
% Here it is reported the script to carry out the equalization procedure.
% The script is composed of two steps:
% 1. Calculation of the equalization curve using white noise recordings
% 2. Application of the equalization curve on in field recordings
% For the development of this script the MATLAB software version R2023a was used.

% STEP 1. Calculation of the equalization curve filter parameters (A and B) using white
noise recordings

 % A. import the white noise recordings

 % set the directory
 cd 'C:\Users\zzz\Documents\White noise recordings'

 % import white noise recorded with the reference device (SLM)
 [reference,Fs] = audioread('reference_whitenoise.wav'); % "reference" is

%the name of the audio, "Fs" memorize the sampling frequency

 % import white noise recorded with the soundscape device
 [soundscape,Fs] = audioread('soundscape_whitenoise.wav'); % "soundscape"

%is the name of the audio

 % calculate some parameters
 length_soundscape=length(soundscape);
 dt=1/Fs;
 t_soundscape = 0:dt:(length_soundscape-1)*dt; %creates a vector that

%increments by "dt"
 t_reference = 0:dt:(length(reference)-1)*dt;
 fftLength=1024; % fft used to calculate Power Spectral Density (in the

%article we used 512, 1024, 16384)
 filterorder=1024; % filter order used to calculate the equalisation curve

%(in the article we used 512, 1024, 16384)

 % B. calculate the power spectral density (PSD) to use for the curve calculation

 % the formula is: [Pxx,f] = pwelch(x,window,noverlap,nfft,fs)
 % Uses the sampling frequency fs specified in hertz (Hz) to compute the

 % PSD vector (Pxx) and the corresponding vector of frequencies (f).
 % "x" indicates the audio (in this case the left channel)
 % "window" divides "x" into segments according to "window";
 % "ones(fftLength,1)" indicates that the audio is divided in "fftLength"

 %segments of value 1
 % noverlap=[] indica che si usa l'overlap di default (=50%) per calcolare

 %i segmenti di "x"
 % "nfft" indicates the fft value to be used
 % "Fs" indicates the sample rate value

 [PSDreference,Freq]=pwelch(reference,ones(fftLength,1),[],fftLength,Fs);

 [PSDsoundscape,Freq]=pwelch(soundscape,ones(fftLength,1),[],fftLength,Fs);

 % C. calculate the equalization curve (eq_curve=reference/soundscape)
 % it will be used into the fir2 function as the 'magnitude' to calculate

 % the filter curve parameters

 eq_curve=sqrt(PSDreference./PSDsoundscape);

 % D. Calculate the filter curve parameters

 % the application of the curve to the in-field wav recording
 % is done using the 'filter' function (which uses a rational
 % transfer function defined by the coefficients B (numerator) and A

 % (denominator)), thus:

 % calculation of coefficients B and A

 % B:
 wn=Freq/max(Freq); % normalising the frequencies of the curve with respect

% to the maximum value
 B=fir2(filterorder,wn,eq_curve); % B is the filter coefficient created with

% the command 'fir2' which uses an order value (filterorder), on the
% frequencies defined by 'wn' with magnitude 'eq_curve'.

 % A:
 A=1; % being A the denominator of the transfer function, setting it equal

 % to 1 does not distort the data

 % E. save the parameters (B and A) in a .mat file for later use on field
 % recordings
 cd 'C:\Users\zzz\Documents\Eq filters'
 save Filter_deviceZZZ_1kfft_24hz15khz.mat B A

% STEP 2. Application of the equalization curve on in field recordings

 % A. Supposing you have multiple in-field .WAV recordings, set the directory from
 % where the for cycle will load one file at a time and equalize it
 % NB. it works even if the folder contains only one audio file

 cd 'C:\Users\zzz\Documents\Recordings in field'

 % define file type (.wav)
 files = dir('*.wav');

 % get the number of wav files contained in the directory
 nfiles = length(files);

 % "double" item where the filenames that are non readable (and thus where not

 % equalized) are stored
 nonreadablefiles=[];

 % B. Loading the filter curve .mat (B and A parameters)
 load('C:\Users\zzz\Documents\Eq filters\Filter_deviceZZZ_1kfft_24hz15khz.mat')

 filterorder=1024; % set the filterorder used to calculate B

 % C. Run the for cycle
 % in this cycle, the DC offset correction is performed (C.1), the
 % equalization is carried out (C.2) and the time delay introduced by
 % the fir function is corrected (C.3). Moreover, a suffix to

 % the filenames is added to distinguish them from the original
 % recordings (C.4), save the new audio file (C.5) and a csv list is printed

 % with the non readable
 % original files that couldn't be imported by "audioread" (C.6)

 for i = 1:nfiles
 try % "try" is necessary for the C.5 step; when a file cannot be read "try"

 % skips the code
 % to the "catch" part and print the csv with the corruped filename

 % inside

 thisfile = files(i).name; % read the i-th audio file in the

 % directory
 [wav_in,Fs] = audioread(thisfile); % "wav_in" is the name of the audio,

 % "Fs" memorize the sampling frequency

 % C.1. DC offset correction (using the mean estimation method)
 wav_in_dc = wav_in - mean(wav_in); % mean(wav_in) calculate the DC offset

 % entity which is then subtracted to the wav file; "wav_in_dc" is the audio
 % without the DC-offset

 % C.2. Equalizing the audio file
 wav_in_dc_EQ=filter(B,A,wav_in_dc); % application of the equalization

% curve filters using the "filter" function; "wav_in_dc_EQ" is the audio
 % equalized and without the DC-offset

 % C.3. Correction of the time delay introduced by the "filter" function
 % Filtering a signal introduces a time delay (i.e., the output

 % signal is shifted in time); this delay is calculated using the
 % "grpdelay" function and then corrected

 % calculation of the time delay
 x=length(wav_in);
 t_or = (0:length(wav_in)-1)/Fs;
 [gd,w] = grpdelay(B,A,filterorder); % returns the n-point group delay

% response vector gd and the angular frequency vector w for % the digital
filter with transfer function coefficients stored in b and a.

 delay = mean(grpdelay(B,A,filterorder)); % get the mean delay value
 delay=round(delay); % to get corrected, the "delay"

 % must be an integer (thus is
 % rounded)

 % performing the time delay correction
 t_or_corr = t_or(1:end-delay);
 sn = wav_in(1:end-delay);
 wav_in_dc_EQ_corr = wav_in_dc_EQ;
 wav_in_dc_EQ_corr(1:delay) = [];

 % C.4. Adding the suffix "_EQ" to the filename
 filenameOR2=char(thisfile); % get the filename
 filenameS = strsplit(filenameOR2,'.'); % remove the .wav
 filenameS=filenameS(1); % get only the name

 % (without ".wav")
 newfilename = fullfile([filenameS, 'EQ.wav']); % suffix "EQ"
 filenameEQ = strjoin(newfilename,'_'); % merge the suffix to the

 % filename and put a "_" in
 % between

 % add the folder path to the filename to be saved
 filenameFinal=fullfile(['C:\Users\zzz\Documents\Recording in field
EQ\',filenameEQ]);

 % C.5. Save the corrected wav file (DC-offset corrected, equalizaed and

% without delay)
 audiowrite(filenameFinal,wav_in_dc_EQ_corr,Fs); %set the new filename, what
 % audio to be saved

 % C.6. Print a csv list with the non readable original files that couldn't

% be read by "audioread"
 % the csv is overwritten everytime a new non readable file is found
 catch exception

 % print this message with the name of the non readable file
 fprintf('Error in reading %s: %s\n', files(i).name, exception.message);

 % add the filename to the list
 nonreadablefiles=vertcat(nonreadablefiles,files(i).name);

 % print the csv file
 writematrix(nonreadablefiles, 'C:\Users\zzz\Documents\Recording in
field EQ\nonreadablefiles.csv', 'Delimiter', ',', 'QuoteStrings', false);

 continue; % Move on to the next file in the directory without

 % interrupting the cycle

 end

 disp(i);

 end

