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Abstract: A technique is proposed to detect the presence of the multipath effect in Global Navigation
Satellite Signal (GNSS) signals using a convolutional neural network (CNN) as the building block. The
network is trained and validated, for a wide range of C/N0 values, with a realistic dataset constituted
by the synthetic noisy outputs of a 2D grid of correlators associated with different Doppler frequencies
and code delays (time-domain dataset). Multipath-disturbed signals are generated in agreement
with the various scenarios encompassed by the adopted multipath model. It was found that pre-
processing the outputs of the correlators grid with the two-dimensional Discrete Fourier Transform
(frequency-domain dataset) enables the CNN to improve the accuracy relative to the time-domain
dataset. Depending on the kind of CNN outputs, two strategies can then be devised to solve the
equation of navigation: either remove the disturbed signal from the equation (hard decision) or
process the pseudoranges with a weighted least-squares algorithm, where the entries of the weighting
matrix are computed using the analog outputs of the neural network (soft decision).

Keywords: multipath detection; multipath mitigation; deep learning; convolutional neural network;
multilayer perceptron

1. Introduction

Multipath is one of the major sources of positioning errors in GNSS receivers operating
near the Earth surface. It is due to the reception of one or more reflected rays besides (or
instead of) the direct ray or line of sight (LOS). The reflected rays are characterized by
extra delays relative to the arrival of the LOS signal. The reflected signals may also exhibit
different Doppler frequencies, for instance when the receiver is not static. Multipath aspects
affect both the code and carrier measurements, although the magnitudes of the errors differ
significantly [1].

Many different methods have been proposed to mitigate the effect of multipath on
the computation of the position, velocity, and time of the GNSS receiver at different stages,
from the antenna to post-detection Receiver Autonomous Integrity Monitoring (RAIM)
techniques [2,3]. An important class of mitigation techniques operate at the correlators
level, including non-parametric and parametric techniques. Non-parametric processing,
such as double-delta processing [4], resorts to code discriminator designs that are less
sensitive to multipath-induced errors, while parametric processing, such as the Multipath
Estimating Delay Lock Loop (MEDLL) [5], tries to estimate the parameters associated with
the reflected rays. In any case, it will be beneficial if reliable side information, concerning
the degradation of a given signal by multipath aspects, is available. In fact, the existence of a
binary multipath/no multipath classifier permits the receiver to adopt one of the following
alternatives. Strategy I: remove the signal affected by multipath from the navigation
equation, provided that the number of visible satellites exceeds the minimum of 4. Strategy
II: keep the multipath-disturbed signal in the navigation equation but process it in a
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different way from the other (unaffected) signals, using, for instance, a weighted least-
squares estimator.

In the last two decades, several authors have applied machine learning (algorithms that
can learn from experience) with various degrees of success to detect and mitigate multipath
in GNSS receivers using supervised or unsupervised learning and different datasets [6–13].
References [6,10] use multilayer perceptrons, [8] utilizes a K-means clustering technique
with unsupervised learning, and the remaining works resort to convolutional neural
networks (CNNs). In [14], the authors replace standard correlation schemes with deep
neural network-based correlation schemes to learn the complexity of the multipath channels.
A technique based on the rain forest learning algorithm is proposed in [15] to estimate the
multipath parameters and remove the estimated reflected signal components. A thorough
survey on the application of machine learning techniques in different aspects of GNSS signal
processing, including multipath mitigation, is provided in [16]. Reference [17] reviews
the previous work on multipath mitigation using machine learning techniques, with the
received signal strength, elevation angle, and receiver correlator outputs constituting the
most popular input features.

Herein, we propose a multipath/no multipath classifier based on a CNN with super-
vised learning that uses synthetic signals disturbed by additive correlated noise during
the training stage. The dataset is generated by a 2D grid of correlators with different code
delays and Doppler frequencies. The existence of multipath provokes the change in the
correlator outputs, and these features can be captured by the neural network. Since the
dataset is 2D, the problem is similar to the feature extraction in images, where the CNNs
have been immensely successful [18]. The adopted CNN is trained and validated with noisy
synthetic signals for a wide range of carrier-to-noise ratios, namely 30 ≤ C/N0 ≤ 50 dB-Hz.
The dataset is generated using a blend of different environments: open, rural, suburban,
urban, and highway. These environments constitute the DLR (German Aerospace Center)
satellite–ground model proposed in [19,20]. Alternatively, the multipath environment
could have been characterized by the more complicated model proposed in [21], which is
adopted, for instance, in [14].

Extensive simulations have shown that the best results are obtained when the CNN
inputs are pre-processed with a two-dimensional Discrete Fourier Transform. The pro-
posed algorithms are well-suited for software receivers, which employ an analog-to-digital
converter that captures all the channels and demodulates the channel waveforms using
software on a general-purpose processor [22]. Depending on the type of neural network
outputs (hard or soft decisions), either strategy I or II may be applied to solve the equation
of navigation.

The paper is organized as follows. In Section 2, we characterize the outputs of the grid
of correlators in the presence of multipath and Gaussian additive noise. Section 3 describes
the DLR multipath model used to train the networks and addresses the training of two
competing neural networks: the multilayer perceptron (MLP) and the convolutional neural
network (CNN), with the MLP serving as the benchmark. In Section 4, the performance of
the selected solution (CNN), using hard and soft decisions, is evaluated and a multipath
mitigation technique is proposed. Finally, conclusions are drawn in Section 5.

2. Correlators Characterization

Assume that the receiver includes a front-end that heterodynes the GNSS signal,
r(t), transmitted by each satellite, to produce the complex baseband signal y(t) and a
grid of N f Nc correlators, as sketched in Figure 1. In the scheme, 2B is the front-end
bandwidth. The frequency fc + f̂d0 is derived from locking the local oscillator to the
incoming signal, with fc denoting the nominal GNSS carrier frequency. The correlators
are separated in frequency by ∆ f = 2 fdop/N f and in the code delay by ∆τ = 2/Nc (in
chip units). The maximum Doppler frequency range, 2 fdop, should be adjusted for every
scenario to encompass the different carrier frequencies of the multipath replicas that hit the
receiver’s antenna.
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Figure 1. Grid of correlators.

Using a software receiver, the analog signal y(t) is sampled and the rest of the opera-
tions leading to the correlators output will be performed with digital signals (although this
is not shown in Figure 1 for simplicity). The correlators outputs are provided by

Zik = Iik + jQik =
1
T

∫ T

0
y(t) exp(−j2π∆ fit)c(t − τk) dt, (1)

where T is the duration of the correlation interval and c(t) is a pseudorandom (PRN)
code sequence with chip duration Tc and |c(t)| = 1. Conducting ∆ fi = fmin + i∆ f ,
i = 0, . . . , N f − 1, we obtain

Zik =
1
T

∫ T

0
xk(t) exp(−j2πi∆ f t) dt, (2)

with xk(t) = y(t) exp(−j2π fmint)c(t − τk). In software receivers, the quantities in (2) are
calculated from the samples xk(tm) as

Zik ≈
1
M

M−1

∑
m=0

xk(tm) exp
(
−j

2πimµ

M

)
, (3)

in which tm = m∆t, where ∆t = T/M is the sampling interval and µ = ∆ f T.
Consider that, in the presence of multipath, the received GNSS signal r(t) is constituted

by a strong ray and Nr weaker rays plus additive Gaussian noise w(t). The noise in-band
power spectrum is Gw( f ) = N0/2 for fc − B ≤ | f | ≤ fc + B. The bandpass signal is

r(t) =
Nr

∑
n=0

AnD(t − τn)c(t − τn) cos[2π( fc + fdn)t + θn] + w(t). (4)

Each ray of index n is characterized by amplitude An, propagation delay τn, Doppler
frequency fdn , and phase θn. D(t) is the navigation message, with |D(t)| = 1. In the case
of a pilot channel, the navigation message is constant with D(t) = 1 (this condition will
be assumed hereafter). The index n = 0 corresponds to the strongest ray, which coincides,
in general, with the line-of-sight (LOS) ray when it is not obstructed. The bandwidth 2B
is considered sufficient to accommodate the incoming signals in the presence of Doppler
frequency shifts. Signal r(t) is converted to baseband using the local oscillator complex
signal 2 exp[−j2π( fc + f̂d0)t]. For the sake of simplicity, it is assumed that the carrier
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tracking loop is perfectly synchronized with the strongest incoming signal; that is, f̂d0 = fd0 .
The result is

y(t) =
Nr

∑
n=0

Anc(t − τn) exp[j(2π( fdn − fd0)t + θn)] + N(t), (5)

where N(t) = NI(t) + jNQ(t), with NI(t) and NQ(t) being independent, zero mean,
inphase/quadrature components of w(t) with equal powers 2N0B. The baseband signal y(t)
is then multiplied by a grid of N f Nc complex units, exp(−j2π∆ fit) · c(t − τk), i = 1, . . . , N f ,
k = 1, . . . , Nc, to yield a 2D correlation, as sketched in Figure 1.

For the signal model described in (4), the correlators outputs are

Zik =
1
T

∫ T

0
[Ii(t) + jQi(t)]c(t − τk) dt

=
Nr

∑
n=0

An exp(jθn)
1
T

∫ T

0
exp[j2π( fdn − fd0 − ∆ fi)t]c(t − τn)c(t − τk) dt, (6)

+ Nik,

with the noise component being

Nik = NIik + jNQik =
1
T

∫ T

0
N(t) exp(−j2π∆ fit)c(t − τk) dt. (7)

The integrals in (6) are of the form

Ic =
1
T

∫ T

0
c(t − τn)c(t − τk) exp(j2πφt) dt. (8)

Assuming that the signal exp(j2πφt) is slowly varying in each interval of duration
Tp = T/P, with P ≫ 1, we may write

Ic ≈
1
P

P

∑
p=1

exp[j2πφ(p − 1/2)Tp]
1

Tp

∫ pTp

(p−1)Tp
c(t − τn)c(t − τk) dt. (9)

Let Rc(τ) denote the autocorrelation function of code c(t) with period STc

Rc(τ) =
1

STc

∫ STc

0
c(t)c(t − τ) dt ≈ 1

Tp

∫ pTp

(p−1)Tp
c(t)c(t − τ) dt, (10)

and Tp < STc, leading to

Ic ≈
1
P

Rc(τk − τn)
P

∑
p=1

exp[j2πφ(p − 1/2)Tp]

=
1
P

Rc(τk − τn) exp(jπφT)
sin(πφT)
sin(πφTp)

. (11)

For |φTp| ≤ 0.2, the Dirichlet kernel sin(πφPTp)/[P sin(πφTp)], is well-approximated
by the sinc function, defined as sinc(x) ≡ sin(πx)/(πx), yielding Ic ≈ Rc(τk − τn)sinc(φT)
exp(jπφT). Thus, (6) can be written approximately as

Zik ≈
Nr

∑
n=0

AnRc(τk − τn) sinc[( fdn − fd0 − ∆ fi)T] exp{j[π( fdn − fd0 − ∆ fi)T + θn]}

+ Nik. (12)
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The cross-correlation of the noise components of two correlators, Nik and Nlm, is
defined as

E{Nik N∗
lm} = (13)

1
T2

∫ T

0

∫ T

0
E{N(t)N∗(λ)} exp[−j2π(∆ fit − ∆ flλ)]c(t − τk)c(λ − τm) dt dλ.

The determination of the cross-correlation is complicated except when BT ≫ 1. In this
case, E{N(t)N∗(λ)} ≈ 2N0δ(t − λ) and

E{Nik N∗
lm} ≈ (14)

2N0

PT

P

∑
p=1

exp[−j2π(∆ fi − ∆ fl)(p − 1/2)Tp]
1

Tp

∫ pTp

(p−1)Tp
c(λ − τk)c(λ − τm) dλ.

Therefore,

E{Nik N∗
lm} ≈ 2N0

PT
Rc(τm − τk) exp[jπ(∆ fl − ∆ fi)T]

sin[π(∆ fl − ∆ fi)T]
sin[π(∆ fl − ∆ fi)Tp]

(15)

and, assuming that |(∆ fl − ∆ fi)Tp| ≪ 1, we have

E{Nik N∗
lm} ≈ 2N0

T
Rc(τm − τk) exp[jπ(∆ fl − ∆ fi)T] sinc[(∆ fl − ∆ fi)T]. (16)

Taking into account (7) and (16), we obtain the following expressions for the real-
valued cross-correlations[

E{NIik NIlm}
E{NQik NIlm}

]
=

[
E{NQik NQlm}
−E{NIik NQlm}

]
≈ N0

T
Rc(τm − τk) sinc[(∆ fl − ∆ fi)T]

[
cos[π(∆ fl − ∆ fi)T]
sin[π(∆ fl − ∆ fi)T]

]
. (17)

Using Monte Carlo simulation, the noise random variables (r.v.) NIik and NQik have
to be generated for all the elements of the grid i = 1, · · · , Nf , k = 1, · · · , Nc. To this end,
we concatenate the noise matrices NI(Nf × Nc) and NQ(Nf × Nc) into a single vector U(p),
p = 1, . . . , 2Nf Nc, according to U((i− 1)Nc + k) = NIik and U((i− 1)Nc + k+ Nf Nc) = NQik.

The covariance matrix C = E{UUT} of the resulting vector U(2N f Nc × 1) has 4N2
f N2

c
elements. For p, q = 1, . . . , 2N f Nc and p ≤ q, each element of C is provided by

Cpq = E{U(p)U(q)} =


E{NIik NIlm}, q ≤ N f Nc (case I)
E{NIik NQlm}, p ≤ N f Nc, q > N f Nc (case II),
E{NQik NQlm}, p > N f Nc (case III)

(18)

with Cqp = Cpq. For the three cases, the indices of the elements of C are computed as
Case I: p = (i − 1)Nc + k, q = (l − 1)Nc + m.
Case II: p = (i − 1)Nc + k, q = (l − 1)Nc + m + N f Nc.
Case III: p = (i − 1)Nc + k + N f Nc, q = (l − 1)Nc + m + N f Nc.
After the covariance matrix is determined, U can be easily generated from vector

W(2N f Nc × 1) of Gaussian, zero-mean, unity power, and independent components using
the technique described in Appendix B.

3. Neural Network Training
3.1. Multipath Model

In order to train the neural network (NN), we assume a certain ensemble of models to
characterize multipath. This does not imply that the experimental multipath to be detected
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obeys those models. In fact, in practice, it is almost impossible to assign a set of models
that encompasses all cases encountered of real multipath. Nevertheless, the NN should be
trained with the largest possible set of plausible multipath models.

Land mobile satellite (LMS) channels are usually divided into narrowband and wide-
band models. While the narrowband models describe the channel by a multiplicative
operation on the signal, the wideband models take into account the frequency dependency
caused by the signal echoes [23]. Echoes with different delays can be resolved when the
difference in delay is larger than the inverse of the corresponding receiver (baseband)
bandwidth: τm − τk > 1/B. For instance, the receiver reference bandwidth of Galileo signal
E1 is 2B = 24.552 MHz [24], which corresponds to a minimum resolvable difference of
delays of approximately 81.5 ns (approximately 24.5 m).

We consider, henceforth, for the purpose of NN training, a wideband model of LMS
communications affected by multipath fading and signal shadowing. The Nr different
reflectors cause echoes with delays τm(t) = τ0(t) + ∆τm(t), where τ0(t) is the propagation
delay of the direct ray and ∆τm(t) is the excess delay of each reflected ray. A simple but
efficient model for wideband LMS channels is the tapped delay line model, where each tap
is described by a narrowband model. Assume that the transmitted signal is represented
as s(t) = Re{sbb(t)ej2π fct}, where sbb(t) is the corresponding complex envelope. In the
case of multiple propagation paths, the equivalent lowpass channel is described by the
time-variant impulse response [25]

h(τ; t) =
Nr

∑
m=0

Em(t)δ(τ − τm(t)), Em(t) = αm(t)e−j2π fcτm(t). (19)

Let the satellite-receiver distance traveled by the mth path, in a short time interval,
change approximately linearly with time (constant Doppler frequency). The channel
impulse response may be written as

h(τ; t) =
Nr

∑
m=0

αm(t) exp[j(2π fmt − ϕm)]δ(τ − τm(t)), (20)

which means that each echo is characterized by the following quantities: αm (amplitude),
fm (Doppler frequency), ϕm (phase), and τm (delay).

Admit that the receiver’s phase lock loop is synchronized to the carrier frequency of
the direct ray (LOS), which includes the component due to the Doppler effect. Next, we
characterize the Doppler frequency deviation ∆ fm = fm − f0 for each reflected ray relative
to the LOS. We follow the simplified scenario where the propagation between the satellite
and the user (receiver) is constituted by an LOS and a reflected ray, as described in Figure 2.
The reflector is considered static.

S

U

Rsatellite

user

static
reflector

x

y

LOS

reflected
    ray

Vu

sV

βγ

Figure 2. Multipath scenario.
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If the coordinates of the satellite, reflector, and receiver are, respectively, (xs(t), ys(t)),
(xr, yr), and (xu(t), yu(t)), the lengths of the direct ray (LOS) and the reflected ray will be
provided by

L0(t) =
√
[xu(t)− xs(t)]2 + [yu(t)− ys(t)]2 (21)

and

L1(t) + L2(t) =
√
[xr − xs(t)]2 + [yr − ys(t)]2 +

√
[xu(t)− xr]2 + [yu(t)− yr]2. (22)

The satellite–user velocity using the LOS is

V0(t) =
dL0(t)

dt
=

1
L0(t)

(
[xu(t)− xs(t)](Vux − Vsx) + [yu(t)− ys(t)](Vuy − Vsy)

)
, (23)

where the satellite and user velocity vectors are, respectively, Vs = (Vsx, Vsy) and
Vu = (Vux, Vuy). The apparent satellite–user velocity using the reflected ray is

V12(t) =
dL1(t)

dt
+

dL2(t)
dt

= − 1
L1(t)

(
[xr − xs(t)]Vsx + [yr − ys(t)]Vsy)

)
+ (24)

1
L2(t)

(
[xu(t)− xr]Vux + [yu(t)− yr]Vuy

)
.

Since, in general, L1(t) ≈ L0(t) and L2(t) ≪ L0(t), we have V12(t) − V0(t) ≈
Vux(cos β − cos γ) + Vuy(sin β − sin γ). Consider now, without loss of generality, that
the receiver travels along the X-axis. Then, Vuy = 0, and we obtain for the Doppler
frequency deviation

∆ fd = −V12 − V0

c
fc =

Vux(cos γ − cos β)

c
fc. (25)

The maximum absolute value of the Doppler frequency deviations is equal to
2|Vux| fc/c, corresponding for instance to β = π and γ = 0. Namely, if the receiver is
traveling at the speed of 140 km/h (typical car speed on a highway) and fc = 1.57 GHz,
the maximum absolute value will be ≈400 Hz (Doppler frequency range equal to ±400 Hz).

The DLR model for the LMS channel, herein adopted, divides the channel impulse
response with Nr + 1 rays into three parts [19,20]:

1. Direct path. There are two states for the direct ray: shadowing [bad channel state]
and LOS (no shadowing) [good channel state]. The probability of each state depends
on the type of environment: open, rural, suburban, urban, and highway (see Table A1
in Appendix A). For LOS conditions, a Rice distribution describes the probability
density function (pdf) of the signal amplitude

pα0(x) =
x

σ2 I0

( x
σ2

)
exp

(
− x2 + 1

2σ2

)
, x ≥ 0, (26)

where I0(·) is the zeroth-order modified Bessel function of the first kind and the
Rice factor ρ = 1/(2σ2) denotes the carrier-to-multipath ratio. The corresponding
cumulative distribution function (CDF) is [25]

Fα0(x) = 1 − Q
(

1
σ

,
x
σ

)
, x ≥ 0, (27)

where Q(·, ·) is Marcum’s Q function.



Sensors 2024, 24, 4663 8 of 20

In shadowed environments (bad channel state), α0 is Rayleigh-distributed with
lognormal-distributed mean power P0 = 2σ2. The result is the Suzuki distribution [26].
That is,

pα0(x) =
x

σ2 exp
(
− x2

2σ2

)
, x ≥ 0, (28)

pP0(x) =
10√

2πσ ln 10
1
x

exp

[
−
(10 log10 x − µ)2

2σ2

]
, x > 0, (29)

where µ is the mean power level decrease in dB and σ2 is the variance of the power
level expressed in dB due to shadowing. The dimension of σ2 is dB2.
The CDF of pα0(x) is Fα0(x) = 1 − exp[−x2/(2σ2)], x ≥ 0. The CDF of pP0(x) is

FP0(x) =
1
2

[
1 + erf

(
10 log10 x − µ

σ
√

2

)]
, x > 0, (30)

with the error function being defined by

erf(z) =
2√
π

∫ z

0
exp(−t2) dt. (31)

2. Near echoes. A number of near echoes appear in the close vicinity of the receiver,
with excess delays not exceeding τe = 600 ns. Most of the echoes will occur in
this delay interval. The mean power of near echoes S(τ) = E{α2

m} is exponentially
decreasing: S(τ) = S0 exp(−µτ). Given a mean echo power S(τ) for a fixed delay
τ, the amplitude α

(n)
m of the near echoes will vary around this mean value according

to a Rayleigh distribution with 2σ2 = S(τ). The number of near echoes is Poisson-
distributed, with mean λ. Recall that the Poisson distribution provides the probability
that a certain number of independent events occur in a given interval (of time or
space) when, on average, λ events occur in that interval [27]. The corresponding pdf is

p(x) = e−λ
∞

∑
n=0

λn

n!
δ(x − n) (32)

and the CDF is

F(x) = e−λ
⌊x⌋

∑
n=0

λn

n!
, (33)

with ⌊x⌋ denoting the largest integer not exceeding x. The delay distribution ∆τm
(m) of

the near echoes follows an exponential distribution with pdf p∆τn(x) = b−1 exp(−x/b)
and corresponding CDF F∆τn(x) = 1− exp(−x/b), x ≥ 0.
The mean power of the near echoes S(τ) = E{a2

k} is exponentially decreasing with
the delay S(τ) = S0 exp(−ντ), ν > 0, or in logarithmic scale SdB(τ) = S0,dB − dτµs,
d > 0, with d being expressed in dB/µs.
For the adopted parameters of the near echoes, see Table A2.

3. Far echoes. The number of far echoes is Poisson-distributed. The far echoes appear

with delays τe < ∆τm ≤ τmax. The amplitudes α
( f )
m of the far echoes follow a Rayleigh

distribution. The delays ∆τm
( f ) of the far echoes are uniformly distributed in [τe, τmax].

The adopted parameters of the far echoes are indicated in Table A3.

The direct ray is affected by obstacles, such as trees, whereas the echoes are affected
by the presence of reflectors (buildings, mountains, etc.). The set of parameters are distin-
guished by the environments: the near echoes are determined by the foreground environ-
ment and the far echoes are determined by the background environment.
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3.2. NN Characterization

In this work, we assume supervised learning for the NN, which relies on learning from
a dataset with labels for each of the examples. There are two types of supervised learning:
classification and regression [28]. Classification is used to determine the class that the data
belong to and regression extracts a real value from the data. We consider the application of
two different NN types to the problem of detecting GNSS signals affected by multipath
aspects: a multilayer perceptron (MLP) and a convolutional NN (CNN). CNNs have been
extensively applied in different fields, including computer vision, speech processing, face
recognition, etc. [18]. Unlike the MLPs, which are conventional fully connected networks,
shared weights and local connections are employed in the CNNs to make full use of 2D
input-data structures, like image signals. This operation utilizes an extremely small number
of parameters, which both simplifies the training process and speeds up the network [29].

For both NNs, we have considered the following alternative types of inputs: (mode
1), the correlators complex outputs Zik, displayed in Figure 1 [ time-domain inputs],
or (mode 2), the corresponding Discrete Fourier Transform (DFT) [frequency-domain
inputs], which are defined as

Yrs =

N f −1

∑
i=0

exp

(
−j

2πir
N f

)
Nc−1

∑
k=0

Zik exp
(
−j

2πks
Nc

)
, (34)

with r = 0, . . . , N f − 1 and s = 0, . . . , Nc − 1.
The use of the two types of NN inputs was motivated by the fact that, although signal

processing concerning multipath detection and mitigation is predominantly carried out in
the time domain, some research has also been performed in the frequency domain [30].

For the MLP, we have considered the structure depicted in Figure 3, which contains
a single hidden layer with Nh neurons. In contrast, the architecture of the adopted CNN
consists of two main parts: feature extractors and a classifier. In the feature extraction
layers, each layer of the network receives the output from its immediate previous layer as
its input and passes its output to the input of the next layer. CNNs are built by repeatedly
concatenating three classes of layers: convolutional, activation, and pooling. This structure
is followed by a last stage that contains three fully connected layers and a classification
layer [18,31]. The block diagram is shown in Figure 4. In the convolution block, the pair
(a, b) indicates the filter size (a × a) and the number of filters (b). In the max-pooling
block, the pair (c, d) indicates the pool size (c × c) and the 2D stride (d × d), where d is the
common horizontal and vertical step size for traversing input. The NNs were implemented
using Matlab, version R2022a.

Input layer
(NfXNc)X2

softmax
s

0

s
1

    code 
correlators
  outputs

      data
pre-processing
     (DFT)

hidden
 layer
(Nh)

Figure 3. Block diagram of the MLP.
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      (3,4)

Max-pooling
      (2,2)

Convolution
      (3,8)

Max-pooling
      (2,2)
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     (3,16)

Multi-layer
perceptron 
(1 hidden layer)

softmax

    code 
correlators
  outputs

s
0

s
1

      data
pre-processing
     (DFT)

Figure 4. Block diagram of the CNN.
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The convolutional layer performs feature extraction by convolving the input with
filters (kernels). After each convolution layer, a nonlinear activation layer is applied. We
used the ReLU activation function f (x) = max{0, x}. The (sub-sampling) pooling layer
performs nonlinear downsampling operations, which aims at reducing the spatial size of the
representation while simultaneously decreasing the number of parameters, the possibility
of overfitting, and the computational complexity of the network. The max-pooling function
is used. In the last layer of the fully connected network, the softmax activation function
is applied.

The NN is used as a binary classifier with classes H0 (no multipath) and H1 (multipath).
In binary classification, the information about the success of a model is conveniently
described by the confusion matrix, which contains four elements: true negative (TN),
true positive (TP), false positive (FP), and false negative (FN) decisions. Accuracy is an
informative measure of success, being defined as 1 − Prob{decision error}, or

accuracy = 1 − (Pf a · Prob{H0}+ Pmd · Prob{H1}), (35)

with Pf a and Pmd denoting, respectively, the probabilities of false alarm and missed detec-
tion (or miss rate) (see, for instance, [32]). Thus,

Pf a = Prob{D1|H0} =
FP

TN + FP
,

Pmd = Prob{D0|H1} =
FN

TP + FN
, (36)

where D0 and D1 stand for decision in favor of classes H0 and H1, respectively. Additionally,

Prob{H0} =
TN + FP

TN + FP + TP + FN
,

Prob{H1} = 1 − Prob{H0} =
TP + FN

TN + FP + TP + FN
. (37)

Previous formulas lead to [28,29]

accuracy =
TN + TP

TP + FN + FP + TN
, (38)

which is the evaluation metric we are going to use throughout this work. Other common
metrics, different from accuracy, are the precision and the recall [28,29]. Precision is
the fraction of multipath detections (D1) that are correct, while recall is the fraction of
multipath events that were detected. That is, precision is P = TP/(TP + FP) and recall is
R = TP/(TP + FN), with Pmd = 1 − R.

Equation (35) shows that, when the data are unbalanced, accuracy becomes biased
towards the majority class and provides a wrong estimate of the decision success. In fact,
when Prob{P0} ≫ Prob{P1}, the accuracy will be almost independent of Pmd, and, when
Prob{P0} ≪ Prob{P1}, the accuracy will be essentially insensitive to Pf a. In those cases,
metrics such as the F1 score, defined as F1 = 2R · P/(R + P), provide more realistic
results [28].

Consider that the output of the NN is the vector O = (O0, O1). The hard tentative
decision generated by the NN is arg maxkOk. Alternatively, we can normalize the network
outputs using the softmax function

sk =
exp(Ok)

exp(O0) + exp(O1)
, k = 0, 1, (39)

to compute the probability of each class. The softmax function maps the real-value network
output to a probability distribution over a number of classes, where the number of classes
equals the number of neurons in the final layer [28]. Notice that s0 + s1 = 1.
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4. Simulation Results
4.1. Single Observation Decisions

Before training the NN, we establish the maximum expected value of the Doppler
frequency deviation of the reflected rays due to the multipath effect for the scenario under
analysis. This value depends on the dynamics of the user (receiver) and the possible motion of
the reflectors. Following the example referred to in Section 3 (typical car speed in a highway),
we set the maximum absolute Doppler frequency deviation used by the grid of correlators to
fmaxtrain = 400 Hz (or Doppler frequency range of ±400 Hz). The resulting frequency step in
the bank of heterodyning units of Figure 1 is then ∆ f = 2 fmaxtrain/Nf = 800/Nf . Taking into
account that multipath delayed signals only affect the receiver’s performance approximately
in a chip duration interval [1], the delay step used by the bank of correlators is made equal to
∆τ = 2Tc/Nc.

Both NNs are trained with 2D data formatted as (N f × Nc) complex matrices, and
100,000 matrices were generated: 80% of the matrices are used to train the network and the
remaining 20% are included in the validation set, whose goal is to determine whether the
trained model is overfitting. For training and validation purposes, the data are generated
assuming equal probabilities for hypotheses H0 (multipath absent) and H1 (multipath
present). In case H1, the data were generated assuming each of the near echo scenarios,
open, rural, suburban, urban, and highway, with equal probabilities. The data are produced
with different values of C/N0 in the interval 30 ≤ C/N0 ≤ 50 dB-Hz, with a uniform
distribution in dB-Hz units and correlation interval T = 10 ms. In all the following results,
the BOCs(1,1) modulation will be utilized. The use of modulation BPSK(1) as an alternative
has revealed only minor differences in terms of the achieved accuracy. A learning rate of
5 × 10−4 was used with both types on NNs. To achieve the best performance, the range
of Doppler frequency deviations, ± fmaxtest, used by the NN in test mode should verify
fmaxtest ≤ fmaxtrain.

The two NN architectures are tested with correlations outputs generated according
to (12), with a maximum number of reflected rays Nr = 5, assuming multipath and
no-multipath scenarios, with equal probabilities. This value of Nr is considered to be
a reasonable amount of reflected rays in most multipath environments. In fact, simula-
tions carried out with larger values of Nr have revealed no significant differences in the
NN behavior.

The amplitudes of the different rays are A0 = 1 and Ak (k = 1, . . . , Nr) following a
uniform distribution with 0 < Ak < 1. The phases θk are independent and uniformly
distributed in the interval 0 ≤ θk < 2π. The delays τk are independent and uniformly dis-
tributed in the interval 0 < τk < Tc. The Doppler frequency shifts fdk

− fd0 are independent
and uniformly distributed, such that | fdk

− fd0 | < fmaxtest. The characterization of ampli-
tudes, phases, delays, and Doppler frequencies as independent uniform random variables,
although simplistic, seems to be the natural distribution choice, meaning that we have no a
priori statistical knowledge of those variables. It is expected that, with real signals, the NNs
have the capacity to withstand the possible non-uniformity of the variables.

Figure 5 compares the accuracies achieved with the MLP and the CNN architectures
when time-domain [mode 1] and frequency-domain [mode 2] data are used. The data
are formatted as (N f × Nc) = (32 × 32) matrices. In this simulation, we have considered
two matching conditions for the Doppler frequencies: (a) fmaxtest = fmaxtrain = 400 Hz
(matching condition) and (b) fmaxtest = 50 Hz, fmaxtrain = 400 Hz (mismatch condition).
The tests were performed with 40,000 data matrices. An MLP with one hidden layer
constituted by Nh = 25 neurons is employed in (a) and a convolutional neural NN (CNN)
is applied in (b). The number of neurons indicated for the hidden layer of the MLP was
found experimentally and is a trade-off between the accuracy achieved by the classifier and
the complexity of the algorithm.

Comparing the two sets of plots, we can see that, overall, the results improve for large
values of (C/N0), as expected, and there is a performance degradation of both NNs in
the case of frequency mismatch. In all the cases, the CNN permits to obtain better results
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than the MLP, with the best performance being achieved with mode-2 data (black solid
curves). It can be shown that this trend is essentially kept even if the values of fmaxtrain
and fmaxtest change. The advantage of the CNN architecture is due to its double role as a
feature extractor and classifier. Thus, in order to simplify the analysis, we will henceforth
consider only the CNN architecture and mode-2 input data.

In Figure 5b, the NNs were not conveniently trained to match the Doppler frequency
range of the test dataset. So, to avoid performance degradation, it is convenient to determine
the approximate limits of the Doppler frequency deviation corresponding to each scenario,
taking into account the range of the receiver speeds, and use a trained network as matched
as possible to that expected range of Doppler frequency deviations.
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Figure 5. Accuracies obtained when time-domain (blue lines) and frequency-domain inputs (black
lines) are used with a multilayer perceptron (MLP) and a convolutional neural network (CNN).

Figure 6 exhibits the accuracies provided by correlators grids of different sizes
(N f × Nc). The NN was trained with fmaxtrain = 400 Hz. Two cases are considered:
(a) matching case with fmaxtest = fmaxtrain and (b) mismatch case with fmaxtest = fmaxtrain/8.
As expected, the best results are achieved with the largest grid, i.e., (32 × 32) in the match-
ing case. With the smallest grid, i.e., (16× 16), the degradation is particularly significant for
the lowest carrier-to-noise ratios. Moreover, in all the plots, the main factor of degradation
is the decrease in the number of frequency steps N f .
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Figure 6. Accuracies obtained with correlators grids of different sizes (Nf , Nc) with fmaxtrain = 400 Hz.
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Figure 7 exhibits the accuracies provided by correlators grids of different sizes
(N f × Nc), but now the NN has been trained with fmaxtrain = 50 Hz. Notice the strik-
ing contrast between the results of Figures 6 and 7. In the latter case, the performance is
almost independent of the number of correlators in the Doppler frequency (N f ), depending
mainly on Nc, that is, the number of correlators in the code delay. As a result, Figure 7a,b,
generated, respectively, with frequency matching and mismatch, are practically equal.
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Figure 7. Accuracies obtained with correlators grids of different sizes (N f , Nc) with fmaxtrain = 50 Hz.

The receiver model considered in Figure 1 includes a grid of correlators that use
information contained in the time domain (code delay) and frequency domain (Doppler
frequency). This architecture was previously used, for instance, in [11] and further referred
to in [17]. However, the novelty of our approach is characterized by the following aspects:
(i) we developed mathematical tools to analytically define the additive noise components
in each correlator, including their cross-correlations, (ii) we implemented models for multi-
path, during the training of the neural network, based on the DLR model, and (iii) we used
DFT pre-processing of the correlators outputs to improve the CNN performance.

4.2. Multi-Observation Decisions

When the product (C/N0)T is small, the probabilities Pf a and/or Pmd tend to be high,
leading to a significant decrease in the accuracy. This drawback is minimized by making
decisions based on multiple observations of the grid of correlators in N adjacent intervals
of duration T.

With hard tentative multipath/no multipath decisions generated by the NN in N
consecutive correlation intervals (observations), we may apply the following criterion:
select class H1 only when there are, at least, M positive tentative decisions, with 1 ≤ M ≤ N
(M-of-N selection). We refer to a hard decision regarding this methodology based on the
M-of-N selection. Let the probabilities of false alarm and missed detection for each tentative
decision be, respectively, Pf a and Pmd = 1 − Pd, as defined in (36). The overall probability
of false alarm (under hypothesis H0) is

P̃f a =
N

∑
n=M

(
N
n

)
Pn

f a(1 − Pf a)
N−n (40)

and the overall probability of correct decision (under hypothesis H1) is

P̃d =
N

∑
n=M

(
N
n

)
Pn

d (1 − Pd)
N−n. (41)

Hence, the overall probability of missed detection is provided by P̃md = 1 − P̃d.
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Ideally, for multiple observations (N > 1), the overall probabilities of false alarm and
missed detection should decrease simultaneously relative to the corresponding probabilities
of a single observation (N = 1). However, this is achievable only for certain values of Pf a,
Pmd and M, as illustrated in Figure 8 for N = 4. In general, for a given value of Pf a and N
being constant, P̃f a decreases when M grows, and, for a fixed value of Pmd and N being
constant, P̃md increases when M grows.
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Figure 8. Example of overall probabilities of false alarm and missed detection for N = 4.

When N softmax values s(n)0 and s(n)1 , n = 1, . . . , N, are available in consecutive
correlation intervals, we may add them before producing a final decision, according to

S0 =
1
N

N

∑
n=1

s(n)0 , S1 =
1
N

N

∑
n=1

s(n)1 (42)

and deciding in favor of hypothesis H0, if S0 > S1, or H1 otherwise. We refer to this as the
soft decision to this methodology, in contrast to the alternative hard decision.

Figure 9 depicts the accuracies obtained with multiple observations using hard and
soft decisions. The correlation interval is T = 4 ms, which means that the classifier produces
a decision every NT = 4N ms. For the hard decision case, N = 4 correlation intervals
were used. Note that, for N = 4, the best results achieved in both plots are approximately
equivalent. However, using soft decisions, the accuracy is practically independent of N,
provided that N ≥ 3. As a consequence, soft decisions are preferable to hard decisions (at
least for this example).
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Figure 9. Accuracies obtained with multi-observation decisions and T = 4 ms.
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4.3. Multipath Mitigation Technique Using Soft Decisions

With the goal of understanding the motivation for having an algorithm that detects the
effect of multipath in a given received signal, consider the scenario described in Figure 10.
The figure displays the three-dimensional (3D) positioning errors obtained with five GPS
satellites in view (SV2, SV18, SV26, SV29, and SV31) when one of the received signals is
affected by multipath, provoking an increment of 50 m in the corresponding pseudorange.
In the absence of multipath, the rms positioning error is 22.0 m. This value includes the
effect of thermal noise (it is assumed that the pseudoranges are disturbed by independent
zero-mean Gaussian noises with standard deviation equal to 5 m). The circles indicate
the rms positioning errors achieved when the pseudorange associated with multipath is
included in the least-squares navigation solution (single-point solution, [33]). The different
errors depend on the position of the corresponding satellite through the geometric dilution
of precision (GDOP). The squares indicate the resulting errors when the pseudorange
measurement of the multipath-disturbed signal is removed from the solution (strategy I).

The figure shows that, in most scenarios, if reliable information is available concerning
the presence of multipath in a certain signal, the removal of that signal from the equation of
navigation permits to reduce the resulting positioning error (although at the cost of a slight
GDOP increase). However, when the SV31 signal is affected by a multipath effect and is
removed from the equation of navigation, a substantial increment of the positioning errors
is obtained. The explanation for this anomalous behavior is the very large growth in the
GDOP that results from discarding SV31. This example enables concluding that strategy I
(signal removal) may not be the best one if it leads to the significant growth of the GDOP
parameter. We will see next that an alternative strategy (strategy II), based on the outputs
of the NN, may provide a better multipath mitigation performance.
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Figure 10. 3D positioning errors obtained in the presence of one multipath-disturbed signal when the
corresponding pseudorange measurement is either used (circles) or is removed from the navigation
equation (squares).

In fact, the availability of softmax values Sk permits to devise new strategies to mitigate
the multipath effect on the position, velocity, and time (PVT) solution as an alternative
to removing the affected signal(s) from the equation of navigation. As the degree of
confidence in the classification provided by the NN increases with the difference |S1 − S0|,
a weighted least-squares algorithm (or an extended Kalman filter having the observations
noise covariance matrix with adjusted inputs) that uses K signals (with K ≥ 5) may provide
a more accurate estimate of the position, velocity, and time (PVT) than the least-squares
solution based on K − 1 signals. This strategy is particularly useful when a reduced
number of visible satellites are available because the removal of one or more signals from
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the equation of navigation could significantly increase the GDOP or even prevent the
computation of the PVT solution.

Suppose K ≥ 4 satellites are being tracked. The pseudorange measurements, after cor-
rection of the ionospheric/tropospheric delays, are provided by [3]

ri =
√
(Xi − x)2 + (Yi − y)2 + (Zi − z)2 + ∆rc, i = 1, . . . , K, (43)

where (Xi, Yi, Zi) is the satellite position, (x, y, z) is the receiver position, and ∆rc is the
range bias due to the receiver clock offset ∆r.

A least-squares solution (x̂, ŷ, ẑ, ∆̂rc) is difficult to obtain analytically for the set of
pseudorange measurements (43) because the measurements are nonlinear, but the equations
may be linearized by performing a Taylor expansion regarding the predicted user position
and range bias (x̃, ỹ, z̃, ∆̃rc). The single-point navigation solution using the weighted
least-squares estimate is [34]


x̂
ŷ
ẑ

∆̂rc

 =


x̃
ỹ
z̃

∆̃rc

+ (GTWG)−1GTW


r1 − r̃1
r2 − r̃2

...
rK − r̃K

, (44)

where G is the geometry matrix, W is the weighting matrix, assumed to be positive definite and
symmetric, and r̃i is the predicted pseudorange. Let Λi = S1,i − S0,i = 1− 2S0,i, i = 1, . . . , K,
denote the difference of the two softmax outputs for satellite i, with 0 ≤ S0,i ≤ 1, where
Λi = −1 indicates a no-multipath scenario with probability one and Λi = 1 a multipath
scenario with probability one. In contrast, Λi = 0 corresponds to a minimum of confidence in
the NN decision. Therefore, we propose the following (K × K) weighting matrix

W =


(1 − Λ1)

γ 0 . . . 0
0 (1 − Λ2)

γ . . . 0
...

...
. . .

...
0 0 . . . (1 − ΛK)

γ

 = 2γ


Sγ

0,1 0 . . . 0
0 Sγ

0,2 . . . 0
...

...
. . .

...
0 0 . . . Sγ

0,K

 (45)

where γ (with γ ≥ 0) is a selectable parameter that enables adjusting the range of values
of the weights in W. For instance, conducting γ = 0, the estimated position corresponds
to the conventional least-squares solution obtained with K satellites because W is the
identity matrix. The γ → ∞ estimated solution is tantamount to the least-squares solution
obtained with K − 1 satellites (the signal affected by multipath aspects is discarded) as
(1 − Λi)

γ → ∞, if S1,i < S0,i, and (1 − Λi)
γ → 0, if S1,i > S0,i. For the remaining values of

γ, a weighted least-squares solution with K satellites is computed.
Figure 11 displays the rms 3D positioning errors versus γ for the same scenario

described in Figure 10, provided by (44) and (45). In this simulation, we assumed that
S0,i = 0.9 for satellite signals free of multipath and S0,i = 0.1 for satellite signals affected
by multipath. Figure 11 shows that, when the signals of satellites SV02, SV18, SV26, or
SV29 are affected by multipath aspects, the best solution consists of removing that signal
from the equation of navigation (strategy I), but this strategy leads to poor results when
the disturbed signal belongs to SV31. Overall, strategy II, which consists of using (44) with
γ ≈ 2, provides the best results in terms of multipath mitigation.

If, instead, an extended Kalman filter was employed, the weighting matrix W could be
replaced by the covariance matrix, Rn + Rm, in the measurement (observations) model [35],
with Rn depending on the noise pseudorange terms and Rm ∝ W−1 depending on the
multipath effect.
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Figure 11. 3D positioning errors obtained with one multipath-disturbed signal using softmax values
and weighted least-squares solutions with different values of γ.

5. Conclusions

In this work, we proposed algorithms for the detection of GNSS signals affected by
multipath aspects based on two neural network architectures: the multilayer perceptron
(MLP) and the convolutional neural network (CNN). Extensive simulations have shown
that the CNN is, in general, superior to the MLP, thus becoming the adopted solution.
To obtain a classifier that is robust to various types of multipath aspects, the network was
trained with synthetic noisy signals generated from a blend of different multipath scenarios
that characterize the DLR model. The testing of the neural networks was performed with a
set of multipath scenarios affected or not by the multipath effect with equal probabilities.
No specific model was adopted for the testing task in order to make it as general as possible.

In the GNSS receiver, the neural network inputs were produced by a grid of N f Nc cor-
relators that covered the Doppler frequencies and the code delays of the different received
replicas. The number of correlators has a major impact on the computational effort and
should be kept as small as possible. However, decreasing the number of correlators, in par-
ticular those in the frequency domain (N f ), tends to negatively affect the performance of
the classifier. Good results were obtained for the Doppler range of ±400 Hz by conducting
N f = 32 and Nc = 16.

Since the neural network was trained using Monte Carlo techniques, increased empha-
sis was placed on the analytic characterization of the cross-correlations between the noise
components in the different correlators. It was also found that pre-processing the CNN
inputs with a 2D Discrete Fourier Transform enabled significantly improving the detection
performance in certain scenarios. The performance achieved with the CNN was compared
with the MLP, which was used as a benchmark. In general, the CNN provided better results
than the MLP, especially in low-signal-to-noise-ratio conditions. Thus, the CNN was used
as the main multipath detection algorithm in the current work. The explanation for the
better performance of the CNN compared to the MLP architecture is that the former in-
cludes an initial part (convolutional and max-pooling layers) to perform automatic feature
extraction before carrying out the classification task. In fact, the CNN may be viewed as a
feature extractor followed by a classifier.

Depending on the type of the CNN outputs, hard or soft decisions could be utilized.
When hard decisions are used, the GNSS signal affected by the multipath aspects is removed
from the equation of navigation. The adoption of soft decisions enables implementing
an alternative strategy for multipath mitigation, which consists of solving the equation
of navigation using a weighted least-squares algorithm (or an extended Kalman filter),
with the processing of each GNSS signal being affected by a different weight (or probability)
provided by the neural network. The result is a decrease in the receiver’s position, velocity,
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and timing errors while keeping the number of processed signals unchanged, which may
be a significant advantage when the presence of visible satellites has already been reduced.
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Appendix A. Tables of DLR Model Parameters

The following tables were obtained using data from [20]. The second column of
Table A1 indicates the shadowing probabilities.

Table A1. Parameters for the direct path.

Environment Shad. Prob. ρ (dB) [No
Shad] µ (dB) [Shad] σ (dB) [Shad]

open, 25◦ 0 6.0 - -
45◦ 0 10.4 - -

rural, 25◦ 0.96 10.8 −9.9 3.3
45◦ 0.79 4.7 −5.4 2.3

suburban, 25◦ 0.59 4.7 −6.0 3.5
45◦ 0.43 4.0 −7.2 3.2

urban, 25◦ 0.79 3.2 −12.1 6.3
45◦ 0.56 8.5 −3.0 2.7

highway, 25◦ 0.19 8.4 −5.8 1.7
45◦ 0 7.8 - -

Table A2. Parameters for near echoes.

Environment λ τe (ns) b (µs) S0 (dB) d (dB/µs)

open, 25◦ 1.2 400 0.03 −28.6 1.0
45◦ 0.5 400 0.027 −29.0 1.1

rural, 25◦ 1.5 400 0.055 −24.9 19.2
45◦ 1.8 400 0.051 −24.5 13.4

suburban,25◦ 1.4 400 0.038 −23.8 23.7
45◦ 1.5 400 0.027 −24.4 23.0

urban, 25◦ 4.0 600 0.063 −17.0 26.2
45◦ 3.6 600 0.081 −23.5 8.5

highway, 25◦ 2.2 600 0.077 −25.8 7.3
45◦ 1.8 600 0.043 −27.1 29.5

Table A3. Parameters for far echoes.

Environment λ 2σ2 (dB) τmax (µs)

flat terrain, 25◦ 0.3 −26.4 15
45◦ - - 15

rural, 25◦ 0.8 −28.2 5
45◦ - - 5

https://doi.org/10.54499/UIDB/50008/2020
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Table A3. Cont.

Environment λ 2σ2 (dB) τmax (µs)

hilly, 25◦ 1.2 −29.0 10
45◦ - - 10

mountainous, 25◦ 1.8 −28.5 15
45◦ 4.0 −21.7 15

Appendix B. Generation of a Gaussian Vector with a Given Covariance Matrix

Consider the generation of a generic Gaussian noise vector U = [u1, . . . , uM]T , with zero
mean and covariance matrix C, from the noise vector W = [w1, . . . , wM]T of zero-mean
independent Gaussian components with unity variance. Let U = GW, where G(M × M) is
a square matrix. The problem consists of determining G from C = GE{WWT}GT = GGT .
According to the spectral theorem for real symmetric matrices [36], the covariance ma-
trix can be written in terms of its eigenvalues and eigenvectors as C = VΛVT , where
V is an orthogonal matrix whose columns are the orthonormal eigenvectors of C and
Λ = diag {λ1, λ2, . . . , λM} is a diagonal matrix with the real nonnegative eigenvalues of C.
This leads to G = VΛ1/2 = Vdiag {

√
λ1,

√
λ2, . . . ,

√
λM}.
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