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Abstract: During underwater image processing, image quality is affected by the absorption and
scattering of light in water, thus causing problems such as blurring and noise. As a result, poor image
quality is unavoidable. To achieve overall satisfying research results, underwater image denoising
is vital. This paper presents an underwater image denoising method, named HHDNet, designed
to address noise issues arising from environmental interference and technical limitations during
underwater robot photography. The method leverages a dual-branch network architecture to handle
both high and low frequencies, incorporating a hybrid attention module specifically designed for the
removal of high-frequency abrupt noise in underwater images. Input images are decomposed into
high-frequency and low-frequency components using a Gaussian kernel. For the high-frequency part,
a Global Context Extractor (GCE) module with a hybrid attention mechanism focuses on removing
high-frequency abrupt signals by capturing local details and global dependencies simultaneously.
For the low-frequency part, efficient residual convolutional units are used in consideration of less
noise information. Experimental results demonstrate that HHDNet effectively achieves underwater
image denoising tasks, surpassing other existing methods not only in denoising effectiveness but also
in maintaining computational efficiency, and thus HHDNet provides more flexibility in underwater
image noise removal.

Keywords: underwater image denoising; convolutional neural network (CNN); attention mechanism;
frequency domain decomposition

1. Introduction

Underwater vision is a vital technology to explore the marine environment non-
invasively, which could provide abundant and various information for ocean study. High-
quality underwater images are essential for robots to complete underwater tasks such as
exploration, archaeology, rescue, and imaging. However, underwater images are often
distorted by water and suspended particles, which inevitably cause noise and reduce
image usability. Well-denoised underwater images with high quality could assist scientific
observations and robot underwater operations in working efficiently and accurately [1–15].
Furthermore, denoising technology could also support marine engineering by providing
more precise and reliable data.

When light travels through water, its absorbance and scattering effect are influenced
not only by water molecules but also by a combination of suspended particles such as
sand grains, plankton, and dissolved organic matter. Consequently, the main challenges in
underwater image denoising include low contrast, color distortion, and noise interference
commonly observed in such images. To address these image quality issues, researchers
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have proposed several methods for underwater image restoration and enhancement over
the past few decades. These methods [1–5] have significantly improved visibility and color
correction in underwater images. Based on marine measurement data, Akkaynak et al.
successfully derived the scattering space with physical effectiveness and constructed a
revised underwater image generation formation model [1] to simulate the degradation
process of underwater images. Similarly, in order to address the underwater image restora-
tion problem, Desai et al. also designed a revised model and trained it with generative
adversarial networks [2] to restore the real quality of underwater images. However, those
two methods mentioned above still used RGB image inputs and did not consider separat-
ing and processing the noise component independently. From another aspect, Peng et al.
tackled the challenge of separating color and texture in underwater images by proposing
a U-shaped Transformer network [3] and introducing LAB and LCH color space to op-
timize the separation of color and texture, and they achieved significant results. Wang
et al. observed inconsistencies in attenuation across different color channels and spatial
regions in underwater images, thus leading to the development of a dual-information
modulation network [4] to enhance the accuracy and robustness of underwater image
restoration tasks. However, solely relying on color space for texture and color separation
would be insufficient when dealing with underwater images. The reason is that image
texture often contains both noisy and non-noisy components, and underwater image noise
typically manifests as abrupt signal changes, which belong to the high-frequency part of
the image. Failure to further separate these high-frequency signals during texture extrac-
tion can result in sub-optimal processing outcomes. Therefore, in addition to color space
separation, further considerations are necessary from the perspective of frequency domain
decomposition when processing underwater images. In this field, Li X et al. proposed
the ACCE-D framework [5]. In the proposed framework, a Difference of Gaussian (DoG)
filter and a bilateral filter were used to decompose the high-frequency and low-frequency
components, respectively. Soft thresholding was then applied to suppress noise in the high-
frequency components. Nevertheless, ACCE-D did not employ a learning-based denoising
algorithm for training after separation and still left some progress to be made. The current
underwater image denoising algorithms can be classified into two main categories: model-
based methods [6–15] and learning-based methods [16–30]. Model-based methods remove
noise from the image by modelling the noise distribution in the target image. Herein,
filters designed manually are significant, such as bilateral filters [6], Gaussian filters, and
median filters. The model-based method defines noise as abrupt signals with significant
image gradients. By smoothing these abrupt signals, it can selectively remove noise from
the target image. Additionally, wavelet transform thresholding-based denoising [7] is a
commonly used technique in traditional image processing. It decomposes the signal into
different scales and determines thresholds based on the energy of each scale in the way of
setting low-energy wavelet coefficients to zero to achieve denoising. The non-local means
(NLM) method [8] considers each pixel in the image and compares it with similar regions
in other parts of the image. Different from traditional local denoising methods, NLM
utilizes information from a wider area in the image, thereby better preserving details and
structure. The block-matching and 3D filtering (BM3D) method [9] removes image noise
by enhancing sparsity. Markov random field models [10] take each pixel in the image as
a random variable, and model interactions between pixels by using an energy function
and also find a configuration which could minimize the energy function to achieve denois-
ing in the end. To simplify, model-based methods separate noise from images, suppress
noise components, and then model noise removal. However, these methods carry the risk
of losing image details. In addition, the performance of model-based methods may not
be satisfying in complex scenarios in that they may struggle to remove various types of
noise effectively.

Since the introduction of CNN algorithms like AlexNet [16] and ResNet [17], CNNs
have been applied to image denoising tasks constantly [18–26]. DnCNN [18], proposed by
Zhang K et al., was the first to apply CNNs to image denoising tasks, which defined a deep
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learning denoising equation as noisy images equal to clean images plus noise information to
simulate the noise removal process. RIDNet [19], proposed by Anwar S et al., used residual
structures to alleviate low-frequency information flow and feature attention to explore
channel correlations. ECNDNet [20], proposed by Tian C et al., used dilated convolutions to
enhance perception in the denoising process. ADNet [21], proposed by Liu Z et al., utilized
sparse modules, feature enhancement modules, attention modules, and reconstruction
modules to build a network structure for image denoising. MSANet [22], proposed by Gou
Y et al., considered both intra-scale characteristics and cross-scale feature complementarity.
SADNet [23], proposed by M Chang et al., introduced encoder and decoder blocks with
context in capturing multi-scale information and removing noise ranging from coarse to
fine. However, current CNNs cannot perceive long-distance interactions between pixels
and also lack flexibility in learning and adjusting noise models, thus making CNNs less
adaptable to different types and intensities of noise.

In recent years, some researchers have attempted to use Transformer architecture [27–30] for
image denoising, as Transformers can capture long-distance interactions of pixels. Restormer [27]
focuses on multi-scale local–global representation learning on high-resolution images. It intro-
duces modules like Multi-Dconv Head Transposed Attention and Gated-Dconv Feed-Forward
Network to aggregate locally and non-locally related pixels and control feature transformation.
KBNet [28] combines the strengths of CNNs and Transformers and introduces the Kernel-Based
Attention module to adaptively aggregate spatial neighborhood information, thereby using
learnable kernels for different local patterns. Additionally, it also designs a separate lightweight
convolution branch to predict linear combination coefficients for kernels, thus further enhancing
the efficiency and performance of Transformer denoising. Therefore, combining lightweight
convolutional networks with Transformers can improve the convergence speed of Transformers,
making it easier to apply Transformers to low-level tasks such as image denoising.

In addition to improvements in network structures, researchers have also proceeded
with denoising from the perspective of frequency domain separation [31–36]. From the
frequency domain viewpoint, noise is primarily concentrated in the high-frequency signal
region [31], which is characterized by sharp changes and is difficult to restore. There-
fore, the approach involves using high–low frequency separation algorithms to divide
the input image into high-frequency and low-frequency components. Denoising meth-
ods based on frequency domain separation include Fourier decomposition [32], wavelet
decomposition [33], Laplacian high–low frequency decomposition [34], discrete cosine
decomposition [35], and Gaussian blur decomposition [36]. CFPNet [35], proposed by
Zhang K et al., employed discrete cosine decomposition to separate the image into high
and low frequencies, and then processed these components individually using convolu-
tional neural networks, thereby enhancing the ability to handle high-frequency signals.
Wang L et al. used wavelet decomposition [33] to separate high and low frequencies and
processed these components separately. However, methods like wavelet decomposition
and discrete cosine decomposition are time-consuming and produce a large number of
decomposed components. When using convolutional networks to learn from these ex-
tensive components, the computational load increases significantly. To reduce the time
consumed by high–low frequency separation, Kang J et al. proposed the FSformer [36] im-
age denoising network, which used a Gaussian blur kernel-based separation method. This
method divided the input image into high- and low-frequency components, and reduced
processing time effectively compared with wavelet decomposition. FSformer employed
Transformer-based low-frequency (LFB) and high-frequency (HFB) modules to process the
respective components separately, and then merged them to obtain the denoised image.
While the aforementioned methods successfully separated high and low frequencies and
addressed the issue of slow decomposition speeds, they did not differentiate the treat-
ment of high- and low-frequency signals in their network structures, despite noise being
primarily concentrated in the high-frequency signal region.

In recent research, some researchers have applied lightweight diffusion models to
underwater image denoising tasks [37,38]. DM-Water [37], proposed by YI Tang et al., is
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a method that used diffusion models for image enhancement in underwater scenes. It
generated corresponding enhanced images by using underwater images and Gaussian
noise as input. Additionally, to improve the efficiency of the reverse process in diffusion
models, they employed a lightweight Transformer-based denoising network to speed up
both training and inference. WF-Diff [38], proposed by Chen Zhao et al., combined wavelet
spatial frequency information of underwater images with diffusion models, which achieved
state-of-the-art performance on several public datasets. However, diffusion models have
the characteristic of generating tasks, making it difficult for the generated images to retain
the original information of the underwater images. Moreover, diffusion models required
significant computational resources.

To address the noise problem in underwater images, this paper proposes an algo-
rithm called HHDNet, which is specialized to remove noise caused by environmental
disturbances and technical constraints in the process of underwater robot photography,
thereby improving the overall quality and clarity of images. Since noise in underwater
images mainly concentrates on high-frequency abrupt signals, the HHDNet algorithm
adopts a global residual learning approach. It decomposes RGB images into high-frequency
and low-frequency components by using high–low frequency separation and utilizes a
dual-branch network architecture to process high- and low-frequency parts independently.
It also strengthens the perception and elimination of high-frequency abrupt noise during
training. The contributions of this paper are as follows:

(1) We propose the HHDNet algorithm for underwater image denoising by targeting
noise from environmental disturbances and technical limitations in underwater
robot photography to enhance image quality and clarity. HHDNet adopts a Gaus-
sian blur-based high–low frequency separation strategy and features a dual-branch
network architecture.

(2) Compared to previous methods, HHDNet uses different modules in its dual-branch
network based on the distinct characteristics of high and low frequencies. For high-
frequency parts, it employs a Global Context Extractor (GCE) module, combining
depthwise separable convolutions with a mixed attention mechanism to capture
local details and global dependencies, focusing on removing abrupt noise. For low-
frequency parts, it uses a computationally efficient residual convolution module to
ensure precise and efficient noise removal.

(3) Compared to standard attention mechanisms and Transformers, the GCE module
employs a mixed attention mechanism. To prevent convergence difficulties, a prior
module with depthwise separable convolutions is introduced before the mixed at-
tention mechanism. The inductive bias of convolutions assists the mixed attention
mechanism to converge quickly during training, ensuring stronger denoising capabili-
ties of HHDNet.

2. Underwater Image Denoising Network

Figure 1 shows the structure of the HHDNet, which adopts a dual-branch network
architecture consisting of two branches. Each branch is constructed by stacking multiple
cascaded feature extraction modules internally, enabling the deep extraction of various
image features layer by layer and enhancing the network’s feature extraction capability.
When processing images, the network firstly decomposes the degraded input image into
high-frequency and low-frequency layers by using high–low frequency decomposition
and then feeds them into the two branches for processing. The high-frequency branch
uses eight GCE (Global Context Extractor) modules for high-frequency residual learning
to remove high-frequency noise while preserving details. The low-frequency branch
undergoes low-frequency residual learning through four residual convolution modules to
restore the image’s basic structure. After learning, the residual features outputted by the
high-frequency and low-frequency branches are added to the original layers, thus obtaining
the denoised high-frequency and low-frequency information for precise reconstruction.
Finally, the denoised layer information is concatenated, and a global residual amount is
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obtained by convolution fusion with a 3 × 3 filter, which is added to the original noisy
image to obtain the clean image.
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2.1. High–Low Frequency Separation

HHDNet uses Gaussian blur for high–low frequency decomposition to separate high-
frequency and low-frequency information. Gaussian blur is an image processing technique
used to reduce image noise and detail levels, resulting in a smoother image. By adjusting
the values of Gaussian blur, the degree of blur for different frequency components in the
image can be controlled. After applying Gaussian blur, the processed layer is combined or
contrasted with the original layer in some form to extract high-frequency and low-frequency
information, thus achieving high–low frequency separation. Assuming the input image is
I, the Gaussian function is G, the mean of Gaussian noise is µ, and the variance is θ, the
high–low frequency decomposition of the image can be represented as:

LF = G(θ,µ)(I) (1)

HF =|I− LF| (2)

As shown in Equations (1) and (2), the input RGB image undergoes Gaussian blur
processing, and results in low-frequency information (LF). The high-frequency information
(HF) is obtained by taking the absolute difference between the RGB image and the low-
frequency information. High-frequency information typically corresponds to abrupt signals
with significant gradients in the image, while low-frequency information represents the
overall structure and colors of the image.

2.2. Global Context Extractor

In the high-frequency branch, eight cascaded Global Context Extractor (GCE) modules
are utilized. The GCE module integrates a convolution group (ConvGroup) and cross-
attention group, thereby enhancing the effectiveness of high-frequency image denoising.
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The role of the ConvGroup is to extract local features from the image and utilize bias
induction to quickly identify and focus on areas with significant gradient changes in the
image during the early stages of training. Furthermore, the cross-attention group has a more
comprehensive long-distance perception and dependency capability, thus extracting global
contextual information effectively. The GCE, constructed by combining the convolution
group and cross-attention group, can selectively receive high-frequency images during
training and process abrupt signals within them.

The GCE module is shown in Figure 2. During the construction, the feature map
undergoes preliminary processing through a ConvGroup. The ConvGroup includes convo-
lution layers, batch normalization (BN), and depthwise separable convolution (DWConv).
The ConvGroup is defined as follows:

ConvGroup(Z) = DWConv(BN(Conv(Z))) + Z (3)
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As shown in Equation (3), assuming the input feature is Z, it undergoes feature ex-
traction using a 1 × 1 convolution operation first. Then, batch normalization (BN) is
applied to normalize the feature map, enhancing the stability and convergence speed of
the model. Next, a 3 × 3 depthwise separable convolution (DWConv) is used to further
refine the features in order to reduce model complexity while maintaining high perfor-
mance. The processed features are then added to the original input feature map to enable
residual learning and alleviate the gradient vanishing problem during training of deep
neural networks.

After preliminary feature extraction in the convolution group, the output of the convo-
lution group is passed into the cross-attention group. The cross-attention group consists
of a layer normalization (LN) layer and a cross-attention module. LN is a normalization
technique that normalizes the features across channels, providing stability during training.
The cross-attention module facilitates information exchange between different parts of
the input, allowing the model to focus on relevant areas for better performance in image
denoising tasks.

The cross-attention module is shown in Figure 3. After inputting feature map, the
input is firstly split along the channel dimension to obtain two feature subsets, namely
F1 and F2, both with half the number of channels of the original input. Different global
pooling methods are applied to F1 and F2 for feature aggregation. F1 is processed through
global average pooling to obtain mean information from all positions in the feature map,
while F2 undergoes global max pooling. After pooling, F1 and F2 are compressed into
feature vectors of size 1 × 1 × C/2. To further refine the feature representation, a strategy
of dimensionality reduction followed by dimensionality expansion is utilized:

d = Max(L,
C
2r
) (4)
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As shown in Equation (4), d represents the number of channels after compressing
either F1 or F2. The feature undergoes a 1 × 1 convolution operation and the number of
channels in the feature vector is reduced to C/2r, where r is the dimension reduction factor.
Subsequently, another 1 × 1 convolution layer is used to increase the number of channels
back to C/2. After the dimensionality reduction and expansion operations, an attention
score vector with the same number of channels as the input feature is obtained. Assuming
the input is X and the attention score is A, the cross-attention module is defined as:

CrossAtt(X) = Concat
[
F1

⊙
Att1, F2

⊙
Att2

]
+ X (5)

As shown in Equation (5), the weighted feature representations are obtained by
element-wise multiplication of Att1 and Att2 with the original F1 and F2, respectively.
After concatenating the weighted F1 and F2 together, they are added to the input feature
before channel splitting, serving as the output of the cross-attention mechanism module.

During training, F1 and F2 are cross-perceived and integrate information between
different branches through cross-attention. The cross-attention module optimizes attention
computation based on the module’s final output, ensuring that attention calculation main-
tains logicality and consistency while fully capturing and utilizing the complex features
of the input data. It also explores the dependency relationships in the noisy regions from
multiple perspectives.

2.3. Residual Block

The low-frequency component contains information such as color, saturation, and
brightness, which are not included in the high-frequency component. This information
collectively constitutes the basic color and overall perception of the image, and therefore
plays an important role in underwater image denoising tasks. However, there is less noise
information in the low-frequency part, so there is no need to use computationally intensive
and structurally complex modules. This paper chooses to use low-complexity residual
blocks [17] to construct the network structure for processing the low-frequency component,
which can remove noise while preserving the original features of the low-frequency part.

The structure of the residual learning module is shown in Figure 4. It consists of two
convolutional blocks which learn residual components through convolutional operations
and then add themselves to the original components. Each convolutional block contains
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a 3 × 3 convolution, Instance Normalization [39] (IN), and Parametric Rectified Linear
Unit (PRelu), respectively. IN is a normalization method that normalizes each channel
of each input sample individually. PRelu is an activation function that improves upon
the traditional ReLU function by introducing a learnable parameter to adaptively adjust
the shape of the activation function in the negative region. The residual learning module
can retain input information while learning and extracting more useful low-frequency
feature representations.
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2.4. Loss Function and Optimizer

Underwater image denoising based on deep learning uses a loss function to quantify
the difference between actual values and predicted values. A smaller loss indicates better al-
gorithm performance. In the training of HHDNet, image noise is defined as high-frequency
abrupt signals. For the handling of high-frequency abrupt signals, this paper chooses
the MAE loss function, also known as the L1 loss function, for supervision. As shown in
Equation (6), where N represents the total number of training samples, xi represents the
image after denoising by the network, and yi represents the true noise-free image:

MAE =
1
N∑N

i=1||xi − yi|| (6)

Throughout the entire model training process, the optimizer plays a crucial role in
facilitating parameter updates and guiding the model to its optimal state. The Adam
optimizer combines the advantages of AdaGrad and RMSProp and leverages the strengths
of both optimization algorithms. By comprehensively estimating the first and second
moments of gradients, the Adam optimizer calculates the update step size. The simplicity
of implementation and lower consumption in memory make Adam particularly suitable
for models with large-scale data and parameters. Therefore, this paper chooses Adam to
assist in achieving the best solution during model training.

3. Results and Discussion
3.1. Experimental Setup

The underwater data used in this experiment are drawn from the data source for the
Underwater Robot Picking Competition (URPC) organized by the National Natural Science
Foundation of China. The dataset used in this paper is URPC2019, consisting of images
captured by underwater robots using cameras. The dataset contains 5543 images with
a resolution of 640 × 480. The dataset is divided into training and testing sets in a 7:3
ratio. The training set includes 3880 ground truth images, while the testing set includes
1663 ground truth images. To train our HHDNet, Gaussian noise is added to the dataset
at noise levels of 15, 25, and 50. The proposed HHDNet and comparison models are run
on a single NVIDIA GeForce RTX 3090 graphics card. The HHDNet model is trained by
using a partitioned original training dataset consisting of 64 × 64 input and output blocks.
Training sessions are conducted separately for RGB color images with a fixed batch size of
16 and a learning rate set at 1× 10−3. Data augmentation techniques are applied to enhance
dataset diversity, including random vertical and horizontal flips, along with 90-degree
rotations. Network parameter optimization during training is accomplished using the
Adam optimizer.
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3.2. Evaluation Metrics

In this paper, we used UCIQE, UIQM, PSNR, and SSIM to evaluate the performance of
HHDNet. UCIQE and UIQM are primarily used for evaluating underwater image restoration
tasks, while PSNR and SSIM are commonly used as metrics for image denoising tasks.

(1) The Underwater Color Image Quality Evaluation Index [40] (UCIQE) is a metric used
for comprehensively evaluating the quality of color images. It evaluates color images
from three aspects: the mean value of saturation, the standard deviation of hue, and
the mean value of contrast. The larger the UCIQE value, the better the overall color
quality of the image. The definition formula for this index is:

UCIQE = c1·σc+c2·µs + c3·σh (7)

where c1, c2, and c3 are weights assigned to these components based on their impor-
tance in the overall image quality evaluation, usually set as c1 = 0.4680, c2 = 0.2745,
and c3 = 0.2576. σc is the standard deviation of contrast. µs is the mean value of
saturation, and σh is the standard deviation of hue.

(2) The Underwater Image Quality Measure index [41] (UIQM) is used to assess the
quality of underwater images, focusing on three aspects: colorfulness, sharpness, and
contrast. Colorfulness measures the naturalness and vividness of colors, contrast
reflects the ability to distinguish objects and details in the image, and sharpness relates
to the clarity of details and structures. By combining these factors, the UIQM index
provides an evaluation of the overall quality of underwater images, where a higher
value indicates better image quality. The formula for UIQM is typically given as:

UIQM = c1·UICM+c2·UISM + c3·UIConM (8)

Underwater Image Colorfulness Measure (UICM) evaluates color richness and naturalness.
Underwater Image Sharpness Measure (UISM) assesses image sharpness and clarity. Underwa-
ter Image Contrast Measure (UIConM) measures image contrast and distinction of objects. The
UIQM index provides a quantitative measure of underwater image quality, crucial for assessing
the effectiveness of image enhancement techniques in underwater images.

(3) The Peak Signal-to-Noise Ratio (PSNR) is used as an evaluation metric to measure the
enhancement effect of HHDNet. Given the width and height of the input image as
H and W, respectively, the enhanced image is denoted as Ic, and the original noisy
image is denoted as In. The mean squared error (MSE) between the enhanced image
and the original image is defined as:

MSE =
1

HW∑H−1
i=0 ∑W−1

j=0 [Ic(i, j)− In(i, j)]2 (9)

The Peak Signal-to-Noise Ratio (PSNR) between the enhanced image and the original
image is defined as:

PSNR = 10log10(
MAXI

MSE
) (10)

MAXI represents the maximum pixel value of the image. If each pixel is represented
by a B-bit binary number, then MAXI is equal to 2 raised to the power of B minus 1. In this
paper, if each pixel is represented by an 8-bit binary number, then MAXI is 255.

(4) In addition, we also use the Structural Similarity Index [42] (SSIM) to measure the
brightness, contrast, and structure (structural) between samples x and y.

l(x, y) =
2µx2µy + c1

µ2
x+µ2

y + c1
(11)

c(x, y) =
2σx2σy + c2

σ2
x+σ2

y + c2
(12)
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s(x, y) =
σxy + c3

σxσy + c3
(13)

where µx and µy are the means of x and y, respectively; σx and σy are the variances of
x and y, and σxy is the covariance between x and y; and c1 and c2 are two constants.
We set c3 = c2/2 to avoid being divided by zero. MAXI represents the maximum
value of pixels in a B-bit image, which is 255 in this paper. By default, k1 = 0.01 and
k2 = 0.03, and then we have:

SSIM(x, y) =
[
l(x, y)αc(x, y)βs(x, y)γ

]
(14)

When α = β = γ = 1, we have:

SSIM(x, y) =
(2µx2µy + c1)(2σx2σy + c2)

(µ2
x+µ2

y + c1)(σ2
x+σ2

y + c2)
(15)

3.3. Experimental Results

HHDNet employs a strategy of high–low frequency separation, utilizing a Gaussian
blur-based approach for separation. Compared to other separation methods, Gaussian blur
kernel high–low frequency separation is a real-time processing method. Table 1 provides
an inference time comparison of Fourier decomposition, Wavelet decomposition, Laplacian
decomposition, discrete cosine decomposition, and Gaussian blur decomposition.

Table 1. Inference time comparison of Fourier decomposition, Wavelet decomposition, Laplacian
decomposition, discrete cosine decomposition, and Gaussian blur decomposition. Bold represents
the shortest time.

Fourier Decomposition Wavelet Decomposition Laplacian Decomposition Discrete Cosine
Decomposition

Gaussian Blur
Decomposition

Inference Time 26.87 ms 7.25 ms 3.40 ms 11.85 ms 0.92 ms

HHDNet utilizes a high–low frequency decomposition strategy and also employs the
GCE Block to process the high frequency. To validate the effectiveness of each improvement,
this paper conducts ablation experiments. Firstly, the high–low frequency decomposition
strategy is removed to verify its contribution to improving accuracy. Secondly, a comparison
is made between the ResBlock and the GCE module in terms of accuracy improvement.
Additionally, we incorporate inference time for each ablation experiment. Ultimately,
when the low-frequency branch utilizes ResBlock and the high-frequency branch employs
GCEBlock, the model achieves a good balance between accuracy and inference time. The
results are shown in Tables 2 and 3.

Table 2. HHDNet’s ablation experiments in terms of average UCIQE and UIQM at noise levels 15,
25, and 50. × represents High-Low Frequency Decomposition is not used,

√
represents High-Low

Frequency Decomposition is used, and bold represents the configuration used by HHDNet.

High–Low Frequency
Decomposition

Low-Frequency
Branch

High-Frequency
Branch Inference Time

Sigma = 15 Sigma = 25 Sigma = 50

UCIQE UIQM UCIQE UIQM UCIQE UIQM

× ResBlock (RGB Input) 6.2 ms 0.529 4.212 0.517 4.115 0.488 3.756
√

ResBlock ResBlock 9.3 ms 0.573 4.727 0.551 4.456 0.529 4.118√
ResBlock GCEBlock 16.3 ms 0.631 5.128 0.598 4.728 0.557 4.379√

GCEBlock GCEBlock 26.2 ms 0.638 5.142 0.605 4.737 0.566 4.388
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Table 3. HHDNet’s ablation experiments in terms of average PSNR and SSIM at noise levels 15,
25, and 50. × represents High-Low Frequency Decomposition is not used,

√
represents High-Low

Frequency Decomposition is used, and bold represents the configuration used by HHDNet.

High–Low Frequency
Decomposition

Low-Frequency
Branch

High-Frequency
Branch

Sigma = 15 Sigma = 25 Sigma = 50

PSNR SSIM PSNR SSIM PSNR SSIM

× ResBlock (RGB Input) 31.541 0.9406 29.015 0.9015 25.988 0.8238
√

ResBlock ResBlock 31.552 0.9418 29.043 0.9022 26.002 0.8246√
ResBlock GCEBlock 31.554 0.9421 29.051 0.9024 26.005 0.8248√

GCEBlock GCEBlock 31.554 0.9422 29.052 0.9024 26.005 0.8249

In HHDNet, high–low frequency decomposition is employed using Gaussian blur ker-
nels. To determine the optimal Gaussian kernel size, we conduct the following experiments
to compare the impact of different Gaussian kernels on UCIQE, UIQM, PSNR, and SSIM
metrics, as shown in Tables 4 and 5.

Table 4. HHDNet’s high–low frequency decomposition with different Gaussian kernel parameters in
terms of average UCIQE and UIQM at noise levels 15, 25, and 50. Bold represents the configuration
used by HHDNet.

Gaussian Ksize
Sigma = 15 Sigma = 25 Sigma = 50

UCIQE UIQM UCIQE UIQM UCIQE UIQM

3 × 3 0.622 5.023 0.583 4.634 0.549 4.323
5 × 5 0.631 5.128 0.598 4.728 0.557 4.379
7 × 7 0.619 5.077 0.586 4.663 0.544 4.298
9 × 9 0.601 4.915 0.572 4.578 0.537 4.216

11 × 11 0.596 4.823 0.565 4.423 0.529 4.169

Table 5. HHDNet’s high–low frequency decomposition with different Gaussian kernel parameters in
terms of average PSNR and SSIM at noise levels 15, 25, and 50. Bold represents the configuration
used by HHDNet.

Gaussian Ksize
Sigma = 15 Sigma = 25 Sigma = 50

PSNR SSIM PSNR SSIM PSNR SSIM

3 × 3 31.553 0.9412 29.047 0.9017 25.999 0.8244
5 × 5 31.554 0.9421 29.051 0.9024 26.005 0.8248
7 × 7 31.549 0.9420 29.048 0.9022 26.004 0.8248
9 × 9 31.548 0.9411 29.045 0.9019 26.002 0.8241

11 × 11 31.545 0.9408 29.044 0.9015 26.000 0.8239

Observing at the same noise level, when Ksize increases from 3 × 3 to 5 × 5, UCIQE,
UIQM, PSNR, and SSIM values all show improvement. However, as Ksize continues to
increase to 7 × 7 and beyond, the improvement in metrics becomes very limited, and there
is even a slight decrease in some cases. Therefore, this paper ultimately uses a Ksize of
5 × 5 as the parameter for the Gaussian kernel in the high–low frequency decomposition.

We conduct comparative experiments using ten methods, including NLM, BM3D,
DnCNN-B, RIDNet, ECNDNet-L, ADNet-L, MSANet, SADNet, DM-Water, and WFI2-Diff.
These ten methods are tested alongside our proposed HHDNet algorithm on the URPC2019
dataset. Ultimately, our algorithm outperforms other methods in terms of UCIQE, UIQM,
PSNR, and SSIM in the URPC2019 testing, as shown in Tables 6 and 7.
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Table 6. The average UCIQE and UIQM values of different algorithms at noise levels 15, 25, and 50
on the URPC2019 test set. Bolded “HHDNet” represents the algorithm proposed in this paper, and
bolded metrics represents the best results in the comparative experiments.

Method
Sigma = 15 Sigma = 25 Sigma = 50

UCIQE UIQM UCIQE UIQM UCIQE UIQM

NLM [8] 0.318 2.713 0.284 2.472 0.259 2.194
BM3D [9] 0.336 2.829 0.297 2.541 0.266 2.302

DnCNN-B [18] 0.503 3.921 0.509 3.841 0.472 3.527
RIDNet [19] 0.543 4.150 0.522 3.935 0.491 3.672
ECNDNet-L

[20] 0.561 4.289 0.537 4.016 0.505 3.764

ADNet-L [21] 0.578 4.421 0.550 4.123 0.518 3.875
MSANet [22] 0.592 4.568 0.564 4.239 0.533 3.981
SADNet [23] 0.604 4.697 0.575 4.312 0.538 4.068

DM-Water [37] 0.609 4.987 0.582 4.563 0.543 4.241
WFI2-Diff [38] 0.612 5.032 0.585 4.617 0.545 4.298

HHDNet 0.631 5.128 0.598 4.728 0.557 4.379

Table 7. The average PSNR and SSIM values of different algorithms at noise levels 15, 25, and 50
on the URPC2019 test set. Bolded “HHDNet” represents the algorithm proposed in this paper, and
bolded metrics represents the best results in the comparative experiments.

Method
Sigma = 15 Sigma = 25 Sigma = 50

PSNR SSIM PSNR SSIM PSNR SSIM

NLM [8] 29.412 0.8734 26.699 0.8472 22.8873 0.7851
BM3D [9] 29.641 0.8828 27.128 0.8594 22.8964 0.7899

DnCNN-B [18] 31.540 0.9406 29.016 0.9016 25.988 0.8238
RIDNet [19] 31.542 0.9420 29.042 0.9021 25.994 0.8242
ECNDNet-L

[20] 31.546 0.9414 29.038 0.9014 25.991 0.8240

ADNet-L [21] 31.548 0.9410 29.033 0.9017 25.997 0.8243
MSANet [22] 31.551 0.9414 29.045 0.9022 26.001 0.8246
SADNet [23] 31.553 0.9412 29.047 0.9023 26.000 0.8247

DM-Water [37] 31.532 0.9414 29.040 0.9017 25.990 0.8241
WFI2-Diff [38] 31.549 0.9418 29.048 0.9022 26.001 0.8245

HHDNet 31.554 0.9421 29.051 0.9024 26.005 0.8248

At a relatively low noise level with Sigma = 15, the proposed HHDNet algorithm
achieves a UCIQE value of 0.631 and an UIQM value of 5.128. As the noise level increases
to Sigma = 25, the UCIQE value of the HHDNet algorithm decreases to 0.598, with an
UIQM value of 4.728. As the noise level increases to Sigma = 50, the UCIQE value of the
HHDNet algorithm decreases to 0.557, with an UIQM value of 4.379.

At a relatively low noise level with Sigma = 15, the proposed HHDNet algorithm
achieves a PSNR value of 31.554 and an SSIM value of 0.9421, showing significant ad-
vantages over other compared algorithms, indicating its effectiveness in restoring image
quality and preserving structural information at this noise level. As the noise level increases
to Sigma = 25, the PSNR value of the HHDNet algorithm decreases to 29.051, with an SSIM
value of 0.9024, still surpassing other compared algorithms, demonstrating its stability and
ability to preserve image structure across different noise levels. In the extreme case of high
noise with Sigma = 50, although all algorithms experience a significant drop in SSIM values,
HHDNet still achieves a PSNR value of 26.005 and an SSIM value of 0.8248 and shows its
capability to recover images and preserve structure even under extremely high noise levels.

The total number of model parameters (Parameters), model computational complexity
(FLOPs), and inference time to some extent reflect the model’s complexity. If the total
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amount of model parameters and computational complexity is too high, the model may
not be suitable for practical applications. Therefore, to validate the rationality of the model,
as shown in Table 8, the total amounts of model parameters, computational complexity,
and Inference Time for each algorithm are calculated. From the table, it can be seen that
our model’s total amounts of parameters and computational complexity are relatively
reasonable. This model can effectively remove image noise in practical applications.

Table 8. The comparison of model parameters and flops between the HHDNet method and other
algorithms, with all algorithms evaluated on a single RTX 3090 GPU.

DnCNN-B RIDNet ECNDNet-L ADNet-L MSANet SADNet DM-Water WFI2-Diff HHDNet

Flops 23.5 G 21.4 G 34.5 G 35.7 G 27.1 G 45.2 G 150.6 G 631.1 G 17.5 G
Parameters 12.78 M 6.79 M 15.2 M 15.8 M 7.99 M 17.29 M 10.13 M 43.72 M 6.82 M
Inference

Time 34 ms 19.8 ms 79.1 ms 79.8 ms 25.3 ms 42.2 ms 130 ms 720.4 ms 16.3 ms

HHDNet demonstrates significant advantages in performance. Compared with other
methods, HHDNet achieves a superior balance between speed and accuracy. HHDNet has
17.5 G flops and 6.82 M parameters, and an inference time of 16.3 ms, which strikes a balance
between computational efficiency and model complexity by avoiding being excessively
large, causing low computational efficiency, or too small, limiting model complexity.

To demonstrate the superiority of our proposed HHDNet, we select an image from the
URPC2019 dataset and compare our denoising results with those of other algorithms.
We visualize images with noise levels of 15 and use error maps to display them in
Figures 5 and 6. Similarly, we visualize images with noise levels of 50 and use error
maps to display them in Figures 7 and 8.

ErrorMap =
σ

N∑N
i=1||xi − yi||+ µ (16)
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Among them, setting σ = 5, µ = 128 when Sigma = 15, and setting σ = 3, µ = 128 when
Sigma = 50, can make the error map more intuitive.

These images clearly indicate that the denoising results produced by our algorithm
are significantly clearer and preserve image details effectively. Additionally, both UCIQE
and UIQM metrics are higher.

From the visualization results, the HHDNet algorithm demonstrates good structural
preservation performance under both low and high noise levels, especially in low to mod-
erate noise levels, where it performs exceptionally well. Compared with other algorithms,
HHDNet still achieves relatively high UCIQE and UIQM values.

4. Conclusions

This paper proposes an underwater image denoising algorithm named HHDNet.
The algorithm adopts a dual-branch network architecture for high- and low-frequency
components and integrates a hybrid-attention GCE module to enhance and accurately
identify high-frequency noise spike signals, thus effectively removing noise generated
during underwater robot photography due to complex environments and technical limita-
tions. It not only surpasses existing methods in denoising performance on the URPC2019
dataset but also demonstrates significant advantages in computational efficiency, perform-
ing underwater image denoising more precisely and efficiently. The proposed method
improves the visual quality of underwater image denoising significantly and could con-
tribute to visual-based underwater tasks such as subsequent underwater detection and
segmentation tasks.

As underwater scientific research and industrial applications develop further, the de-
mand for high-quality underwater images is becoming increasingly urgent. HHDNet could
bring significant improvement in underwater image denoising technology and provide
strong support for further development. In particular, HHDNet demonstrates notable
advantages in computational efficiency, thereby enhancing resource usage efficiency. The
outstanding denoising effect and lower resource consumption make HHDNet absolutely
predominant among competitors in completing tasks such as target detection and image
segmentation. We strongly believe that HHDNet would bring new breakthroughs and
practical value to the development of underwater image processing.

Nonetheless, HHDNet still has room for improvement. The formation of underwater
image noise is complex and diverse, with significant variances in the distribution of different
noise types. In practical applications, denoising models need to map the noise domain
containing multiple types of noise to the high-quality image domain, which is essentially a
many-to-many task. It is confined to the current supervised training using only Euclidean
distance, which may lead to the training process converging to an average level. To further
enhance denoising effectiveness, we could consider exploring advanced techniques such as
adversarial networks or diffusion models to address this issue and promote the continuous
advancement of underwater image processing technology.
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