Here it is reported the script to carry out the equalization procedure.

The script is composed of two steps:

1. Calculation of the equalization curve using white noise recordings

2. Application of the equalization curve on in field recordings

For the development of this script the MATLAB software version R2023a was used.

3% 3R R ¥ X

% STEP 1. Calculation of the equalization curve filter parameters (A and B) using white
noise recordings

% A. import the white noise recordings

% set the directory
cd 'C:\Users\zzz\Documents\White noise recordings’

% import white noise recorded with the reference device (SLM)
[reference,Fs] = audioread('reference_whitenoise.wav'); % "reference" is
%the name of the audio, "Fs" memorize the sampling frequency

% import white noise recorded with the soundscape device
[soundscape,Fs] = audioread('soundscape_whitenoise.wav'); % "soundscape"
%is the name of the audio

% calculate some parameters

length_soundscape=1length(soundscape);

dt=1/Fs;

t_soundscape = 0:dt:(length_soundscape-1)*dt; %creates a vector that
%increments by "dt"

t_reference = 0:dt:(length(reference)-1)*dt;

fftLength=1024; % fft used to calculate Power Spectral Density (in the
%article we used 512, 1024, 16384)

filterorder=1024; % filter order used to calculate the equalisation curve
%(in the article we used 512, 1024, 16384)

% B. calculate the power spectral density (PSD) to use for the curve calculation

% the formula is: [Pxx,f] = pwelch(x,window,noverlap,nfft,fs)
Uses the sampling frequency fs specified in hertz (Hz) to compute the
PSD vector (Pxx) and the corresponding vector of frequencies (f).

x" indicates the audio (in this case the left channel)
"window" divides "x" into segments according to "window";
5 "ones(fftLength,1)" indicates that the audio is divided in "fftLength"

%segments of value 1

% noverlap=[] indica che si usa 1l'overlap di default (=50%) per calcolare
%1 segmenti di "x"

% "nfft" indicates the fft value to be used

% "Fs" indicates the sample rate value

32 3% 3% X ¢

[PSDreference, Freq]=pwelch(reference,ones(fftLength,1),[],fftLength,Fs);

[PSDsoundscape, Freq]=pwelch(soundscape,ones(fftLength,1),[],fftLength,Fs);
% C. calculate the equalization curve (eq_curve=reference/soundscape)

% it will be used into the fir2 function as the 'magnitude' to calculate

% the filter curve parameters

eqg_curve=sqrt(PSDreference./PSDsoundscape);

% D. Calculate the filter curve parameters

% the application of the curve to the in-field wav recording

% is done using the 'filter' function (which uses a rational

% transfer function defined by the coefficients B (numerator) and A
% (denominator)), thus:

% calculation of coefficients B and A

% B:

wn=Freq/max(Freq); % normalising the frequencies of the curve with respect
% to the maximum value

B=fir2(filterorder,wn,eq_curve); % B is the filter coefficient created with
% the command 'fir2' which uses an order value (filterorder), on the

% frequencies defined by 'wn' with magnitude 'eq_curve'.

> 3R

A:
=1; %
%

being A the denominator of the transfer function, setting it equal
to 1 does not distort the data

% E. save the parameters (B and A) in a .mat file for later use on field
% recordings
cd 'C:\Users\zzz\Documents\Eq filters'
save Filter_devicezZZZ_1kfft_24hz15khz.mat B A

% STEP 2. Application of the equalization curve on in field recordings

% A. Supposing you have multiple in-field .WAV recordings, set the directory from
% where the for cycle will load one file at a time and equalize it
% NB. it works even if the folder contains only one audio file

cd 'C:\Users\zzz\Documents\Recordings in field'

% define file type (.wav)
files = dir('*.wav');

% get the number of wav files contained in the directory
nfiles = length(files);

% "double" item where the filenames that are non readable (and thus where not
% equalized) are stored
nonreadablefiles=[];

% B. Loading the filter curve .mat (B and A parameters)
load('C:\Users\zzz\Documents\Eq filters\Filter_deviceZZZ_ 1kfft_24hz15khz.mat")

filterorder=1024; % set the filterorder used to calculate B

% C. Run the for cycle
% in this cycle, the DC offset correction is performed (C.1), the
% equalization is carried out (C.2) and the time delay introduced by
% the fir function is corrected (C.3). Moreover, a suffix to

% the filenames is added to distinguish them from the original

% recordings (C.4), save the new audio file (C.5) and a csv list is printed
% with the non readable

% original files that couldn't be imported by "audioread" (C.6)

for i = 1:nfiles
try % "try" is necessary for the C.5 step; when a file cannot be read "try"
% skips the code
% to the "catch" part and print the csv with the corruped filename
% inside

read the i-th audio file in the
directory

"wav_in" is the name of the audio,
"Fs" memorize the sampling frequency

thisfile = files(i).name;

[wav_in,Fs] = audioread(thisfile);

3R 3R 3R ¥

% C.1. DC offset correction (using the mean estimation method)

wav_in_dc = wav_in - mean(wav_in); % mean(wav_in) calculate the DC offset
% entity which is then subtracted to the wav file; "wav_in_dc" is the audio
% without the DC-offset

% C.2. Equalizing the audio file

wav_in_dc_EQ=filter(B,A,wav_in_dc); % application of the equalization

% curve filters using the "filter" function; "wav_in_dc_EQ" is the audio
% equalized and without the DC-offset

% C.3. Correction of the time delay introduced by the "filter" function
% Filtering a signal introduces a time delay (i.e., the output
% signal is shifted in time); this delay is calculated using the
% "grpdelay" function and then corrected

% calculation of the time delay
x=length(wav_in);
t_or = (0@:length(wav_in)-1)/Fs;
[gd,w] = grpdelay(B,A,filterorder); % returns the n-point group delay
% response vector gd and the angular frequency vector w for % the digital
filter with transfer function coefficients stored in b and a.
delay = mean(grpdelay(B,A,filterorder)); % get the mean delay value
delay=round(delay); % to get corrected, the "delay"

% must be an integer (thus is

% rounded)

% performing the time delay correction
t_or_corr = t_or(l:end-delay);

sn = wav_in(1l:end-delay);
wav_in_dc_EQ_corr = wav_in_dc_EQ;
wav_in_dc_EQ_corr(l:delay) = [];

% C.4. Adding the suffix "_EQ" to the filename
filenameOR2=char(thisfile);

filenameS = strsplit(filenameOR2,"'.");
filenameS=filenameS(1);

get the filename
remove the .wav
get only the name
(without ".wav"

SR 5% 3R 3R X ¥« ¥ X

newfilename = fullfile([filenameS, 'EQ.wav']); suffix "EQ"

filenameEQ = strjoin(newfilename, ' '); merge the suffix to the
filename and put a "_" in
between

% add the folder path to the filename to be saved
filenameFinal=fullfile(['C:\Users\zzz\Documents\Recording in field
EQ\',filenameEQ]);

% C.5. Save the corrected wav file (DC-offset corrected, equalizaed and

% without delay)

audiowrite(filenameFinal,wav_in_dc_EQ_corr,Fs); %set the new filename, what
% audio to be saved

% C.6. Print a csv list with the non readable original files that couldn't
% be read by "audioread"
% the csv is overwritten everytime a new non readable file is found
catch exception

% print this message with the name of the non readable file
fprintf('Error in reading %s: %s\n', files(i).name, exception.message);

% add the filename to the list
nonreadablefiles=vertcat(nonreadablefiles,files(i).name);

% print the csv file
writematrix(nonreadablefiles, 'C:\Users\zzz\Documents\Recording in
field EQ\nonreadablefiles.csv', 'Delimiter', ',', 'QuoteStrings', false);

continue; % Move on to the next file in the directory without
% interrupting the cycle

end
disp(i);

end

