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Abstract: Strip steel plays a crucial role in modern industrial production, where enhancing the
accuracy and real-time capabilities of surface defect classification is essential. However, acquiring
and annotating defect samples for training deep learning models are challenging, further complicated
by the presence of redundant information in these samples. These issues hinder the classification
of strip steel surface defects. To address these challenges, this paper introduces a high real-time
network, ODNet (Orthogonal Decomposition Network), designed for few-shot strip steel surface
defect classification. ODNet utilizes ResNet as its backbone and incorporates orthogonal decom-
position technology to reduce the feature redundancies. Furthermore, it integrates skip connection
to preserve essential correlation information in the samples, preventing excessive elimination. The
model optimizes the parameter efficiency by employing Euclidean distance as the classifier. The
orthogonal decomposition not only helps reduce redundant image information but also ensures
compatibility with the Euclidean distance requirement for orthogonal input. Extensive experiments
conducted on the FSC-20 benchmark demonstrate that ODNet achieves superior real-time perfor-
mance, accuracy, and generalization compared to alternative methods, effectively addressing the
challenges of few-shot strip steel surface defect classification.

Keywords: real time; orthogonal decomposition; skip connection; few-shot defect classification;
Euclidean distance

1. Introduction

In the industrial age, the demand for strip steel across various industries is increasing.
However, due to the influence of temperature and manufacturing processes, surface defects
such as water spots, creases, and patches frequently occur during production. These defects
can seriously affect both the quality and safety of the final product [1,2]. If such defects
are not identified in a timely manner, they can lead to significant losses in subsequent
production stages. Therefore, it is crucial to quickly and accurately classify surface defects
in strip steel production [3,4].

With the rise of deep learning, industrial production has transitioned from traditional
to intelligent manufacturing, infusing artificial intelligence with new vigor [5–7]. Many
researchers have applied deep learning techniques to classify strip steel surface defects.
The fusion matrix based on Fisher’s criterion and correlation analysis was introduced
in [8], effectively integrating global and local dimensions. Classification performance was
improved using multi-label techniques in [9], with model complexity and latency for small
datasets reduced. Consideration of the correlation between pixel-level segmentation masks,
object-level bounding boxes, and global image-level classification labels was undertaken
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in [10], with the joint learning of the features of related tasks to improve the performance.
A scheme based on ResNet50 with FcaNet and Convolutional Block Attention Module
(CBAM) for strip defect classification was proposed in [11]. The CutPaste-Mix data aug-
mentation strategy and Gaussian Density Estimation for abnormal region classification
were utilized in [12].

However, in actual industrial production, surface defects on strip steel are rare and chal-
lenging to acquire. Therefore, directly applying traditional deep learning methods to classify
these defects often leads to overfitting issues [13,14]. Moreover, industrial images contain
significant redundant information, further complicating the task of classification [15–17].

Inspired by the human ability to quickly learn from a small number of examples,
few-shot learning emerged [18]. Its goal is to train a classifier using a limited number of
samples that can then efficiently detect new defects with a small number of samples [19,20].
This necessitates high precision and robust generalization from the model, aligning more
closely with the practical demands of industrial defect classification [21].

The few-shot strip steel surface defect classification model is mainly divided into
three methods: data augmentation-based, optimization-based, and metric-based [22,23].

Data augmentation-based. This is the most direct approach to addressing the few-
shot strip steel surface defect classification problem, which can be extended through
affine transformations such as rotation, cropping, or online enhancements like Generative
Adversarial Networks (GAN) [24] and CutMix [25–27]. Data augmentation methods such
as those proposed in [28] involve accumulating richly featured data incorporating expert
knowledge of abnormalities, including diverse features, positions, sizes, and backgrounds.
The residual discriminator network structure within a dual discriminator GAN framework
was introduced in [29] to enhance generation diversity while preserving image features.
Recognition generalization across meta-tasks is improved by a meta-augmentation method
proposed in [30] through joint parameter updating from original and augmented domains.

Optimization-based. Gradient optimization enables rapid adaptation to new tasks [31,
32]. MAML [33] is recognized as one of the most influential methods, with iterative models
updated by amalgamating gradients, thereby influencing numerous subsequent method-
ologies. A hyperparametric adaptive strategy based on gradient descent (HASGD) is
introduced in [34] to enhance the stability and scalability of the training process. The frame-
work and neural network models are refined in [35] based on MAML [33].

Metric-based. This is one of the most common solutions for few-shot strip steel
surface defect classification, primarily comprising a classifier and feature extractor, which
categorize samples by mapping nonlinear maps in the embedding space [36–38]. A novel
dual-stream neural network is proposed, involving the generation of numerous defect
samples for classifier pretraining, and the classification of real steel strip surface defects is
achieved using the transfer learning method [39]. A transductive learning algorithm was
designed and presented in [40], where a new classifier was trained during the test phase to
accommodate the needs of unknown samples. A depth metric-based classification method
is proposed in [41] to identify a sample-matching feature space with effective similarity
measures using cosine distance. A transductive few-shot surface defect classification
method is introduced in [42], leveraging both instance-level and distribution-level relations
within each few-shot learning task. ResMSNet, a novel backbone network presented in [43],
draws on the idea of multi-scale feature extraction for small discriminative regions in defect
samples and provides classification via linking prototype distances and nonlinear relation
scores. CPANet, proposed in [44], effectively aggregates long-range relationships of discrete
defects and introduces a space squeeze attention module to aggregate multiscale context
information of defect features. An attention-guided recognition network is presented
in [45], featuring channel and position attention modules and a dual-metric function for
learning classification boundaries by controlling sample distances in the feature space
between intraclass and interclass. Benefiting from the simplicity, high efficiency, and strong
designability of metric-based methods, the model proposed in this work also falls into the
category of metric-based approaches.
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With the advances in deep learning technology, mainstream models are becoming
increasingly complex. However, as the model complexity grows, real-time performance is
adversely affected, which fails to meet the demands of industrial production. Conversely,
simpler models lack the capability to extract intricate discriminative features, thereby com-
promising classification performance. Moreover, strip surface defects typically occupy a
small portion of the overall image, with the majority consisting of redundant information.
Addressing the issue of few-shot learning, the model’s effectiveness is hindered by insuffi-
cient sample data, necessitating the minimization of redundant information interference to
enhance the model’s utilization of pertinent data.

Before the widespread adoption of deep learning, earlier studies utilized Singular
Value Decomposition (SVD) to address redundancy in the classification of strip surface
defects. Ref. [46] presents a technique for the detection of local defects in cold rolled
strips. In their approach, principal component analysis is employed with SVD to reduce
the dimensionality of the extracted feature vector. Subsequently, the defects in the steel
strips are detected using a feed-forward neural network. An approach is proposed in [47],
where the gray level matrix of a digital image is projected onto its singular vectors obtained
through SVD. Defects are identified by abrupt changes in these projections, allowing for
the determination and rough localization of the defects. The effectiveness of traditional
machine learning also provides inspiration for this work. The combination of traditional
methods with deep learning can yield improved results.

To tackle the above challenges, this study introduces ODNet, a high real-time net-
work that utilizes orthogonal methods to mitigate the influence of redundant information
on the model and maximize the utility of the limited available data. ODNet achieves
de-redundancy via the orthogonal decomposition of fully connected layer parameters, en-
suring orthogonal feature projection. The model incorporates hops to safeguard against the
loss of useful information during orthogonal decomposition operations. This orthogonal
embedding of features enhances its suitability for Euclidean distance inputs. Experiments
were conducted on the FSC-20 benchmark, specifically designed to validate the few-shot
strip steel surface defect classification model. ODNet demonstrates superior classification
accuracy, high real-time performance, and strong generalization compared to other meth-
ods. Additionally, extensive ablation experiments were conducted to assess the influence
of the model parameters and modules on the performance.

Accordingly, this paper makes the following four major contributions:

• A high real-time network for few-shot strip steel surface defect classification is proposed.
• ODNet employs orthogonal decomposition to derive orthogonal features, thereby

minimizing the impact of redundant information on the model. The inclusion of a skip
connection ensures that the valuable correlation information remains intact, especially
after orthogonal decomposition.

• The features extracted by the model with orthogonality also adhere more closely to
the orthogonality requirement of the Euclidean distance on input, thereby enhancing
the classifier performance.

• Compared to alternative methods, ODNet exhibits superior real-time performance,
precision, and generalization, aligning more closely with the specific demands of
industrial production.

The proposed method is described in detail in Section 2, Section 3 provides the details
of a series of experiments to verify the performance of the model. Finally, this paper
discusses and summarizes the proposed method in Sections 4 and 5.

2. Methodology

The problem definition of few-shot strip steel surface defect classification is explained in
Section 2.1, and the proposed network and its used loss function are detailed in Section 2.2.
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2.1. Problem Definition

Given a dataset D, it is divided into a mutually exclusive training set Dtrain and testing
set Dtest by class. Mini-batches are randomly selected from the training set. Each mini-batch
includes N classes, with K samples from each class forming the support set and C samples
from each class forming the query set. Multiple mini-batches are selected to iteratively
update the model. The same steps are repeated during the testing phase. This unique
training process is referred to as episodes, designed to simulate the few-shot strip steel
surface defect classification scenario and to objectively evaluate the model’s performance.
Figure 1 illustrates this process.

Dataset

Training set Test set

Support set Query set

Training phase

Mini-batch 1

By class

Support set Query set

Test phase

A few-shot classification task 

N classes K samples C samples

Support set Query setMini-batch M

N classes K samples C samples

N classes

K samples Y samples

Figure 1. Episodes’ training process. The testing phase presents a few-shot classification task.

2.2. ODNet

The largest limitation of few-shot steel strip defect classification is that the number of
samples is small, the usefulness of the samples is limited, and there is a lot of redundant
information. This makes it easy for the model to learn too much redundant information,
reducing the impact of the useful information on the model and leading to overfitting.
The ODNet proposed in this paper alleviates the negative impact of redundant information
on model training through orthogonal decomposition operations, while better meeting the
requirement of the Euclidean distance for orthogonal input features and improving the
classification performance of the model. As shown in Figure 2, the model uses ResNet [48]
as the backbone to perform orthogonal decomposition on the input features, while adding a
skip connection to ensure that the orthogonal decomposition operation does not erroneously
filter out useful information in the samples. Finally, a classifier is used to obtain the
predicted labels.
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Figure 2. ODNet architecture, where colored boxes represent orthogonal features.
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2.2.1. Feature Extractor

ODNet utilizes ResNet18 as the backbone feature extractor, known for its ability to
effectively extract deep sample features while mitigating overfitting. The feature fϕ(x)
is derived by passing sample x through the feature extractor fϕ(�). Figure 3 illustrates
the structure of the feature extractor, and Table 1 details its parameters, including FC_1,
an orthogonal decomposition layer that produces orthogonal features. Additionally, FC_2
is introduced to align with the feature size post skip connection.
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Figure 3. The pipeline of the feature extractor. Layer1, Layer2, Layer3, and Layer4 have the same
structure.

Table 1. Feature extractor details.

Feature Extractor Stage Detail

ResNet18

Pre-processing Conv2d (5× 5, stride 2, pad 1,
BatchNorm, RelU)

Each block

Conv2d (3× 3, stride 2, pad 1)
BatchNorm

ReLU
Conv2d (3× 3, stride 2, pad 1)

BatchNorm
Sum with Input

ReLU

Post-processing AvgPool, Flatten

Orthogonal decomposition layer
Orthogonal decomposition Fully connected layer (1000× 512)

Skip connection Fully connected layer (1000× 512)
Sum with Input

2.2.2. Orthogonal Decomposition

To mitigate the impact of redundant information in industrial defect images, orthogo-
nal decomposition is employed for feature processing. Specifically, following ResNet18,
a fully connected layer FC_1 is introduced. As demonstrated in Equation (1), the projection
of X onto the fully connected layer yields A

′
. Notably, feature A

′
at this stage exhibits

non-orthogonality, featuring strong correlations and substantial redundant information.

A
′
= WX, (1)

where W is fully connected layer FC_1’s parameters. To reduce the influence of redundant
information on the model performance, the parameters of the fully connected layer FC_1 are
subjected to SVD in this paper, as depicted in Equation (2). SVD is a matrix decomposition
technique that has widespread applications in data analysis and machine learning. SVD
can achieve data dimensionality reduction by retaining the main singular values and
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their corresponding singular vectors. This helps eliminate redundant information, reduce
computational complexity, and preserve the key features of the data.

W = USVT , (2)

where S is a diagonal matrix, U and V comprise a unitary matrix. Since the columns of the
unitary matrix U are orthogonal, after left-multiplying by a diagonal matrix S, the resulting
matrix W

′
’s columns still maintain orthogonality, as shown in Equation (3).

W
′
= US (3)

W
′

becomes an orthogonal matrix, replacing the weight of the fully connected layer with W.
Equation (4) demonstrates that the projection of feature X onto the fully connected layer
FC_1 W

′
results in orthogonal feature A, which helps diminish the impact of redundant

information on the model. To visually illustrate the orthogonal decomposition process,
Figure 4 is included in this paper.

A = W
′
X = USX (4)

Instead of

Figure 4. Orthogonal decomposition process.

However, excessive orthogonal decomposition may eliminate useful correlation infor-
mation. To address this concern, as illustrated in Figures 2 and 3, this study introduces a
skip connection to reintroduce some correlations into the final feature A f inal . Due to the
inconsistent feature sizes between the output of ResNet18 and the orthogonal decompo-
sition layer, direct addition by skip connection is not feasible. To address this issue, this
paper introduces a fully connected layer into the hopping process. Equation (5) outlines
the operation of the skip connection.

A f inal = A + X, (5)

where A is the orthogonal feature, and X is the non-orthogonal feature.
To facilitate a comprehensive understanding of the method proposed in this paper,

Algorithm 1 delineates the specific steps involved in orthogonal decomposition and the
skip connection operation. For more specific parameter settings, refer to the experimen-
tal section.
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Algorithm 1: Define sample x using ResNet18 to obtain X. Two fully connected
layers: FC_1 fW(�) and FC_2 fθ(�). A f inal is the feature obtained from x after
undergoing the operations of orthogonal decomposition and skip connection.

INPUT: fRe(x)
OUTPUT: A f inal

step1: SVD: W = USVT

step2: Replacing the FC_1 parameter W with W
′

: W
′
= US

step3: A f inal = fW ′ (X) + fθ(X)

The integration of the orthogonal decomposition operation and the skip connection
enables the model to autonomously discern between valuable and redundant information
during the training phase. This approach effectively leverages the limited sample data to
mitigate the detrimental impact of redundant information on the model performance.

2.2.3. Classifier

Real-time performance is a crucial metric for industrial defect classification models.
To enhance the model efficiency, the Euclidean distance is employed as the classifier due to
its parameter-free nature and adaptability to data distributions. Additionally, the Euclidean
distance represents a specific instance of the Mahalanobis distance under orthogonal inputs.
While the Euclidean distance necessitates orthogonal inputs, its strong generalization
typically overlooks this requirement in practical applications. Although the final extracted
features in this study are not strictly orthogonal, they undergo orthogonalization during
feature extraction, which enhances their alignment with Euclidean distance characteristics
and contributes to improved classifier performance.

As depicted in Equation (6), the mean of samples xi belonging to the Kth class in the
support set is computed as the centroid of the Kth class in the metric space, referred to as
the prototype cK.

cK =
1
N ∑N

1 fϕ

(
xi
)

, (6)

where N is the number of Kth class samples in the support set. The Euclidean distance
d for query sample

⌢
x and class prototypes cK is calculated as shown in Equation (7).

The probability distribution based on Softmax in metric space is shown in Equation (8).

d
(

cK,
⌢
x
)
=

∥∥∥cK − fϕ

(
⌢
x
)∥∥∥

2
(7)

pϕ

(
y = k

∣∣∣⌢x )
=

exp
(
−d

(
fϕ

(
⌢
x
)

, ck

))
∑k′ exp

(
−d

(
fϕ

(
⌢
x
)

, ck′
)) (8)

The label of the class prototype with the largest probability is the predicted label of
the query sample.

ODNet utilizes Log loss with Adam for iterative updates, as illustrated in Equation (9).
The model incorporates an L2 regularizer to constrain the parameter space and expedite
convergence.

min J(ϕ) = − log pϕ(y = k|x ) + λ∥ϕ∥2, (9)

where λ∥ϕ∥2 represents the L2-regularizer, and λ represents the regularized constant.
Based on the aforementioned model and loss function, Algorithm 2 outlines the

procedure. Additionally, to enhance the comprehension of ODNet’s data flow, this study
illustrates the data flow encompassing both training and testing phases in Figure 5.
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Algorithm 2: For an episode, NC is the number of all classes including the
support set and query set, NS is the number of samples in each class of the
support set, NQ is the number of samples of each class in the query set, SK is
the set of K-th samples in the support set, QK is the query samples collection,
and J is the loss function. fϕ(·) denotes the feature extractor, and d denotes the
Euclidean distance.

INPUT:
Training set Dtr = {(x1, y1), · · · , (xN , yN)}, yi ∈ {1, · · · , K}, where xi denotes

the ith example feature, yi denotes the example xi label, and x̂ denotes an example of
the query set.
OUTPUT: J
step1: Class Prototype:

CK = (NS)
−1 ×∑(xi ,yi)∈SK

fϕ(xi)
step2: Initialization: J ← 0
step3: f or k in {1, · · · , NC} do
step4: f or (x̂, y) in QK do
step5: J ← J + d

(
fϕ(x̂), ck

)
×

(
NC NQ

)−1
+ log ∑k′ exp

(
−d

(
fϕ(x̂), ck′

))
step6: end f or
step7: end f or

ResNet18

Orthogonal decomposition 

Input 505-way, 5-shot

Calculating prototypes

Euclidean distance 

Output prediction label

Input:     X:

Output:  A:

Step1: 

Step2:

Step3:

Step4:

Log loss

Adam

Updating model

Skip connection

Figure 5. Data flow of ODNet in case of the 5-way, 5-shot. The black dotted line indicates the training
stage, and the red dotted line represents the concrete steps of the orthogonal decomposition operation.

To comprehensively verify the performance of the proposed model, we conducted
an extensive array of experiments. In addition to accuracy and time assessments, various
experiments were performed to evaluate the influence of different classifiers, feature
extractors, modules, and parameters on the model’s performance.
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3. Experiment

This section describes the multiple experiments conducted to validate the proposed
model’s performance. Section 3.1 details the datasets utilized and provides the experimental
specifics. Section 3.2 presents results showcasing intra-domain and cross-domain accuracy.
Section 3.3 outlines a series of ablation experiments examining the influence of various
modules or parameters.

3.1. Dataset and Implementation

Dataset. FSC-20 is a dataset introduced in Song et al. [49] for few-shot strip steel surface
defect classification. Figure 6 displays a partial sample of this dataset, which comprises
10 hot-rolled defects (6 types are sourced from the NEU-CLS dataset [50] and 4 types are
sourced from the X-SDD dataset [51]) and 10 cold-rolled defects (sourced from the GC10-
DET dataset [52]), each with 50 samples. All images were resized to 224× 224 pixels. This
study enhanced the dataset diversity by rotating the samples several times by 90 degrees.
As outlined in Table 2, this work followed Song et al.’s methodology to partition the dataset
into training, testing, and validation sets based on class.

Cold rolled strip steel defect 

Welding-line Water-spot Oil-spot Silk-spot

Rolled-pit One-inclusion Crease Waist-folding Punching-hole

Crescent-gap

Crazing Scratches Patches Pitted-surface Rolled-in-scale

Two-inclusion Iron-sheet-ash Oxide-scale Red-iron Slag-inclusion

Hot rolled strip steel defect 

Figure 6. Examples for each class in the FSC-20. The classes in the blue box are cold-rolled defects,
and the classes in the red box are hot-rolled defects.

Implementation. The experiments were conducted in the same setting and envi-
ronment, which adopted the Microsoft 10 Pro 64-bit Operating System built on a server
that applied an Intel(R)Core(TM)i9-10900K with a frequency of 3.70 GHz and a NVIDIA
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GeForce RTX 3070Ti. The code was written in python3.6. The hyperparameter settings are
shown in Table 3.

Table 2. Detailed types of FSC-20.

Training Set (50%) [1] Validation Set (25%) [1] Testing Set (25%) [1]

Crescent gap Welding line One inclusion
Oil spot Water spot Waist folding

Rolled pit Silk spot Crazing
Crease Rolled in scale Patches

Punching hole Iron sheet ash Red iron
Scratches - -

Pitted surface - -
Two inclusion - -

Oxide scale - -
Slag inclusions - -

[1] The values in parentheses represent the proportion of the number of samples (or classes) of this set to the total
number of samples (or classes) of the dataset.

Table 3. ODNet’s hyperparameter details.

Training Epochs
Query Sample [1]

Regularizer Constant Learning Rate Decay Rate Decay Episodes Test Episodes [2]

Train Test

150 5 15 0.5 10−3 0.5 2000 1000
[1] The number of query samples used in each episode. [2] Experiments were used to compute the classification
accuracy for models through an average of over 1000 randomly generated episodes from the testing set.

3.2. Precision

In this section, intra-domain and cross-domain experiments are described, includ-
ing the verification of the real-time performance of the model and a comparison with
other methods.

3.2.1. Intra-Domain Results

The experimental results of ODNet on the FSC-20 dataset are presented in Table 4,
with the optimal result highlighted in red, the second best in blue, and the third best in
green. It is observed that the proposed method outperformed others in both the 5-way
1-shot and 5-way 5-shot scenarios. Specifically, in the 1-shot case, ODNet achieved an
accuracy 1% higher than LaplacianShot [53], while in the 5-shot case, it achieved a 5%
higher accuracy. These findings demonstrate that the proposed model exhibits strong
classification performance on intra-domain tasks and effective discrimination against
untrained categories.

Table 4. The intra-domain classification accuracies (%) with 95% confidence intervals on FSC-20. All
accuracy results are averaged over 1000 test episodes.

Method
5-Way

1-Shot 5-Shot

LaplacianShot [53] 79.86 ± 0.11 87.83 ± 0.08
ICI [54] 63.50 ± 0.66 72.86 ± 0.51

DeepEMD [55] 62.62 ± 0.67 71.10 ± 0.45
Prototypical Nets [56] 43.31 ± 0.34 80.29 ± 0.31

TIM [57] 71.72 ± 0.13 81.27 ± 0.09
Baseline [58] 67.72 ± 0.13 81.97 ± 0.10
GTNet [59] 76.76 ± 0.19 85.56 ± 0.08

ODNet (proposed) 80.45 ± 0.47 93.41 ± 0.26



Sensors 2024, 24, 4630 11 of 18

3.2.2. Cross-Domain Results

According to the different temperatures, the rolling process of strip steel is categorized
into hot-rolled and cold-rolled. As illustrated in Figure 6, the surface defects corresponding
to hot-rolled and cold-rolled processes are distinctly different. Hot-rolled defects are
often irregular, while cold-rolled defects typically manifest as points or lines. In the intra-
domain experiments, the dataset partition did not entirely isolate these two types of defects;
instead, both hot-rolled and cold-rolled defects were jointly used for training. Because of
the irregularity of hot-rolled defects, its application in testing increases the classification
difficulty of the model and can better evaluate the generality of the model. Therefore, this
work trained the model on the cold-rolled defects and verified the hot-rolled defects.

Table 5 displays the results of cross-domain experiments, highlighting the optimal,
suboptimal, and third-best outcomes in red, blue, and green, respectively. It is evident
that the proposed model performed well in both scenarios. Specifically, in the 1-shot case,
ODNet achieved an accuracy 3% higher than GTNet [59]. In the 5-shot case, ODNet’s accu-
racy was slightly lower compared to GTNet [59]. These experimental findings underscore
ODNet’s robust generalization ability, demonstrating strong classification performance
even across significantly different training and testing categories.

Table 5. The cross-domain classification accuracies (%) with 95% confidence intervals on FSC-20. All
accuracy results are averaged over 1000 test episodes.

Method
Cold-Rolled→ Hot-Rolled

5-Way, 1-Shot 5-Way, 5-Shot

LaplacianShot [53] 59.90 ± 0.19 71.05 ± 0.13
ICI [54] 49.64 ± 0.32 71.62 ± 0.18

Prototypical Networks [56] 49.59 ± 0.37 75.13 ± 0.56
DeepEMD [55] 66.98 ± 0.56 80.80 ± 0.45

TIM [57] 70.11 ± 0.17 86.05 ± 0.08
Baseline [58] 67.12 ± 0.13 81.97 ± 0.10
GTNet [59] 77.61 ± 0.21 87.95 ± 0.08

OdNet (proposed) 80.32 ± 0.22 86.52 ± 0.31

3.2.3. Real-Time Results

In industrial production, aside from accurate defect classification, time is crucial.
Timely defect classification enables factories to promptly identify issues and adjust produc-
tion processes accordingly. To evaluate the real-time performance of the proposed model,
this study measured the time taken for an episode (a classification task). As depicted in
Table 6, the same color scheme for real-time results as in the preceding section was utilized.
It is observed that ODNet achieved suboptimal results in both cases, outperforming the
majority of methods. These findings highlight ODNet’s high real-time performance and its
ability to swiftly classify defects.

Table 6. Test time(s) for an episode.

Method
Time(s)

1-Shot 5-Shot

LaplacianShot [53] 0.3581 2.5784
ICI [54] 1.1528 1.5622

DeepEMD [55] 11.8745 12.6195
TIM [57] 2.7006 5.6421

Baseline [58] 4.1243 4.3781
GTNet [59] 5.3617 11.5875

ODNet (ours) 1.0358 2.3467
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To visualize the performance of the proposed model, Figure 7 shows the intra-domain
accuracy, cross-domain accuracy, and real-time performance. The figure demonstrates that
ODNet excelled in both precision and real-time performance compared to other methods,
establishing it as the optimal choice for addressing the few-shot strip steel surface defect
classification problem.
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Figure 7. The double Y-axis histogram–line chart of the model with real time(s) and accuracy(%).
The histogram represents the time it takes for the model to run an episode corresponding to the
left Y-axis. The blue and red dots in the line chart represent the intra-domain and cross-domain
accuracy of the model corresponding to the right Y-axis, respectively. (a), The real time and accuracy
of the model in the case of 5-way, 1-shot. (b), The real time and accuracy of the model in the case of
5-way 5-shot.

3.3. Ablation

To assess the impact of each module on performance, this section describes a series
of ablation experiments exploring the influence of the model parameters and included
modules. These experiments aim to further elucidate the model’s performance.

3.3.1. Module Results

To investigate the influence of the backbone, orthogonal decomposition operation,
and skip connection on the model performance, we conducted ablation experiments on
these three modules. The experimental results are presented in Table 7. It is observed
that compared to using the backbone alone, integrating the orthogonal decomposition
operation significantly enhanced the model performance. Furthermore, the addition of
skip connections following orthogonal decomposition further improved the performance
substantially. These effects were validated through experiments: orthogonal decomposition
effectively mitigated the impact of redundant information while amplifying the role of
pertinent data. The skip connection prevented essential information from being filtered out
by orthogonal decomposition. The synergy between these components notably enhanced
the model’s classification performance.

To further validate the improvement achieved by the proposed method, additional
significance tests were conducted. t-tests were employed to analyze significant differences
between pairwise combinations across three scenarios, as detailed in Table 7. p < 0.05
indicates a significant difference between the compared pairs. The results indicate that all
combinations had a p < 0.0001, highlighting significant variability in each module’s impact
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on model performance. The performance improvement of the orthogonal decomposition
and the skip connection was notably significant.

Table 7. Different module classification accuracies (%) with 95% confidence intervals on FSC-20. All
accuracy results are averaged over 1000 test episodes.

ResNet18 Orthogonal Decomposition Skip Connection
5-Way

1-Shot 5-Shot

✓ 65.27 ± 0.23 81.13 ± 0.34
✓ ✓ 74.08 ± 0.31 87.65 ± 0.42
✓ ✓ ✓ 80.45 ± 0.47 93.41 ± 0.26

We also evaluated the performance of ResNet12 and ResNet34 as feature extractors
to determine the optimal choice. The experimental results are presented in Table 8. It
was observed that ResNet12’s feature extraction capability was insufficient, resulting in
decreased model classification performance. ResNet34 did not significantly enhance the
classification performance, and its increased network complexity extended the model’s
inference time, thereby reducing the real-time performance. Therefore, ODNet adopted
ResNet18 as the backbone to achieve a balance between the real-time performance and the
precision of the model.

Table 8. Different backbone classification accuracies (%) with 95% confidence intervals on FSC-20.
All accuracy results are averaged over 1000 test episodes.

Backbone
5-Way

1-Shot 5-Shot

ResNet12 77.76 ± 0.62 89.98 ± 0.29
ResNet18 80.45 ± 0.47 93.41 ± 0.26
ResNet34 80.02 ± 0.24 94.35 ± 0.31

3.3.2. Classifier Results

The orthogonal method proposed in this paper not only eliminates redundant sample
information but also satisfies the orthogonality requirements of Euclidean distance on input
features. To assess the impact of different classifiers on model performance, this study
also evaluated the cosine distance as a classifier. The experimental results are presented
in Table 9. It is evident that in both scenarios, the Euclidean distance outperformed
the cosine distance, underscoring the beneficial effect of feature orthogonality on the
Euclidean distance performance. Significance testing using t-tests was also conducted for
both Euclidean and cosine distances. The calculations revealed a p < 0.0001, indicating a
significant improvement in the effectiveness of the Euclidean distance.

Table 9. Different classifier classification accuracies (%) with 95% confidence intervals on FSC-20. All
accuracy results are averaged over 1000 test episodes.

Classifier
5-Way

1-Shot 5-Shot

Euclidean 80.45 ± 0.47 93.41 ± 0.26
Cosine 48.61 ± 0.42 61.14 ± 0.39

3.3.3. N and K Results

To observe the effect of N and K on few-shot strip steel surface defect classification,
experiments were conducted with N = {3, 5} and K = {1, 5, 10, 15}, respectively, and the
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results are shown in Table 10. For a clearer view of the parameter effects on the performance,
the line plot depicted in Figure 8 reveals the following insights:

1. With the increase in the number of samples, the model’s performance tends to saturate;
2. The increase in the number of classes increases the classification challenge for the

model. However, as the sample number increases, this difficulty becomes negligible.

Therefore, when evaluating model performance, it is appropriate to consider the
5-way 1-shot and 5-way 5-shot scenarios, which reflect the small-scale nature of few-
shot learning. The experiments also demonstrate the feasibility of episodes to simulate
real-world environments in few-shot strip steel surface defect classification, providing an
objective evaluation of model performance.

Table 10. Different N and K classification accuracies (%) with 95% confidence intervals on FSC-20.
All accuracy results are averaged over 1000 test episodes.

N-Way K-Shot Accuracy

3

1 83.43 ± 0.25
5 93.87 ± 0.31

10 95.70 ± 0.42
15 95.38 ± 0.43

5

1 80.45 ± 0.47
5 93.41 ± 0.26

10 95.37 ± 0.29
15 95.24 ± 0.36

1 5 10 15
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80
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Figure 8. Comparison showing the effect of N and K for the ODNet. The blue line and red line
represent the 3-way and 5-way, respectively. The X-axis indicates values of the K-shot. The Y-axis
indicates the test accuracy.

4. Discussion

We verified the performance of ODNet for few-shot strip steel surface defect clas-
sification. As depicted in Figure 9, the proposed method exhibits high precision and
real-time performance.

In industrial defect samples, redundant information is often prevalent. Valuable infor-
mation in few-shot learning is limited and precious, and an excess of redundant information
can impede the model’s training direction. This interference hinders the model’s ability
to effectively discern useful information from redundancy and amplify the importance
of the pertinent features. ODNet addresses this issue by subjecting features containing
redundant information to orthogonal decomposition. This operation rapidly mitigates the
impact of redundant information on the model’s training direction, consequently enhanc-
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ing the classification performance. Moreover, the skip connection prevents the removal
of useful information by the orthogonal decomposition process and fortifies the model’s
capacity to distinguish between helpful and redundant information. The efficacy of the
skip connection is also evident in the experimental results presented in Table 7. ODNet is
a metric-based method, and its orthogonal features partly fulfill the input requirements
of Euclidean distance. This enhances the alignment between the feature extractor and the
classifier, thus contributing to the performance improvement of the model.

To enhance the real-time performance of the model, this study intentionally simplified
its architecture, aiming to achieve improved efficiency. The orthogonal decomposition
and skip connection essentially added two fully connected layers. Compared to feature
extractors in other mainstream models, this approach significantly reduced the complexity.
Additionally, the model employed Euclidean distance as a classifier, which offers stable
classification performance without additional parameters. Experimental results, as shown
in Table 9, validate the effectiveness of this design in enhancing the real-time capability of
the model.

However, as depicted in Figure 9, the cross-domain performance of the model was
observed to be slightly lower compared to its intra-domain performance in the 5-shot
scenario. Analyzing the reasons, we posit that cross-domain tasks necessitate knowledge
transfer, supplemented by prior knowledge introduction. However, ODNet’s orthogonal
operation only manages current task knowledge and does not provide prior knowledge
to aid learning. Consequently, the proposed model is constrained in its performance on
cross-domain tasks.

ODNet theoretically fulfills the requirements of industrial production. In the future,
it holds the potential to enable swift and precise detection and classification of surface
defects in strip steel on the production line, ensuring product quality aligns with standards,
reducing defect rates, and enhancing production efficiency. Nonetheless, its real-world
industrial application may encounter challenges, particularly pertaining to the model’s gen-
eralization across diverse industrial environments. Addressing this, leveraging techniques
such as model pre-training to expedite convergence or employing data augmentation meth-
ods to broaden the training dataset could significantly enhance the model’s classification
performance in practical industrial settings.
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Figure 9. ODNet’s accuracy and real-time statistics.

5. Conclusions

In this paper, a high real-time orthogonal decomposition network is proposed for
few-shot strip steel surface defect classification. ODNet uses SVD to reduce the impact
of redundant information on the model. The skip connection can prevent the useful
information from being eliminated by the orthogonal operation. Euclidean distance is used
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as a classifier to limit the overall parameters of the model. The feature with orthogonality
is also more in line with the input requirements of Euclidean distance. A large number of
experiments show that ODNet has both high precision and high real-time performance,
which is more in line with the actual requirements of industrial production. However,
compared with intra-domain tasks, the performance of the model in cross-domain tasks
needs to be improved. In the future, a priori knowledge can be introduced into the model
to assist model training to improve the performance of cross-domain tasks.
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