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Abstract: Smartwatches are one of the most relevant fitness trends of the past two decades, and
they collect increasing amounts of health and movement data. The accuracy of these data may be
questionable and requires further investigation. Therefore, the aim of the present study is to validate
smartwatches for use in triathlon training. Ten different smartwatches were tested for accuracy in
measuring heart rates, distances (via global navigation satellite systems, GNSSs), swim stroke rates
and the number of swim laps in a 50 m Olympic-size pool. The optical heart rate measurement
function of each smartwatch was compared to that of a chest strap. Thirty participants (15 females,
15 males) ran five 3 min intervals on a motorised treadmill to evaluate the accuracy of the heart rate
measurements. Moreover, for each smartwatch, running and cycling distance tracking was tested
over six runs of 4000 m on a 400 m tartan stadium track, six hilly outdoor runs over 3.4 km, and
four repetitions of a 36.8 km road bike course, respectively. Three swimming protocols ranging from
200 m to 400 m were performed in triplicate in a 50 m Olympic-size pool, evaluating the tracked
distance and the detected number of strokes. The mean absolute percentage errors (MAPEs) for the
average heart rate measurements varied between 3.1% and 8.3%, with the coefficient of determination
ranging from 0.22 to 0.79. MAPE results ranged from 0.8% to 12.1% for the 4000 m run on the 400 m
track, from 0.2% to 7.5% for the 3.4 km outdoor run, and from 0.0% to 4.2% for the 36.8 km bike ride.
For the swimming tests, in contrast, the deviations from the true distance varied greatly, starting at a
0.0% MAPE for the 400 m freestyle and reaching 91.7% for the 200 m medley with style changes every
25 m. In summary, for some of the smartwatches, the measurement results deviated substantially
from the true values. Measurements taken while road cycling over longer distances with only a
few curves were in relative terms more accurate than those taken during outdoor runs and even
more accurate than those taken on the 400 m track. In the swimming exercises, the accuracy of the
measured distances was severely deteriorated by the medley changes among the majority of the
smartwatches. Altogether, the results of this study should help in assessing the accuracy and thus the
suitability of smartwatches for general triathlon training.

Keywords: wearables; sports watch; reliability; validity; GNSS; swimming; running; cycling

1. Introduction

Since 2016, the American College of Sports Medicine has listed wearable technology
as one of the top three fitness trends worldwide, demonstrating the enormous impact
wearables are having on the sports community [1–8]. Using photoplethysmography, a
key sensing technology, it is possible to track physiological parameters such as heart rate,
heart rate variability, heart rhythm, pulse wave, respiratory rate, oxygen saturation, and
sleep quality [9]. The technical possibilities continue to increase, as wearables are becoming
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progressively smaller, and better sensors, such as accelerometers, gyroscopes, or global
navigation satellite system (GNSS) receiver chips, are being built into the watches. This
increases the comfort for an athlete who wishes to track their training automatically with
virtually no additional technical effort. On the other hand, external sensors, such as temper-
ature sensors or additional acceleration sensors, are also being included in wrist, trunk or
shoe pods to record additional data. In 2022, 492 million wearables were sold worldwide,
with a predicted upward trend [10]. Today, wearable technology offers the advantage of
balancing training load and monitoring health status at the same time. Athletes, coaches,
and sports scientists have identified its potential to prevent injuries, improve performance,
and prolong an athlete’s career. However, the validity, accuracy, and reliability of this evolv-
ing technology may be, in parts, controversial and uncertain [11]. In a survey of triathlon
coaches, it was found that some coaches were concerned about athletes’ overreliance on
technology and that the data it produces can impact their perceptions on performance [12].
The enormous potential and constant development of smartwatch technology regularly
necessitates the review of current and new models. Various models have already been
assessed, however, not with a triathlon-specific focus in mind [13–18]. Notwithstanding,
the accuracy of the measured parameters is crucial to achieve the desired benefits.

Hence, the goal of the present study was to determine the measurement accuracy of
ten different sports watches in regard to optical heart rate (i.e., pulse rate) measurements
and GNSS-based distance tracking, as well as in the acquisition of swimming data. The
following questions were addressed: How accurate is the optical heart rate measurement
during a 3 min run on a treadmill? How accurate are the GNSS measurements during a
4000 m run on a 400 m tartan stadium track, a 3.4 km hilly outdoor run, and a 36.8 km
profiled bike ride? Are there differences in the GNSS measurements among the various
watches? Furthermore, do such differences in the measured distances depend on whether
the watch is worn on the wrist facing the inside or outside of the running track/course
curvature? Lastly, how accurate are the lap counts and arm stroke counts in a 50 m Olympic-
size swimming pool? These questions focus on typical single-discipline triathlon training,
which is usually divided into separate sessions of swimming, cycling, and/or running.
An assessment for use in brick sessions or competitions was not carried out, as it would
require a multisport function, which is not supported by all of the selected smartwatches.

2. Materials and Methods
2.1. Smartwatches

Ten different smartwatches currently available on the market (as of May 2024) from
nine manufacturers were included in this study (Table 1). The smartwatches were selected
to cover a wide range of manufacturers with adequate market shares, ranging from entry-
level products at a recommended retail price of 120 €, such as the Mi Watch (XIA) (Xiaomi,
Inc., Beijing, China), to an advanced triathlon-specific model, the Garmin Forerunner®

955 Solar (GAF) (Garmin AG, Schaffhausen, Switzerland), at 650 €. In an overview of global
sales figures for wearables from 2014 to 2022, in total, eight leading manufacturers were
listed, seven of which are included in this study: Apple, Samsung, Xiaomi, Huawei, Fitbit,
Garmin, and Fossil (order according to rank) [19]. Looking at the most popular smartwatch
brands in Germany in 2023, the top seven are represented in this study, supplemented by
Fossil in rank 10. Moreover, Polar was included in this study, owing to the popularity of
their smartwatches in Germany [19] and because Polar watches were analysed in previous
studies [15,16,18].

As regards movement tracking, a multi-GNSS analysis is more accurate than a single
GNSS [20]. For this reason, the GNSS function of the watches was set to utilise both the
American GPS and the Russian GLONASS systems in parallel to achieve better compara-
bility where applicable. If this was not available, the watch’s default settings (commonly
GPS only) were used. The possible GNSS options are shown in Table 1, based on the
information from the respective manufacturers. Further hardware specifications can be
found in Table A5. Notably, Fossil does not specify the supported GNSSs in the Fossil Gen
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6 Smartwatch (FOS) (Fossil, Inc., Richardson TX, USA). However, as its Snapdragon Wear
4100/4100+ (Qualcomm Technologies, Inc., San Diego CA, USA) processor supports GPS,
GLONASS, Galileo, and BeiDou (BDS), that smartwatch is expected to perform accord-
ingly [21]. To compensate for any variability in production, GNSS data were simultaneously
collected using two separate watches of the same model, worn unilaterally by the same
individual when running or mounted to the handlebar when cycling. During running and
swimming, it was double-checked for each smartwatch that it was firmly attached and
tightly worn on the athlete’s wrist, ensuring direct skin contact and minimising any relative
motion between watch and wrist (Figure 1).

Table 1. Overview of the ten investigated smartwatches, their manufacturers, and available
GNSS options.

Smartwatch Manufacturer Abbreviation GNSS Options

GTS3 Amazfit (Zepp North America, Inc.
Irvine, CA, USA) AMA GPS, GLONASS, Galileo, BDS,

QZSS [22,23]

Watch SE Apple, Inc. (Cupertion, CA, USA) APP GPS, GLONASS, Galileo, QZSS [24]
Versa 4 Fitbit, Inc. (San Francisco, CA, USA) FIT GPS, GLONASS [25]

Gen 6 Smartwatch Fossil, Inc. (Richardson TX, USA) FOS GPS, GLONASS, Galileo, BDS [21,26,27]

Forerunner® 955 Solar Garmin AG (Schaffhausen, Switzerland) GAF GPS, GLONASS, Galileo, BDS,
QZSS, IRNSS [28–30]

Venu® 2 Garmin AG (Schaffhausen, Switzerland) GAV GPS, GLONASS, Galileo [31,32]

Watch GT 3 Huawei (Shenzhen, China) HUA GPS, GLONASS, Galileo, BDS,
QZSS [33,34]

Ignite 2 Polar, Inc. (Kempele, Finnland) POL GPS, GLONASS, Galileo, QZSS [35,36]

Galaxy Watch 4 Samsung Electronics Co., Ltd. (Seoul,
South Korea) SAM GPS, GLONASS, Galileo, BDS [37,38]

Mi Watch Xiaomi, Inc. (Beijing, China) XIA GPS, GLONASS, Galileo, BDS [39]

GNSS: Global Navigation Satellite System; GPS: Global Positioning System (USA); GLONASS: Globalnaya
Navigazionnaya Sputnikovaya Sistema (Russia); BDS: BeiDou Navigation Satellite System (China); QZSS: Quasi-
Zenith Satellite System (Japan); IRNSS: Indian Regional Navigation Satellite System (India).
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Figure 1. Example of the experimental setup in swimming with two smartwatches tightly worn on
both wrists of a female swimmer.

For all measurements and watches, the most suitable sport mode for the planned
measurement was selected; for running, this was either outdoor running or track running.
For watches that did not provide a specific track running mode, the regular outdoor
running mode was selected. For road cycling, the outdoor cycling mode was used. If the
watch did not offer this mode, the outdoor running mode was chosen instead, which was
necessary with the FOS watch. Because of the higher average movement speed in cycling,
it can be assumed that this differing choice of mode did not significantly influence the
cycling distance measurements. For swimming, the indoor swimming mode was selected
for any watch, and the lap length was set to 50 m. If a software update for a device or
its corresponding application became available during the measurement period, it was
installed to provide the most current device software status available.
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2.2. Participants

A total of 30 individuals (15 males/15 females) with various training backgrounds,
ranging from recreational athletes to trained long-distance triathletes (age: 29.4 ± 7.4 years;
height: 175.6 ± 8.8 cm; body mass: 70.2 ± 8.2 kg), participated in the heart rate measure-
ment part of the study (Table 2). For the running, cycling, and swimming parts, nine
trained athletes of this cohort were recruited because the study design allowed for multiple
measurements to be completed by the same individual without the loss of statistical power.
The measurements were conducted in and around Leipzig, Germany, and Magdeburg,
Germany, from April to June 2023.

Table 2. General characteristics of the participants undergoing heart rate measurement before the
treadmill exercise (n = 30).

Parameter Mean ± SD

Age (years) 29.43 ±7.35
Sex 15 males/15 females

Body mass (kg) 70.16 ±8.17
Body height (cm) 175.60 ±8.77

BMI (kg/m2) 22.75 ±2.09
Net weekly training time (h) 7.16 ±3.75

RR MAP (mmHg) 91.78 ±9.07
RR sys (mmHg) 125.33 ±15.69
RR dia (mmHg) 74.42 ±7.23

HR (12-channel ECG) (1/min) 61.53 ±11.34
Selected speed (km/h) 10.62 ±2.09

mmHg: millimetre of mercury (≈Torr); RR: Riva Rocci blood pressure; MAP: mean arterial pressure; sys: systolic;
dia: diastolic; SD: standard deviation.

2.3. Heart Rate Measurements

The arterial blood pressure in rest was measured manually and bilaterally with a
sphygmomanometer (boso med 1, Bosch + Sohn GmbH & Co. KG, Jungingen, Germany)
by a physician. The resting heart rate was determined by electrocardiography (ECG), which
was also used to rule out any deviations in the cardiac currents that could have led to an
incorrect measurement. Except for two extrasystoles for one subject, which did not lead to
exclusion due to their statistical insignificance, no abnormalities were detected that could
have contributed false measurements. In particular, heart rate and pulse rate could be
treated as equivalents for all subjects. In addition, the resting ECG and blood pressure
measurements were examined to detect any pathologies that would have contraindicated a
stress test. If the ECG results were normal and the systolic blood pressure was ≤160 mmHg,
the treadmill test was started.

For this purpose, the participants completed 5 × 3 min intervals at a self-selected
running speed (min.: 8 km/h) on a motorised treadmill (h/p/cosmos saturn®, 250/100,
h/p/cosmos sports and medical GmbH, 83365 Nußdorf–Traunstein, Germany or Star
Trac 10 FreeRunner™, MERCOR Fitnesskonzepte GmbH Leipzig, Germany, respectively).
An 1.5% incline was set to compensate for the absence of air resistance. While running,
optical heart rate data (i.e., pulse rate data) were collected continuously by two differ-
ent smartwatch models in parallel using their photoplethysmography sensors, with one
watch being worn on each wrist. Therefore, the total number of intervals to be run for
10 smartwatches could be reduced from 10 to 5. As reference, true heart rate was mea-
sured electronically using a chest strap heart rate monitor (Garmin HRM-PRO, Garmin
AG, Schaffhausen, Switzerland). The validity of the chest strap measurement has been
confirmed in previous studies [40–43]. The measurements using the smartwatches and the
chest strap started simultaneously and ended after 3 min of running at the target speed.
All heart rate measurements were conducted with a data rate of at least 1 Hz.
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2.4. Tracking of Running and Cycling Distances

To evaluate the accuracy of the distance tracking measurements, the smartwatches
were tested on reference routes for running and cycling. To avoid environmental influ-
ences [44], the same location and the same date and time were used under a clear sky.
Before the GNSS measurements were performed, a bike computer (Sigma BC 8.12, SIGMA-
ELEKTRO GmbH, Neustadt, Germany) was calibrated with the tyre size. The rolling length
of one tyre’s circumference was measured by marks on the ground while the rider was sit-
ting on the bike (tyre size: 25 × 700c at 7.5 bar/109 PSI). This calibration was crosschecked
and confirmed by measuring the length of a five-laps course on a 400 m stadium track on
lane 1 as described below. With this calibration, all running and cycling distances were mea-
sured as reference values by riding the same course at least twice on the bike (with the tyre
pressure kept at its calibration time value given above). Additionally, the true lengths of
the running and cycling routes were crosschecked using OpenStreetMap and Google Maps.
These three distance results per course, i.e., by bike ride, OpenStreetMap and Google Maps,
differed only marginally in the second decimal place (3.41 km vs. 3.4(0) km and 36.84 km
vs. 36.8(0) km). Notably, this small difference was inevitable as the bike computer’s display
provided two decimal places, whereas the map material yielded only one.

For each run, 4 smartwatches were worn simultaneously to reduce the number of runs:
two on the left forearm and two on the right forearm. The positions were numbered—(T1)
proximal forearm, left; (T2) distal forearm, left; (T3) distal forearm, right; and (T4) proximal
forearm, right—and noted for each watch and trial. Five runners (3 males, 2 females)
ran 4000 m on a 400 m standard tartan stadium track. The runners were instructed to
stay in lane one, which is exactly 400 m in length, at a distance of 30 cm from the inner
line [45]; running was maintained in this lane (with the exception of, at maximum, 6 quick
overtaking manoeuvres per 4000 m). Additionally, an outdoor run of 3.41 km on an asphalt
road in profiled terrain was performed. The tests on the stadium track and the asphalt
road were performed in triplicate by five runners, each with four smartwatches in positions
T1–T4, resulting in 5 × 3 × 4/10 = 6 separate measurements per watch. The watches were
rotated among the runners, as well as the forearm position, after each run. For the cycling
measurements, four cyclists (three males, one female) completed a fixed road bike course
of 36.84 km on asphalt roads in both directions with five smartwatches attached to the
handlebars of each bike or to the cyclist’s forearms (the latter if a non-zero pulse rate was
required for correct operation), resulting in 4 × 5 × 2/10 = 4 separate measurements per
smartwatch model.

2.5. Tracking of Pool Swimming Activities

Three different swimming protocols were performed with the smartwatches in a 50 m
Olympic-size pool to determine the accuracy of swimming lap counts and stroke rates. The
following measurement protocols were carried out three times per watch, divided among
six swimmers (three males, three female), with a different watch worn on each forearm:
(1) 200 m individual medley (butterfly–backstroke–breaststroke–front crawl) with stroke
transitions every 50 m, (2) 400 m freestyle (performed as front crawl), (3) 200 m individual
medley with stroke transitions every 25 m. During the freestyle sequences, the swimmers
were filmed by a moving camera to provide a video-based independent validation of the
number of strokes detected by the smartwatches.

2.6. Data Analysis and Statistics

The data collected from all smartwatches was transferred to the mobile phone apps of
the respective manufacturers via Bluetooth. The following apps were used: Fitbit (Fitbit,
Inc., San Francisco, CA, USA), Fossil Smartwatch (Fossil, Inc., Richardson TX, USA), Garmin
Connect (Garmin AG, Schaffhausen, Switzerland), Apple Health (Apple, Inc., Cupertion,
CA, USA), Huawei Health (Huawei, Shenzhen, Guangdong, China), Mi Fitness (Xiaomi,
Inc., Beijing, China), Polar Flow (Polar Electro, Inc., Kempele, Finnland), Samsung Health
(Samsung Electronics Co., Ltd., Seoul, South Korea), and Zepp (Zepp North America, Inc.,
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Irvine, CA, USA). Afterwards, the data were transferred manually to Microsoft® Excel® for
Microsoft 365 (Microsoft Corporation, Redmond, WA, USA). All mathematical analyses
and statistical tests were performed with Microsoft® Excel® for Microsoft 365 (Microsoft
Corporation, Redmond, USA), MATLAB R2023a (MathWorks Inc., Natick, MA, USA), and
JASP (JASP Team (2023), Version 0.17.1, Amsterdam University, Amsterdam, Netherlands).

To evaluate the accuracy of the heart rate measurement, the mean heart rate and the
peak heart rate were each determined for 3 min intervals and then compared to the heart
rate values from the chest strap reference measurements. Average and peak heart rate
values for the 3 min intervals were directly reported by the smartwatch under study and
the chest strap reference, respectively, so that no further averaging or peak detection had
to be conducted. The 3 min interval per stage was chosen because of its commonality
and significance in performance diagnostics. Derived descriptive statistical parameters
comprised minimum deviation (from reference), maximum deviation, mean absolute error,
mean absolute percentage error, median, and interquartile range. Pearson and Spearman
correlation coefficients were calculated between measured and reference heart rates, along
with their coefficients of determination (R2) and levels of significance.

To verify the accuracy of the GNSS-based distance measurements, the distances mea-
sured by the smartwatches were compared to the true reference distance. In particular,
descriptive statistics included the arithmetic mean, minimum, maximum, mean absolute
error, mean absolute percentage error, standard deviation, and interquartile range. To
test for statistical significance of possible deviations between measured distances and the
reference value, t-tests were carried out with effect sizes characterised by Cohen’s d. To
compare the accuracy of the watches among each other, a one-way repeated-measures
ANOVA was conducted with the smartwatch model being the independent variable. In
addition, a t-test was conducted for the 4000 m stadium runs to investigate if wearing the
watch on the left or right forearm (i.e., inside or outside the lane) had an impact on the
measured distance.

For the swimming tests, the number of metres swum by the participants, the number
of strokes used, and the SWOLF index were evaluated. The SWOLF value is the time in
seconds plus the number of strokes required to swim a given distance, i.e., SWOLF = time in
seconds/lap + strokes/lap. Descriptive statistics comprised the arithmetic mean, minimum,
maximum, mean absolute error, mean absolute percentage error, standard deviation, and
interquartile range.

For all statistical tests, the level of significance was set to p < 0.05. If not stated
otherwise, results are given in terms of mean ± standard deviation (SD).

3. Results
3.1. Heart Rate

The mean absolute errors (MAEs) of the average heart rate measurements, as measured
for all of the smartwatches, were between 4.2 and 11.8 beats per minute (bpm). This
corresponded to mean absolute percentage errors (MAPEs) of 3.1% to 8.3%. The coefficient
of determination of the average heart rate was between 0.220 and 0.705. The Spearman
correlation coefficients ranged from 0.436 to 0.841 (p < 0.001), indicating medium to large
associations. In detail, the model-specific results can be found in Table 3, and the respective
box plots and Bland–Altman plots are shown in Figure 2, with the regression analysis in
Figure 3. All regression lines have a lower gradient than the reference lines. Reviewing
the data for all 30 runners, the MAEs for each runner and all 10 watches combined ranged
between 1.1 and 19.1 bpm, which corresponds to MAPEs of 0.8–17.0%.
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Table 3. Heart rate measurements: Average heart rates and their deviations from the chest
strap reference.

Watch δMin δMax MAE MAPE Median IQR R2 rP pP rS pS

bpm bpm bpm % bpm bpm

AMA 0 38 9.37 6.66 −5.5 13.25 0.582 0.763 <0.001 0.793 <0.001

APP 0 38 4.23 3.12 0.0 2.25 0.705 0.840 <0.001 0.854 <0.001

FIT 0 27 9.67 6.68 −5.0 16.00 0.686 0.828 <0.001 0.796 <0.001

FOS 0 56 10.97 7.32 −3.0 8.75 0.225 0.475 0.008 0.493 <0.001

GAF 0 50 7.27 5.02 −1.0 5.75 0.499 0.706 <0.001 0.712 <0.001

GAV 0 50 8.17 5.59 −3.5 7.00 0.573 0.757 <0.001 0.733 <0.001

HUA 1 30 4.30 3.34 −1.5 2.00 0.788 0.887 <0.001 0.841 <0.001

POL 0 40 11.83 8.30 −3.0 15.00 0.220 0.470 0.009 0.436 <0.001

SAM 0 44 8.80 6.35 −1.0 7.75 0.374 0.612 <0.001 0.618 <0.001

XIA 0 40 10.20 7.13 −4.5 12.5 0.479 0.692 <0.001 0.726 <0.001

δMin, δMax, MAE, Median and IQR are in beats per minute (bpm; absolute values). δMin: minimum deviation;
δMax: maximum deviation; MAE: mean absolute error; MAPE: mean absolute percentage error; IQR: interquartile
range; R2: coefficient of determination; rP: Pearson’s correlation coefficient; pP: type I error probability of
Pearson’s correlation coefficient; rS: Spearman’s correlation coefficient; pS: type I error probability of Spearman’s
correlation coefficient.

The peak heart rate measurements showed similar MAE values compared to the
average heart rate, i.e., between 4.4 and 10.9 bpm, resulting in MAPEs between 3.1% and
7.3%. The coefficients of determination for the peak heart rates were also in a similar
range to those of the average heart rate, i.e., between 0.179 and 0.743. The Spearman
correlation coefficients equally showed only small differences, ranging between 0.482 and
0.851 (p < 0.001). The results are presented in Table 4, the box plots and Bland–Altman
plots in Figure 4, and the regression analysis in Figure 5. All regression lines had a lower
gradient than that measured by the heart rate monitor. Based on the analysis of the data for
all 30 runners, the MAEs for each runner and all 10 watches combined ranged between 0.9
and 29.1 bpm, which is equivalent to MAPEs of 0.6–24.7%. In summary, the peak heart rate
measured by the smartwatches showed greater variation than the average heart rate.
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dot), the median (line inside the box), the first quartile (bottom edge of the box), the third quartile
(top edge of the box), and the interquartile range (IQR), where the whiskers are 1.5 times the IQR.
Red dots outside the whiskers therefore represent outliers. (b) Corresponding Bland–Altman plots.

Table 4. Heart rate measurements: Peak heart rates and their deviations from the chest strap reference.

Watch δMin δMax. MAE MAPE Median IQR R2 rP pP rS pS

bpm bpm bpm % bpm bpm

AMA 0 35 8.00 5.31 −1.0 6.75 0.554 0.744 <0.001 0.758 <0.001

APP 0 49 4.37 3.07 0.0 1.25 0.668 0.818 <0.001 0.668 <0.001

FIT 0 34 7.77 5.51 0.0 12.25 0.618 0.756 <0.001 0.774 <0.001

FOS 0 53 10.37 6.81 0.0 7.25 0.231 0.481 0.007 0.547 <0.001

GAF 0 59 6.77 4.34 0.0 2.0 0.458 0.677 <0.001 0.692 <0.001

GAV 0 61 5.67 3.60 0.0 2.0 0.494 0.703 <0.001 0.710 <0.001

HUA 0 34 4.87 3.41 −1.5 1.0 0.743 0.862 <0.001 0.851 <0.001

POL 0 43 10.70 7.28 −1.0 5.5 0.179 0.423 0.02 0.482 <0.001

SAM 0 68 10.93 7.30 0.5 8 0.280 0.530 0.003 0.601 <0.001

XIA 0 65 9.47 6.47 −1.0 7.25 0.310 0.557 <0.001 0.594 <0.001

Abbreviations are as defined in Table 3.
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Figure 3. Heart rate measurements: Subjects’ average heart rates as measured by the ten smart-
watches (ordinate) versus the chest strap reference (abscissa). The coloured crosses represent each
subject’s mean heartrates (chest strap vs. smartwatch), while the red lines show the linear regression
results and the grey lines visualise the—always unreached—ideal of perfect agreement. Symbol
colours indicate smartwatch models. Symbol meanings include R2: coefficient of determination;
rP: Pearson’s correlation coefficient; rS: Spearman’s correlation coefficient; bpm: beats per minute;
and CI: confidence interval (95%, red stitched lines).
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Figure 4. Heart rate measurements: Deviation of the optically measured peak heart rates (by photo-
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Figure 5. Heart rate measurements: Subjects’ peak heart rates as measured by the ten smartwatches
(ordinate) versus the chest strap reference (abscissa). Symbol and colour meanings are the same as
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The most accurate smartwatches in terms of both the average and the peak heart rates
were the APP and the HUA with MAPEs of 3.1%/3.1% and 3.3%/3.4%, respectively.

3.2. GNSS-Based Distance
3.2.1. Stadium Track Running Tests

The results of the 4000 m track running tests are summarised in Table 5 and Figure 6.
Altogether, seven smartwatches varied, on average, by less than 80 m (<2%) from the true
distance. The mean MAPEs were between 0.8% and 12.1%. The FIT severely underesti-
mated the true distance in every measurement (3515 ± 381.20 m, p = 0.026, t(5) = −3.12,
Cohen’s d = −1.272), whereas the FOS (4284 ± 150 m, p = 0.006, t(5) = 4.66, d = 1.903) and
XIA (4140 ± 123 m, p = 0.038, t(5) = 2.79, d = 1.139) returned significantly too high values.
For all three watches, the effect sizes in terms of Cohen’s d indicate large mean deviations
from the true value. Overall, a strong effect of the smartwatch model on the measured
distance was confirmed by the ANOVA (p < 0.007, η2 = 0.509).
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Figure 6. Running tests on a 4000 m stadium track: (a) Distances as tracked by ten smartwatches
studied, (b) a full area overview with sample tracks by six smartwatch models (only a small fraction
shown for clarity), (c) MAPEs of tracked distances, and (d) a close up of the sample tracks. Bar and
line colours indicate smartwatch models. Note: For the panels (b,d), publicly available map data
from Google Maps (Google LLC, Mountain View, CA, USA) as of 3 June 2022 were used.
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Table 5. Running tests on 4000 m track: Deviations of the tracked distances from the true distance for
the ten smartwatches investigated.

Watch Mean Min. Max. SD± MAE MAPE Median IQR p d

m m m m m % m m

AMA 3970 3840 4120 102.76 90.00 2.25 3945 182.5 0.507 −0.292

APP 3963 3820 4120 72.02 43.33 1.08 3985 77.5 0.268 −0.509

FIT 3515 2980 3960 381.20 485.00 12.13 3565 755 0.026 * −1.272

FOS 4284 4103 4473 149.06 283.67 7.09 4268 295 0.006 ** 1.903

GAF § 4032 4000 4120 47.08 31.67 0.79 4010 67.5 0.160 0.637

GAV 4072 3970 4210 90.42 81.67 2.04 4045 165.0 0.110 0.793

HUA 4013 3620 4160 201.56 140.00 3.50 4075 247.5 0.878 0.066

POL 3957 3280 4300 361.37 233.33 5.83 4035 487.5 0.781 −0.120

SAM 4047 3880 4280 152.27 126.67 3.17 4065 272.5 0.487 0.306

XIA 4140 3950 4280 122.96 156.67 3.92 4180 210.0 0.038 * 1.139

Min: minimum; Max: maximum; MAE: mean absolute error; MAPE: mean absolute percentage error; SD: standard
deviation; IQR: interquartile range; d: Cohen’s d. Levels of significance: * p < 0.05, significant; ** p < 0.01, very
significant; *** p < 0.001, extremely significant. § The GAF was used in the track running mode.

The post hoc comparisons showed that 9 (out of 45) deviations from the true distance
were significant among the individual smartwatch models (p < 0.001–0.013), all of which
were for the FIT compared to the other models. Regarding body side dependence, the mean
distance measured by all smartwatches when worn on the inner wrist (T1 and T2), was
3946 ± 272 m (n = 30), as compared to 4052 ± 249 m (n = 30) when worn on the outer wrist
(T3 and T4). Comparing these values, the difference of 106 m (2,7%) was not significant
(p = 0.094).

3.2.2. Hilly Outdoor Running Test on Asphalt

The results of the outdoor running test on a hilly asphalt course with a true length
of 3410 m are summarised in Table 6 and Figure 7. In general, these measurements were
more accurate than those for the 4000 m track test, with the MAPEs ranging from 0.2%
to 7.5%. The most accurate smartwatch, in this respect, was the GAF, which had an
MAPE of 0.2%. Three smartwatches had SDs of less than 10 m: APP, GAF, and GAV. Four
significant deviations (p < 0.001–0.049, t(5) = −11.62–4,66,) were found, as well as large
effect sizes in terms of Cohen’s d of 1.90 to −4.74 for AMA, APP, FOS, and SAM. The
ANOVA confirmed that the smartwatch model had a large effect on the measurement
accuracy (p < 0.001, η2 = 0.263). The post hoc analysis showed 5 (out of 45) significant
differences when comparing the 10 models among each other (p < 0.001–0.021), affecting
the FIT and POL. Comparing the measurements taken on the inside wrist (i.e., the right
wrist in the clockwise direction along the loop) with those on the outside wrist (i.e., the
left wrist), the difference of 33 m (1,0%) between 3384 ± 181 m (n = 24) and 3417 ± 112 m
(n = 24) was smaller than that for the 400 m track and not significant either (p = 0.195).

Regarding the tracked elevation profile, all watches that offered this analysis readily
via an online platform (i.e., AMA, FIT, GAF, GAV, HUA, and POL) tracked the relative
elevation changes adequately throughout the course (Figure 7d). However, AMA and HUA
returned strongly imprecise absolute elevations (error of approximately 60 to 120 m).



Sensors 2024, 24, 4675 13 of 23
Sensors 2024, 24, x FOR PEER REVIEW 15 of 25 
 

 

 
Figure 7. Running tests on a hilly 3.41 km outdoor asphalt course: (a) Tracked distances of all ten 
smartwatches, (b) sample tracks in the full area with six different sample tracks, (c) MAPEs of 
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Western Europe based on GeoBasis-DE/BKG using the software tool GPS Visualizer in its current 
version as of 2019 [46]. For the panels (b,d), publicly available map data from Google Maps (Google 
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Table 6. Running tests on hilly outdoor asphalt course: Deviations in the tracked distances from the 
true distance of 3.41 km for the ten smartwatches investigated. 

Watch Mean Min Max SD ± MAE MAPE Median IQR p d 
 m m m m m % m m   

AMA 3380 3350 3390 15.49 30.00 0.88 3385 17.50 0.005 ** −1.936 
APP 3380 3370 3390 6.32 30.00 0.88 3380 5.00 <0.001 *** −4.743 

Figure 7. Running tests on a hilly 3.41 km outdoor asphalt course: (a) Tracked distances of all ten
smartwatches, (b) sample tracks in the full area with six different sample tracks, (c) MAPEs of tracked
distances, (d) sample tracks shown in a close-up image. (e) Elevation profiles of sample tracks shown
in (b,d) vs. true profile. Bar and line colours indicate smartwatch models. Notes: The reference profile
was obtained from publicly available high-resolution LIDAR elevation data for Western Europe based
on GeoBasis-DE/BKG using the software tool GPS Visualizer in its current version as of 2019 [46].
For the panels (b,d), publicly available map data from Google Maps (Google LLC, Mountain View,
CA, USA) as of 9 September 2021 were used.
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Table 6. Running tests on hilly outdoor asphalt course: Deviations in the tracked distances from the
true distance of 3.41 km for the ten smartwatches investigated.

Watch Mean Min Max SD± MAE MAPE Median IQR p d

m m m m m % m m

AMA 3380 3350 3390 15.49 30.00 0.88 3385 17.50 0.005 ** −1.936

APP 3380 3370 3390 6.32 30.00 0.88 3380 5.00 <0.001
*** −4.743

FIT 3240 2600 3590 382.94 256.67 7.53 3405 652.50 0.326 −0.444

FOS 3515 3427 3572 54.91 104.50 3.06 3512 96.25 0.006 ** 1.903

GAF 3408 3390 3420 9.83 5.00 0.15 3410 7.50 0.695 −0.170

GAV 3417 3410 3430 8.16 6.67 0.20 3415 12.50 0.102 0.816

HUA 3410 3380 3440 21.91 16.67 0.49 3405 37.50 1.000 0.000

POL 3450 3420 3530 43.36 40.00 1.17 3430 65.00 0.073 0.923

SAM 3338 3220 3420 67.95 75.00 2.20 3355 95.00 0.049 * −1.055

XIA 3430 3400 3490 34.06 23.33 0.68 3415 52.50 0.210 0.587

Symbol meanings are the same as in Table 5.

3.2.3. Road Cycling Course

The results for the road cycling course with a true length of 36.84 km are shown in
Table 7. The route and elevation profile are shown in Figure 8. All ten smartwatches
underestimated the reference distance cycled by participants but were still more accurate
than the GNSS measurements recorded while running, with nine watches exhibiting MAPEs
below 1%. The most accurate watch was the POL, with an MAPE of only 0.03%.

Table 7. Road cycling course: Deviations in the tracked distances from the true distance of 36.84 km
for the ten smartwatches investigated (n = 4).

Watch Mean Min. Max. SD± MAE MAPE Median IQR p d

m m m m m % m m

AMA 36,508 36,490 36,520 15.00 332.50 0.90 36,510 27.50 <0.001
*** −22.167

APP 36,703 36,660 36,780 54.39 137.50 0.37 36,685 97.50 0.015 * −2.528

FIT § 35,290 35,290 35,290 - 1550 4.21 35,290 -

FOS § 36,786 36,637 36,890 132.20 87.67 0.24 36,830 253.00 0.550 −0.411

GAF 36,690 36,650 36,720 31.62 150.00 0.41 36,695 60.00 0.002 ** −4.743

GAV 36,765 36,750 36,780 12.91 75.00 0.20 36,765 25.00 0.001 ** −5.809

HUA 36,695 36,680 36,710 12.91 145.00 0.39 36,695 25.00 <0.001
*** −11.232

POL 36,628 36,480 36,690 99.12 12.50 0.03 36,670 162.50 0.080 −1.306

SAM 36,708 36,680 36,730 20.62 132.50 0.36 36,710 37.50 0.001 ** −6.427

XIA 36,828 36,820 36,840 9.57 212.50 0.58 36,825 17.50 0.023 * −2.144

Symbol meanings are the same as those in Table 5. § FIT, n = 1; FOS, n = 3.
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included in the analysis of the distances tracked during the swimming tests. An evaluation 
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Figure 8. Road cycling course: (a) Tracked distances of all ten smartwatches, (b) sample tracks
in the full area with six different sample tracks (one-way), (c) MAPEs of the tracked distances,
(d) sample tracks shown in a close-up image. (e) Elevation profiles of sample tracks shown
in (b,d) vs. true profile. Bar and line colours indicate smartwatch models. Notes: The reference profile
was obtained from publicly available high-resolution LIDAR elevation data for Western Europe based
on GeoBasis-DE/BKG using the software tool GPS Visualizer [46]. For the panels (b,d,) publicly
available map data from Google Maps (Google LLC, Mountain View, CA, USA) as of 21 April 2023
were used.

Seven significant deviations were observed for the ten watches (p < 0.001–0.023,
t(2–3) = −44.33–−4.29), with large effect sizes in terms of Cohen’s d of −22.167 to −2.144.
The three watches that had larger standard deviations, or fewer measurement values that
could be analysed (POL, FOS, and FIT) due to self-aborted measurements by the watch
were not significant. The ANOVA confirmed that the smartwatch model had a large effect
on the measurement accuracy (p < 0.001, η2 = 0.775). The performed post hoc analysis
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showed 12 (out of 45) significant differences among the 10 models when compared to each
other (p = <0.001–0.049). Similar to the hilly outdoor running test, absolute elevations
and cumulative vertical metres climbed were substantially inaccurate for AMA and HUA
(Figure 7e), apparently due to an altitude offset of approximately −84 m and −156 m,
respectively, and because of highly noisy or smoothed elevation profiles.

3.3. Pool Swimming

Altogether, the smartwatches offer various swimming modes which are compared in
Table A1. The FOS, however, lacks a swimming mode; therefore, only nine watches were
included in the analysis of the distances tracked during the swimming tests. An evaluation
of the 400 m front crawl trial, as presented in Table A2, shows that seven smartwatches
recorded correct measurements. Two watches had MAPEs of 4.2% (Fit and POL), as, in
each case, one of the three recorded 450 m instead of 400 m.

The results of the 200 m individual medley trial with stroke transitions every 50 m
show that the distance tracked had a higher propensity for error when the swimming stroke
changed than during a continuous front crawl stroke. Six smartwatches measured the
distances correctly, and the three watches that recorded incorrect distance had the following
MAPE values: AMA, 8.3%; FIT, 16.7%; POL, 141.7% (Table A3).

For the 200 m individual medley with stroke transitions every 25 m (in the middle
and at the end of the lap in the 50 m Olympic-size pool), none of the watches were able to
measure the distance correctly (Table A4). The MAPE was between 41.7% and 91.7%.

Five watches provided a functionality to analyse the SWOLF index, i.e., were able to
also detect the number of strokes per lap. These values were collected during the 400 m
front crawl trial. The evaluation of the number of strokes at 50 m as part of the SWOLF
index is shown in Table 8. The MAPE was between 0.4% and 29.5%.

Table 8. Deviations in the number of strokes calculated for one 50 m lap during a 400 m front crawl
swimming test (n = 5).

Watch δMin δMax MAE MAPE Median IQR

%

GAF 1.0 2.0 1.5 6.32 1.5 1.0

GAV 1.0 3.0 2.1 8.81 2.5 1.5

HUA 0.0 1.5 0.5 2.14 0.5 1.0

POL 0.5 28 8.5 29.45 2.5 18

SAM 0.0 0.5 0.1 0.43 0.0 0.25
δMin, δMax, MAE, Median and IQR are in metres (absolute values). δMin: minimum deviation, δMax: maximum
deviation, MAE: mean absolute error, MAPE: mean absolute percentage error, IQR: interquartile range.

4. Discussion

The aim of this study was to compare the accuracy of 10 different smartwatches when
measuring the heart rate during running exercises; the distance during running, cycling,
and swimming tests; and the stroke rate during swimming trials.

The results of the heart rate measurements were divided into two parts: the average
heart rate and the peak heart rate measurements (Section 3.1). The average heart rates
(Figures 2 and 3 and Table 3) had MAPEs between 3.1% and 8.3% while the MAPEs of
the peak heart rates (Figures 4 and 5 and Table 4) ranged from 3.1% to 7.3%. The heart
rate readings, therefore, were more accurate for the peak values. A factor that could
contribute to differences here is the time range, and hence, the number of data points over
which the various parameters were calculated. For the peak heart rate, a single maximum
spike value was used, while for the average heart rate, values constantly recorded over a
3 min interval were averaged. Another contributing factor could be that the measurement
intervals between the watches and the chest strap reference were a few seconds apart in
some cases. All regression lines had a gradient lower than the reference for all watches.



Sensors 2024, 24, 4675 17 of 23

High values tended to be underestimated, and low values tended to be overestimated. The
accuracy of the heart rate measurements performed at the wrist fell short of those achieved
with the chest strap. Similar average heart rate MAPEs were recorded compared to values
in a study by Chow et al., in which the MAPE deviations in the heart rate measurements
during a treadmill exercise were 2.5–8.3%, although that study analysed the heart rate
second by second [47].

Interestingly, some runners exhibited only slight deviations from the reference values,
and this was consistent for all tested smartwatches. For other runners, all or nearly all
of the 10 smartwatches showed substantial deviations. This can be seen in the MAPE
values calculated for each athlete, with values of 0.8–17.0% for the average heart rate and
0.6–24.7% for the peak heart rate. If these values for the average heart rate measurements are
divided into three ranges—below, within, and above the MAPE values—for the individual
smartwatches, the following distribution emerges: nine runners had MAPEs between
0.8% and 3.1%, sixteen runners had MAPEs between 3.2% and 7.7%, and five runners
had MAPEs from 10.1% to 17.0%. This indicates that it is not only the accuracy of the
smartwatch that influences the result but also the individuality of the runner wearing it.
A possible reason could be due to an interference from the photoplethysmography-based
measurement concept, whereby an external movement alters the signal strength of the light
reflected by the tissue instead of solely the blood flow. In this case, false external frequencies
might be measured, such as the step frequency. Future studies could, thus, investigate
whether there are non-physiological associations between the supposed measured heart
rate and the step frequency.

Regarding the tracking of running distances on the stadium track (Figure 6 and
Table 5, Section 3.2.1), three significant deviations for the 4000 m run on the 400 m track
were observed: The most accurate watch (GAF) recorded a maximum deviation of 120 m,
whereas the least accurate watch (FIT) displayed a deviation of 1020 m. The GAF has a
track running mode, and it showed the least deviation, with an MAPE of 0.8%. Overall, the
MAPEs were between 0.8% and 12.1%. The shown results fell within the range of MAPEs
that were recorded in a study by Budig et al., with an MAPE of 1.8% for one smartwatch
model [13] and MAPEs of 1.4–1.9% for two models [18], as well as those of another study
by Gilgen-Ammann, with MAPEs of 0.9–4.1% for eight watch models [15].

In addition, the difference between all measurements taken on the inside curve of the
wrist (3946 m) and on the outside (4052 m) was 106 m. Considering the geometry of the
400 m track, the theoretical difference would be 7.04 m per lap for a runner using the second
lane and not the first. For the 10 laps comprising 400 m each, this difference would be 70.4 m
with a track width of 1.22 m [45]. The distance between a runner’s two wrists measured
at rest is certainly smaller; however, in motion, the distance between wrists may result in
values that differ by up to one lane span as the upper limit. The measured difference of
106 m between the inside-facing watch and the outside-facing watch is, therefore, greater
than the difference between lane 1 and lane 2 as 70.4 m over 10 laps. Smartwatch models
are available that can differentiate wrist sides, and this could be advantageous for more
accurate measurements of distance at curves. Presently, the various manufacturers do not
reveal whether they use this information for a more accurate measurement. Future research
is indicated to calculate this effect more precisely, even though its practical importance
seems limited within the framework of triathlon training.

For the results of the 3410 m hilly running course on asphalt (Figure 7 and Table 6,
Section 3.2.2), which showed four significant differences, the mean MAPEs were between
0.2% and 7.5%. Results in a similar range were found for the MAPEs in the study by
Budig et al., with 2.8% for one smartwatch [13] and 0.7–4.8% for two models [18], and
Gilgen-Ammann reported MAPEs of 3.5–8.5% based on eight watches [15]. However,
the measured values varied greatly among some of the watches. With different routes
taken in a variety of environments, the MAPEs could not be properly compared because
of disturbance variables (e.g., forests, urban canyons, and mountains), but they were in
a similar range. The difference in the results between the watches attached facing the
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inside of the curve and those attached facing outward was 33 m, which is less than that of
the 400 m stadium track. However, the outdoor running track had fewer curves than the
stadium track.

During road cycling (Figure 8 and Table 7, Section 3.2.3), MAPEs between 0.03% and
4.2% were calculated. Nine models had an MAPE < 1.0% (the exception was the FIT, with
only one result). This corresponds to a deviation of fewer than 10 metres per kilometre.
This level of accuracy required that the tyre circumference and air pressure, combined with
the weight of the rider, be set very precisely using a classic bicycle odometer to achieve
a greater accuracy than some of the GNSS measurements. Nevertheless, seven out of
nine measurements showed a significant deviation from the true reference distance. This
can be explained by the fact that all of the watches, without exception, measured the
reference distance as too short on average and, additionally, in almost all of the individual
measurements. This can likely be explained by the fact that GNSS distance measurement
consists of many individual points. On a curved surface, this means that the measurement
consists of many short straight lines as the lower boundary of the actual pathlength of
the curved trajectory. At higher speeds (e.g., when cycling), this measurement inaccuracy
increases as the short straight lines become longer. Comparing the MAPE values with
those in Budig’s studies (MAPE of 0.5% for one smartwatch model and MAPEs of 0.3% for
two model) [13,18], nine of the ten watches in this study were in similar ranges. Although
they had similar route lengths of 31.5 and 36.7 km, they differed in their locations and,
possibly, in the elevation profiles.

As for the tracking of the distances swum in a pool (Section 3.3, Tables A2–A4 in
Appendix A), our findings show that the true distance of 400 metres was measured correctly
by seven out of nine of the watches. The MAPEs were between 0.0% and 4.2%, with only
two watches measuring one excess lap (FIT and POL). These MAPEs were lower than
those recorded in Lee’s study, in which the MAPEs were between 0.0% and 20.6%, split
among the different speeds [48]. Two different watches were used in that study. However,
similar results were obtained in Budig’s study, reporting MAPEs of 0.4% and 4.6% for two
models in the 500 m breaststroke [18]. In the 200 m medley swim, six out of nine watches
recorded this distance without error. This corresponds to MAPEs of 0.0–141.7%. Upon the
addition of a stroke transition after 25 m in the centre of the lane, no smartwatch recorded
the lap count correctly. The stroke transition in the middle of the lap was usually counted
as the start of a new lap. This resulted in MAPEs between 41.7% and 91.7%. In another
study by Brunner et al., swimming stroke changes performed in the centre of the lap were
described as a mixed style, and greater accuracies were also reported [49]. This could not be
confirmed with the models in the present study. When measuring the number of strokes, as
a main contributor to the SWOLF index, the MAPEs were between 0.4% and 29.5%. These
values per lap were recorded for five watches. The range of values are comparable to those
in a study by Lee et al., in which the MAPE values were 6.2–17.6% [48].

5. Limitations

There are some limitations to the present study that need to be named. First, the
heart rate measurements were carried out under controlled laboratory conditions on a
motorised treadmill at a constant speed, with no external disturbance factors or changes
in the running speed. The heart rate readings were, thus, as expected, mostly constant
over time. Moreover, heart rates were evaluated only in terms of the means and maximum
values and not by continuous comparison. However, before further field studies can be
carried out, tests under laboratory conditions are required.

Second, regarding the GNSS measurements, the number of runs and bike rides per
watch was limited due to the availability of athletes at the same time, bearing in mind that
the measurements had to be carried out at the same day and roughly the same daytime
to ensure identical GNSS satellite conditions for all bouts. Future research should try
to increase the number of parallel measurements by increasing the number of identical
smartwatch models and athletes available. Furthermore, it could not be determined for all
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watches which of the global satellite systems—GLONASS, Galileo, or BDS—were used in
addition to GPS to determine the position. Despite that, a conclusion can still be drawn as
to whether the measured distances are valid.

Third, this study investigated only the accuracy and, thus, the practicability for the
three triathlon disciplines during training in a separate manner. A multisport functionality
for brick sessions or triathlon competitions could not be evaluated across the smartwatches
as it was available only for a small minority of the models tested.

6. Conclusions

The results of this study show that the tested smartwatches differed substantially in
their accuracies. In particular, optically measured heart rates can deviate considerably from
the true values. Comparison with an ECG or a chest strap may be helpful before relying on
such wrist-based measurements. As regards distance tracking in running, a conventional
GNSS approach still cannot be recommended for measuring the distance run on a 400 m
stadium track. Despite all the technical improvements over the past few years, manually or
automatically counting the number of laps appears to still be the more accurate approach.
However, a smartwatch with specific track mode functionality (as provided by GAF) can
overcome this issue and provide sufficiently accurate results for most practical purposes in
triathlon and long-distance running exercise. Depending on the smartwatch model, using
GNSS for outdoor measurements of distances run or cycled is sufficiently accurate in the
context of long-distance running and triathlon exercise control. Not only when measuring
personal bests, but in general, errors can occur, and the results should always be critically
scrutinised. As for swimming, most of the tested smartwatches were able to record the
distance swum in the front crawl 400 m pool swimming trial with sufficient accuracy and
were also able to correctly count stroke transitions when performed at the end of a lap.
However, our results indicate that current smartwatches are not suitable for the demands
of frequent stroke transitions in swim trials. In addition, the stroke rate was reproduced
accurately by only a small subset of the watches (HUA and SAM). In essence, all non-
temporal values measured by current sports smartwatches should be critically assessed for
validity before being used in exercise control, but once their accuracy is confirmed, they
can be a useful tool in training management for triathletes and coaches.
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Appendix A

Table A1. Smartwatch overview with the options for swimming.

Watch Count Swimming Lanes Stroke Type SWOLF

AMA Yes Only first lane No
APP Yes Not per lane Only average
FIT Yes No No
FOS No swimming modus No No
GAF Yes Evaluable Evaluable
GAV Yes No Evaluable
HUA Yes Evaluable Evaluable
POL Yes Evaluable Evaluable
SAM Yes Evaluable Evaluable
XIA Yes Evaluable Only average and graphic

SWOLF: Swim-golf). The SWOLF value is the time in seconds plus the number of strokes required to swim one
pool length.

Table A2. Distance deviations in the 400 m front crawl swimming test (n = 3).

Watch Mean Min Max SD± MAE MAPE Median IQR

m m m m m % m m

AMA 400.00 400.00 400.00 0.00 0.00 0.00 400.00 0.00

APP 400.00 400.00 400.00 0.00 0.00 0.00 400.00 0.00

FIT 416.67 400.00 450.00 28.87 16.67 4.17 400.00 50.00

GAF 400.00 400.00 400.00 0.00 0.00 0.00 400.00 0.00

GAV 400.00 400.00 400.00 0.00 0.00 0.00 400.00 0.00

HUA 400.00 400.00 400.00 0.00 0.00 0.00 400.00 0.00

POL 416.67 400.00 450.00 28.87 16.67 4.17 400.00 50.00

SAM 400.00 400.00 400.00 0.00 0.00 0.00 400.00 0.00

XIA 400.00 400.00 400.00 0.00 0.00 0.00 400.00 0.00

Mean, Min, Max, SD, MAE, Median, IQR in metres (absolute values). Min: minimum; Max: maximum;
MAE: mean absolute error; MAPE: mean absolute percentage error; SD: standard deviation; IQR: interquar-
tile range.

Table A3. Distance deviations in the 200 m individual medley swimming test with stroke transitions
every 50 m (n = 3).

Watch Mean Min Max. SD± MAE MAPE Median IQR

m m m M m % m m

AMA 183.33 150.00 200.00 28.87 16.67 8.33 200.00 50.00

APP 200.00 200.00 200.00 0.00 0.00 0.00 200.00 0.00

FIT 233.33 200.00 300.00 57.74 33.33 16.67 200.00 100.00

GAF 200.00 200.00 200.00 0.00 0.00 0.00 200.00 0.00

GAV § 200.00 200.00 200.00 0.00 0.00 0.00 200.00 -

HUA 200.00 200.00 200.00 0.00 0.00 0.00 200.00 0.00

POL 483.33 250.00 750.00 251.66 283.33 141.67 450.00 500.00

SAM 200.00 200.00 200.00 0.00 0.00 0.00 200.00 0.00

XIA 200.00 200.00 200.00 0.00 0.00 0.00 200.00 0.00

Mean, Min, Max, SD, MAE, Median, IQR in metres (absolute values). Min: minimum; Max: maximum;
MAE: mean absolute error; MAPE: mean absolute percentage error; SD: standard deviation; IQR: interquar-
tile range. § n = 2 because of a technically incorrectly performed butterfly segment.
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Table A4. Distance deviations in the 200 m individual medley swimming test with stroke transitions
every 25 m (n = 3).

Watch Mean Min Max. SD± MAE MAPE Median IQR

m m m m m % m m

AMA 283.33 200.00 400.00 104.08 83.33 41.67 250.00 200.00

APP 300.00 300.00 300.00 0.00 100.00 50.00 300.00 0.00

FIT 366.67 350.00 400.00 28.87 166.67 83.33 350.00 50.00

GAF 383.33 350.00 400.00 28.87 183.33 91.67 400.00 50.00

GAV 383.33 350.00 400.00 28.87 183.33 91.67 400.00 50.00

HUA 300.00 300.00 300.00 0.00 100.00 50.00 300.00 0.00

POL 383.33 350.00 400.00 28.87 183.33 91.67 400.00 50.00

SAM 300.00 300.00 300.00 0.00 100.00 50.00 300.00 0.00

XIA 366.67 300.00 400.00 57.74 166.67 83.33 400.00 100.00

Mean, Min, Max, SD, MAE, Median, IQR in metres (absolute values). Min: minimum; Max: maximum;
MAE: mean absolute error; MAPE: mean absolute percentage error; SD: standard deviation; IQR: interquar-
tile range.

Table A5. Smartwatch CPU specifications.

Watch CPU

AMA AMD Ryzen™ 7 7735HS (8 cores, 16 threads, 3.20–4.75 GHz, 20 MB cache)
(Advanced Micro Devices, Inc., Santa Clara, CA, USA)

APP S5 SiP with 64-bit dual-core processor (Apple, Inc., Cupertion, CA, USA)
FIT – undisclosed by manufacturer –

FOS Snapdragon Wear 4100/4100+ (Qualcomm Technologies, Inc.,
San Diego CA, USA)

GAF – undisclosed by manufacturer –
GAV – undisclosed by manufacturer –

HUA ARM Cortex-M (32 MB RAM, 4 GB storage space) (Arm Holdings plc,
Cambridge, England, UK)

POL – undisclosed by manufacturer –
SAM Exynos W920 (Samsung Electronics Co., Ltd., Seoul, South Korea)
XIA Snapdragon Wear 3100 (Qualcomm Technologies, Inc., San Diego CA, USA)
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