ2∥E∥2,1 + λ3∥W∥2

F

s.t. H1 ◦ X = H1 ◦ Z + E
H2 ◦ E = H2 ◦ E1 + E2
VTV = I
W1 = 1, Wii = 0, W ≥ 0
S = Z, E1 = Ê, F = Ê, R = E

(9)

3.1.2. Prior Knowledge Regulation Construction

Firstly, we constructed the basic prior knowledge matrix based on the work of
ROLD [33]. ROLD is a rank-ordered logarithmic difference, which can identify more
noisy pixels with fewer false hits. With such statistics as cornerstones, we tried to construct
our prior knowledge matrix. The uncorrupted probability hi of each pixel ki using ROLD is
as follows:

hi = exp(−αROLD(ki)) (10)

where α is the coefficient used to obtain image features under different requirements. When
α is large, the difference between uncontaminated pixels and contaminated pixels will
be widened, and the final result will filter most speckle noise, but more details such as
edges will also be filtered out together. On the contrary, when we set α small, it is more
likely to retain the edge details of images even though some speckle noise may also be left
on images.

Furthermore, we adapted the abovementioned prior knowledge matrix to make it
more compatible with SAR images. The backscattered signatures from point targets are
dominated by a small number of strong scatterers, which will make them classified as noisy
pixels. Therefore, we adopted the method of the Enhanecd Lee filter (EnLee) [34] to divide
all pixels into three categories, and combined it with (10) to make the prior knowledge
matrix more suitable for SAR images. Through using the hierarchical prior knowledge
matrices, our method can better learn the intrinsics of the low-rank part and edge part, and
obtain clearer results.
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Usually, two classes are considered in traditional filters: homogeneous and heteroge-
neous. Enhanced Lee filter presented that isolated point targets need special treatment as a
third class. For an NLOOK intensity image, it is filtered as follows:

R̂(t) =


I, Ci < Cmin
I(t) + ω(t)(I(t)− I(t))
I, Ci > Cmax

, Cmin ≤ Ci ≤ Cmax (11)

where Ci =
std
I

, std is the standard deviation within the filter window. Cmin = 1√
NLOOK

,

Cmax =
√

1 + 2
NLOOK .

The weight function can be written as

ω(t) = exp(
−(Ci − Cmin)

(Cmax − Ci)
) (12)

Learning from EnLee, we divide all pixels into three categories to obtain the weight
matrix ε:

(1) Ci > Cmax, which means that this pixel is a point target and needs to be preserved. So,
we set the corresponding value in ε to 0.9 (a very big value).

(2) Cmin < Ci < Cmax, update ε as 1 − ω according to (12).
(3) Ci < Cmin, which represents that this pixel is a noisy pixel and needs to be smoothed.

So, we set the corresponding value in ω to 0.1 (a respectively small value).

Then, the new prior knowledge matrix is constructed as follows:

Hi = hi ◦ ε (13)

Finally, Hi needs to be normalized to represent the probability of 0–1.

3.2. Deep Unfolding Model HLR-DUR Based on Autoencoder

In recent years, deep low-rank representation models have received increasing at-
tention as a potential solution for designing interpretable neural networks. By mapping
traditional iterative optimization algorithms into the structure of neural networks, each
iterative step is transformed into a layer of the network, enhancing the interpretability of
neural networks. Each layer of the network is no longer a black-box model but corresponds
to a specific optimization step. In the unfolded network, models based on traditional
physical meanings are used as the basic architecture, and the parameters that need manual
adjustment are transformed into trainable parameters of the network. The core idea of the
deep unfolding technique is to utilize deep neural networks to simulate and optimize the
iterative process of low-rank representation. Therefore, based on (9), the new model can be
described as

min
V,Z,S,W,E,E1,E2,Ê,F,R

tr(VT(FLÊT
)V) + λ1∥S∥∗ + γ1∥Z − fde1(X; θ1)∥2

F

+λ2∥E∥2,1 + γ2∥E1 − fde2(E; θ2)∥2
F + λ3∥W∥2

F
s.t. H1 ◦ X = H1 ◦ Z + E, H2 ◦ E = H2 ◦ E1 + E2

E1 = Ê, S = Z, R = E
VTV = I, W1 = 1, Wii = 0, W ≥ 0

(14)

where fde1(X; θ1) = g(WL . . . g(Wi . . . g(W2X))) denotes a multi-layer deep autoencoder,
θ1 =

{
W2, . . . , WL} is a set of learning parameters used for learning the low-rank com-

ponent. Additionally, fde2(E; θ2) is used to extract edge part, and θ2 is also a set of
learning parameters.
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Before solving for the optimal solution of each variable in (14), it is necessary to first
obtain its Augmented Lagrangian Multiplier (ALM) function; the complete equation is
as follows:

min
V,Z,S,W,E,Ê,E1,E2,F,R

tr(VT(FLÊT
)V) + λ1∥S∥∗ + λ2∥E∥2,1 + λ3∥W∥2

F

+γ1∥Z − fde1(X; θ1)∥2
F + γ2∥E1 − fde2(E; θ2)∥2

F
+tr(YT

1 (H1 ◦ X − H1 ◦ Z − E)) + tr(YT
2 (H2 ◦ R − H2 ◦ E1 − E2))

+tr(YT
3 (S − Z)) + tr(YT

4 (Ê − E1)) + tr(YT
5 (F − Ê)) + tr(YT

6 (R − E))
+ µ

2 (∥H1 ◦ X − H1 ◦ Z − E∥2
F + ∥H2 ◦ R − H2 ◦ E1 − E2∥2

F
+∥S − Z∥2

F + ∥Ê − E1∥
2
F + ∥F − Ê∥2

F + ∥R − E∥2
F)

s.t. VTV = I
W1 = 1, Wii = 0, W ≥ 0

(15)

where Y1, Y2, Y3, Y4, Y5 and Y6 are the introduced Lagrange multiplier.
By establishing a two-level deep encoder, the traditional hierarchical low-rank model

is extended to a deep learning network. In traditional iterative algorithms, the denoising
task is typically addressed through multiple iterative steps, with each step being computed
based on the output of the previous one. In deep unfolding, these iterative steps are
“unfurled” into a sequence of layers, each layer corresponding to an iterative step. Within
these unfolded layers, the iterative process of low-rank representation is simulated and
optimized through a deep autoencoder network.

The flowchart of the proposed model is depicted in Figure 1. Initially, the noisy image
undergoes preprocessing with a prior knowledge matrix. Subsequently, the preprocessed
noisy image is fed into HLR-DUR to obtain the low-rank and edge components. Finally,
the denoised edge and low-rank components are merged to produce a clean image.
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The above iterative process is unfolded into a neural network, whose general architec-
ture and components are shown in Figure 2. It consists of four main modules: the low-rank
module, the edge module, the update module for the other parameters, and the Lagrangian
multiplier module. Each module corresponds to the subproblem.
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Next, we introduce each module.

• low-rank module

The low-rank module is used to compute the clean low-rank component extracted
from noisy data. θ1 is computed by minimizing Lθ1 with respect to the weight parameters
θ1 while keeping other parameters fixed. The optimal solution is obtained by solving the
following subproblem:

Lθ1 = ∥Z − fde1(X; θ1)∥2
F (16)

The optimization is performed using the Gradient Descent (GD) algorithm, and the
formula can be written as follows:

θ1 = θ1 − ζ∂Lθ1/∂θ1 (17)

where ζ is the learning rate and ∂Lθ1/∂θ1 represents the gradient of Lθ1.

• edge module

The edge module is used to extract useful structural edge information from the
residual part. Its solution process is similar to that of the low-rank module, which can be
described as

Lθ2 = ∥E1 − fde2(E; θ2)∥2
F (18)

θ2 = θ2 − ζ∂Lθ2/∂θ2 (19)

• other variables

This module is used to update other variables apart from the low-rank part and the edge

part. We have eight variables that need to be updated: V, S, W, E,
^
E, E2, F, R. We adopt the

alternating direction method of multipliers (ADMM) [35] strategy to accelerate convergence.
V subproblem:
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Firstly, update V by fixing the other variables, and this subproblem can be expressed as

min
V

tr(VT(FLÊT
)V)

s.t. VTV = I
(20)

Denote FLÊT
= Q, then we can obtain

min
V

tr(VTQV)

s.t. VTV = I
(21)

V is obtained using the above-shown eigenvalue decomposition problem whose optimal
solution involves the set of k eigenvectors of the topmost k smallest eigenvalues of Q.

S subproblem:

min
S

λ1∥S∥∗ +
µ

2
∥S − Z +

Y3

µ
∥

2

F
(22)

Using the singular value thresholding (SVT), the optimal S is obtained as

S = Φ λ1
µ

(Z − Y3

µ
) (23)

where Φ represents the soft-thresholding operator.
W subproblem:

min
W

1
2 ∑

i,j
∥VTe1,i − VTe1,j∥

2
2Wij + λ3∥W∥2

F

s.t. W1 = 1, Wii = 0, W ≥ 0
(24)

We can find that (24) is independent for each i, so Wi can be solved separately
as follows:

min
Wi

1
2 ∑

i,j
∥VTe1,i − VTe1,j∥

2
2Wij + λ3∥Wi∥2

F

s.t. W1 = 1, Wii = 0, W ≥ 0
(25)

E subproblem:

min
E

λ2∥E∥2,1 +
µ

2
∥H1 ◦ X − H1 ◦ Z − E +

Y1

µ
∥

2

F
+

µ

2
∥R − E +

Y6

µ
∥

2

F
(26)

Denote T = 1
2 (H1 ◦ X − H1 ◦ Z + R + Y1

µ + Y6
µ ), τ = λ2

µ .
We can obtain the i-th column of the variable E as

E(:, i) =

{
∥ti∥−τ
∥ti∥

ti , i f τ < ∥ti∥
0 , otherwise

(27)

Ê subproblem:

min
Ê

tr(VT(FLÊT
)V) + µ∥Ê − E1 +

Y4

µ
∥

2

F
+ µ∥F − Ê +

Y5

µ
∥

2

F
(28)

Set ∂/∂Ê = 0, the optimized result can be obtained as

^
E =

2µE1 − VVTFL − 2Y4 + 2µF + 2Y5

4µ
(29)
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E2 subproblem:

min
E2

∥H2 ◦ R − H2 ◦ E1 − E2 +
Y2

µ
∥

2

F
(30)

E2 = (H2 ◦ R)− (H2 ◦ E1) +
Y2

µ
(31)

F subproblem:

min
F

tr(VT(FLÊT
)V) + µ∥F − Ê +

Y5

µ
∥

2

F
(32)

F =
2µE − VVTÊLT − 2Y5

2µ
(33)

R subproblem:

min
R

∥H2 ◦ R − H2 ◦ E1 − E2 +
Y2

µ
∥

2

F
+ ∥R − E +

Y6

µ
∥

2

F
(34)

R = (H2 ◦ H2 ◦ E1 + H2 ◦ E2 − H2 ◦
Y2

µ
+ E − Y6

µ
)÷ (1 + H2 ◦ H2) (35)

where ÷ represents element-wise division.

• Lagrange multipliers

In this section, we compute and update the Lagrange multipliers.

Y1 = Y1 + µ(H1 ◦ X − H1 ◦ Z − E) (36)

Y2 = Y2 + µ(H2 ◦ R − H2 ◦ E1 − E2) (37)

Y3 = Y3 + µ(S − Z) (38)

Y4 = Y4 + µ(Ê − E1) (39)

Y5 = Y5 + µ(F − Ê) (40)

Y6 = Y6 + µ(R − E) (41)

4. Results

To better compare the denoising results of deep learning methods on remote sens-
ing images, we selected the following classical deep learning algorithms as comparative
methods: DnCNN [36], FFDNet [37], HSID-CNN [38], GRN [39], DD-CNN [40], and
PDSNet [41].

In Section 4.1, we use the Mean Peak Signal-to-Noise Ratio (MPSNR) and Mean
Structural Similarity Index (MSSIM) as evaluation metrics. In Section 4.3, we employ the
Equivalent Number of Looks (ENL) and Edge Preservation Index (EPI) for evaluation.
Our specific parameter settings are as follows: batch size of 150, ADAM optimizer, and
learning rate of 5 × 10−3. For selecting parameters such as rank threshold, hierarchical
levels, and regularization terms, we integrated our proposed HLR-DUR model into an
AutoML tool. Across different datasets, we employed cross-validation to automatically
search for optimal parameters.

4.1. Experiments on Optical Images
4.1.1. Dataset Description

In this section, we selected the NWPU-RESISC45 dataset as the experimental subject.
The NWPU-RESISC45 dataset is an optical remote sensing image dataset, which contains
45 different types of natural and man-made scenes, such as airports, bridges, forests, lakes,
ports, etc., with approximately 700 different images for each type. These images are known
for their high resolution and diversity, making them highly suitable for training and testing
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computer vision algorithms for image recognition, classification, and denoising. In order to
conduct our experiments, the dataset was converted into single-channel grayscale images,
and Gaussian noise with different variances of 0.01, 0.02, 0.04, 0.06, 0.08, and 0.1 was added
to conduct the denoising experiments.

4.1.2. Experiments and Analysis

Noise with a variance of 0.04 is added to the first column of images in Figures 3 and 4
show the denoising results for each comparison algorithm In Figure 4f, it is evident that DD-
CNN exhibits the poorest visual performance, characterized by noticeable noise artifacts
in the image and significant blur and deformation along the edges of the airplane. While
DnCNN managed to recover the overall structure of the noise-free image, it suffered severe
blurring in edge details. The lines in the top-left corner of the image were nearly entirely
filtered out, and the airplane’s edges in the top-right corner appeared notably blurred. GRN
retained some crucial edge information compared to the others but still exhibited noticeable
noise residues, resulting in subpar visual quality. In contrast, FFDNet, HSID-CNN, PDSNet,
and HLR-DUR achieved comparatively better denoising results, preserving more structural
information in the image.
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Figure 3. NWPU-RESISC45 dataset.

However, it can be seen that among all compared algorithms, HLR-DUR was the only
method that clearly and completely preserved the lines in the upper left corner, indicating
a significant advantage of HLR-DUR in edge preservation. Additionally, the shape and
structure of the three airplanes in the denoising results of the HLR-DUR were closest to the
original image. Although some texture information was missing in the denoised result of
HLR-DUR, the overall edge structure was the most completely preserved. It is evident that
introducing the hierarchical denoising model into the deep learning domain significantly
improved the model’s edge preservation ability and denoising effect.

In this section, we evaluate the denoising results of the dataset under different noise
levels using MPSNR and MSSIM as evaluation metrics. These metrics were chosen because
they are commonly used to assess denoising performance across entire datasets, providing
a comprehensive and reliable evaluation of algorithm performance. From the data in
Table 1, it is evident that DnCNN, despite its poor visual effect in Figure 4, performed well
on both MPSNR and MSSIM metrics, with its MPSNR results being second only to the
HLR-DUR. GRN and DD-CNN achieved competitive denoising results at noise variances
of 0.01, 0.02, and 0.04, but their MPSNR and MSSIM values dropped faster than other
comparative algorithms when the noise pollution level became severe, indicating that these
two algorithms may not effectively remove noise under high noise conditions. Meanwhile,
FFDNet and HSID-CNN showed more stable performance but did not achieve the best
results in numerical evaluation. HLR-DUR achieved the highest metric values in most
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cases, especially in PSNR. Even with a noise variance of 0.1, the MPSNR value obtained by
HLR-DUR remained higher than 30, showing a clear advantage over other algorithms. As
for the MSSIM metric, HLR-DUR achieved the best values under different levels of noise,
indicating HLR-DUR’s superiority in structure preservation.
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Table 1. Evaluation of denoising results on the NWPU-RESISC45 dataset.

Noise
Variance

Evaluation
Metrics DnCNN FFDNet HSID-

CNN GRN DD-CNN PDSNet HLR-DUR

0.01
MPSNR 33.8562 29.1558 25.1696 23.4655 24.7268 28.4567 36.8927
MSSIM 0.7627 0.7924 0.7248 0.7085 0.7376 0.7073 0.7706

0.02
MPSNR 31.9557 27.5778 25.0029 22.9981 22.9527 25.4539 36.4328
MSSIM 0.7250 0.7176 0.7222 0.6749 0.6778 0.7018 0.7625

0.04
MPSNR 29.7556 26.0261 24.4276 21.1774 19.5923 23.5846 35.6956
MSSIM 0.6772 0.6445 0.7106 0.4552 0.3993 0.6936 0.7433

0.06
MPSNR 28.3637 25.1928 23.8439 17.4169 16.8556 20.3977 34.9296
MSSIM 0.6562 0.5838 0.6651 0.2329 0.1986 0.5725 0.6706

0.08
MPSNR 27.7164 24.1979 23.1341 17.3257 14.8928 18.2633 32.9710
MSSIM 0.6366 0.5186 0.5973 0.2312 0.1250 0.5591 0.6290

0.1
MPSNR 27.0592 23.4049 22.3332 14.5862 14.2963 18.0361 30.8986
MSSIM 0.5575 0.4681 0.5214 0.1491 0.1099 0.4826 0.5928

4.2. Experiments on Hyperspectral Images
4.2.1. Dataset Description

The AVIRIS Indian Pines dataset was acquired in 1992 by the Airborne Visible/Infrared
Imaging Spectrometer (AVIRIS) sensor over the Indian Pines test site in northwestern
Indiana. The data size is 145 × 145 × 220, and the pseudo-color image is shown in
Figure 5. Several bands in this dataset contain mixed noise, including impulse noise and
Gaussian noise.
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4.2.2. Experiments and Analysis

Firstly, Figure 6 shows the denoising results of all algorithms on the Pavia city center
dataset. FFDNet, HSID-CNN, and GRN all achieved good denoising results for hyperspec-
tral images, while DnCNN caused obvious edge blurring and DD-CNN failed to effectively
remove noise. Furthermore, both PDSNet and our proposed HLR-DUR model excelled in
removing noise from homogeneous regions while preserving edge information, achieving
superior visual outcomes.
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Figure 6. The denoising results of all algorithms on the Pavia city center dataset.

Figure 7 shows the auto-correlation curves of the denoised images. The auto-correlation
curve depicts the correlation of the image at different lags, reflecting the consistency and
repetitive pattern of the image texture. The closer the autocorrelation curve is to that of
the original image, the better the denoising algorithm performs in preserving the image
texture and structure. This proximity indicates that the algorithm can effectively remove
noise while preserving edge details and texture features, which is crucial for maintaining
image quality. Although the HLR-DUR model and the PDSNet model showed comparable
visual effects, the results in Figure 6 clearly demonstrate that our proposed HLR-DUR
model better preserves the details of the original image, as evidenced by its autocorrelation
curve closely resembling that of the original image. Other algorithms showed a certain
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degree of broadening, which is typically the result of over-smoothing. Over-smoothing
leads to the loss of unique texture details in the image, creating an unnatural visual effect,
which is undesirable in image processing. The broadening observed in the comparative
algorithms indicates that while noise was removed, a significant amount of texture informa-
tion was also discarded. In summary, the analysis of the auto-correlation curves revealed
that HLR-DUR exhibited superior ability in preserving the original texture and structure
of the image.
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4.3. Experiments on SAR Images
4.3.1. Dataset Description

In the experiments of this section, we used the Virtual SAR dataset as the experimen-
tal subject. The Virtual SAR dataset is a simulated SAR image dataset, which randomly
adds different levels of speckle noise based on the NWPU-RESISC45 dataset. The Vir-
tual SAR dataset consists of 31,500 images, each with a size of 256 × 256. Each image
has a corresponding noise-free version and a simulated noise-added version, as shown
in Figure 8.
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4.3.2. Experiments and Analysis

As shown in Figure 9, taking data number 00072 from the Virtual SAR dataset as an
example, the denoising results of various comparative algorithms are presented. Among
all the methods, the denoising result obtained by the GRN algorithm still had obvious
noise affecting the image quality, while the FFDNet and HSID-CNN algorithms failed
to smoothly denoise the homogeneous areas, resulting in some noisy spots in the image.
DnCNN, DD-CNN, and PDSNet, which are better at smoothing noise, did not adequately
preserve edge information, with the runway lines in the upper left corner of these two
images almost completely filtered out. In other algorithms, these lines were partially or
completely preserved. Visually, HLR-DUR still achieved the best effect. It is observed
that the structural outline of the airplane was clearer in the result of HLR-DUR, and the
denoising effect in the homogeneous areas was also better.
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Figure 9. Denoised results of the Virtual SAR dataset.

To further evaluate the edge preservation capabilities of different denoising algorithms
on SAR images, we used the Canny edge detection operator to extract edges from the
denoised results of each comparative algorithm, as shown in Figure 10. The Canny edge
detection operator is widely used in various image processing and computer vision tasks,
including image segmentation, feature extraction, and pattern recognition. Although
it is not the most advanced algorithm, due to its reliability, it remains one of the most
popular edge detection methods in image processing. In the extracted edge results, it can
be seen that due to incomplete noise removal in GRN, its edge extraction was also affected.
While other comparative algorithms generally extracted clear and complete target edges,
specifically the edge extracted by HLR-DUR was the most complete and closest to the
original image edges.

Table 2 shows the numerical evaluation of the denoising performance of various
comparative algorithms on five images from the Virtual SAR dataset. Because we were
evaluating the denoising performance of SAR images, we employed ENL and EPI as
evaluation metrics to assess the despeckling and edge preservation capabilities. It can be
seen that on the SAR dataset, the HLR-DUR model performed well on both ENL and EPI
metrics, meaning it effectively maintains the image’s edges and details while reducing
noise. Other algorithms such as DnCNN and DD-CNN exhibited poorer performance in
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edge preservation compared to FFDNet, HSID-CNN, GRN, and PSDNet. While FFDNet,
HSID-CNN, GRN, and PSDNet also achieved respectable results in terms of ENL and EPI,
overall, there remains a gap compared to HLR-DUR.
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Table 2. Evaluation of denoising results on the Virtual SAR dataset.

Noisy
Image DnCNN FFDNet HSID-

CNN GRN DD-CNN PDSNet HLR-
DUR
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Image 3 ENL 7.6195 107.8969 116.3891 113.5986 116.4556 100.3012 114.2744 124.5229
EPI - 0.6365 0.8779 0.8727 0.8991 0.6013 0.8917 0.9164

Image 4 ENL 7.7927 76.6310 73.9612 80.8328 80.9381 60.4646 83.6534 81.9254
EPI - 0.5929 0.7398 0.8634 0.8929 0.7013 0.7972 0.9147

Image 5 ENL 8.8592 103.7392 109.3430 116.1278 110.9981 101.4649 117.5947 125.6757
EPI - 0.7030 0.8562 0.8519 0.8244 0.7778 0.8139 0.8662

In Figure 11, we present the denoising results obtained from a real SAR dataset, SAR-
BuD. The SARBuD dataset is a synthetic aperture radar dataset designed for benchmarking
despeckling algorithms. It includes a variety of simulated SAR images with different
noise levels, providing a comprehensive resource for evaluating the performance of image-
denoising techniques. It can be observed that FFDNet, HSID-CNN, and GRN algorithms
exhibit suboptimal performance with residual noise remaining in uniform regions. While
DnCNN, DD-CNN, and PDSNet demonstrate relatively effective denoising, they tend to
blur or even filter out image edges. HLR-DUR achieved the best visual results among the
methods evaluated.
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As shown in Table 3, it is evident that the HLR-DUR model consistently outperformed
other algorithms when faced with real SAR image datasets. This indicates that it achieves
superior evaluation metrics in most scenarios, suggesting its capability to effectively balance
denoising and edge preservation in real SAR images.

Table 3. Evaluation of denoising results on the SARBuD dataset.

Noisy
Image DnCNN FFDNet HSID-

CNN GRN DD-CNN PDSNet HLR-
DUR

Image 1 ENL 10.7727 67.4415 55.9390 54.1302 57.7159 58.7127 65.9892 72.2878
EPI - 0.4201 0.5413 0.5265 0.5159 0.5337 0.5712 0.6175

Image 2 ENL 12.6964 62.5110 67.8803 63. 4276 63.5245 69.7125 77. 0636 92.3050
EPI - 0.6521 0.7019 0.7060 0.8226 0.6715 0.8064 0.8626

Image 3 ENL 10.6408 56.4970 63.1859 70.1377 66.9889 54.0735 82.4010 78.4357
EPI - 0.6361 0.71845 0.6423 0.7223 0.6531 0.7312 0.7907

The HLR-DUR model showed significant advantages through many evaluation met-
rics. By conducting a comprehensive analysis of the denoising results for virtual SAR
images and real SAR images, it can be seen that compared to other commonly used de-
noising algorithms such as DnCNN, FFDNet, HSID-CNN, GRN, DD-CNN, and PDSNet,
HLR-DUR more effectively preserves the image’s edge parts and detail information while
reducing noise levels. Especially in dealing with complex and diverse image denoising
problems, HLR-DUR demonstrated its comprehensive advantages, achieving the goal of
edge preservation and denoising, and holds great potential in the field of image denoising.

4.4. Processing Speed and Ablation Experiments
4.4.1. Ablation Experiment and Accuracy and Loss Curves

Figure 12 illustrates the training and validation loss results of HLR-DUR, demonstrating
its rapid convergence and minimal loss values, indicating effective denoising performance.
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We conducted ablation experiments on the deep model. The primary objective of
these experiments was to assess the impact of the edge modules incorporated within the
model. The results presented in Table 4 unequivocally demonstrate that integrating the
edge module significantly improved both the denoising efficacy and the model’s ability to
preserve edges. This outcome robustly validates the effectiveness of the edge module in
enhancing overall model performance.

Table 4. Results of the ablation experiments.

Evaluation Metrics 0.01 0.02 0.04 0.06 0.08 0.1

Without Edge Module MPSNR 35.3927 35.0233 34.6201 33.2930 31.9223 29.1146
MSSIM 0.6111 0.6032 0.5725 0.5549 0.7022 0.5803

HLR-DUR
MPNSR 36.8927 36.4328 35.6956 34.9296 32.9710 30.8986
MSSIM 0.7023 0.6882 0.6620 0.6321 0.6290 0.6116

4.4.2. Results of the Processing Speed and Parameters Experiment

We employed four NVIDIA® GeForce RTX 3090 GPUs which are manufactured by
NVIDIA Corporation, a technology company based in Santa Clara, California, United
States.to evaluate the processing speed and parameter count of training models using
256 × 256 SAR images as input. Table 5 presents the parameter sizes and processing
details of seven models. Among them, the model with the largest parameter count was
the enhanced DD-CNN, which totaled 7,955,552 parameters. The model requiring the
longest computational time was PDSNet, with an approximate execution time of 76.26 ms.
Our proposed HLR-DUR model had 28,311 parameters and took about 1.2 ms per epoch
to compute.

Table 5. Different model training parameters and time consumption comparison.

Methods DnCNN FFDNet HSID-
CNN GRN DD-CNN PDSNet HLR-DUR

Time(ms) 22.51 50.13 47.13 67.78 63.16 76.26 1.2

Parameters 667,008 485,316 556,097 1,322,251 7,955,552 1,366,111 28,311
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5. Conclusions

In this paper, a new deep low-rank model for remote sensing image denoising named
HLR-DUR was proposed. Compared with existing denoising methods, HLR-DUR com-
bines the advantages of the traditional LRR model and deep learning, enabling it to extract
edge information using prior knowledge regulations while further enhancing the model’s
denoising performance and computational efficiency through the deep autoencoder. HLR-
DUR combines the shallow low-rank denoising model with an autoencoder to construct a
two-level deep encoder. It uses deep unfolding to extract both the low-rank and edge com-
ponents. By integrating traditional iterative algorithms with the deep learning framework,
the iterative steps are unfolded into multiple layers, which are then aggregated to obtain
the final denoised result. Experiments conducted on three types of remote sensing datasets,
optical remote sensing images, hyperspectral images, and SAR images, demonstrated
that HLR-DUR achieves better edge-preserving denoising results than SOTA models and
significantly improves the denoising effect.
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