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Abstract: Most visual simultaneous localization and mapping (SLAM) systems are based on the
assumption of a static environment in autonomous vehicles. However, when dynamic objects,
particularly vehicles, occupy a large portion of the image, the localization accuracy of the system
decreases significantly. To mitigate this challenge, this paper unveils DOT-SLAM, a novel stereo visual
SLAM system that integrates dynamic object tracking through graph optimization. By integrating
dynamic object pose estimation into the SLAM system, the system can effectively utilize both
foreground and background points for ego vehicle localization and obtain a static feature points
map. To rectify the inaccuracies in depth estimation from stereo disparity directly on the foreground
points of dynamic objects due to their self-similarity characteristics, a coarse-to-fine depth estimation
method based on camera–road plane geometry is presented. This method uses rough depth to
guide fine stereo matching, thereby obtaining the 3 dimensions (3D)spatial positions of feature
points on dynamic objects. Subsequently, by establishing constraints on the dynamic object’s pose
using the road plane and non-holonomic constraints (NHCs) of the vehicle, reducing the initial
pose uncertainty of dynamic objects leads to more accurate dynamic object initialization. Finally,
by considering foreground points, background points, the local road plane, the ego vehicle pose,
and dynamic object poses as optimization nodes, through the establishment and joint optimization
of a nonlinear model based on graph optimization, accurate six degrees of freedom (DoFs) pose
estimations are obtained for both the ego vehicle and dynamic objects. Experimental validation on
the KITTI-360 dataset demonstrates that DOT-SLAM effectively utilizes features from the background
and dynamic objects in the environment, resulting in more accurate vehicle trajectory estimation and
a static environment map. Results obtained from a real-world dataset test reinforce the effectiveness.

Keywords: stereo visual SLAM; dynamic scene; graph optimization; object tracking; non-holonomic
constraint

1. Introduction

As the development of intelligent vehicles advances, high-precision localization has
become essential for autonomous driving. Stereo vision simultaneous localization and
mapping (SLAM), which utilizes stereo cameras, provides accurate localization for intel-
ligent vehicles [1]. Unlike localization systems that rely on Global Navigation Satellite
System (GNSS), visual SLAM can deliver precise and reliable localization and mapping in
environments without GNSS signals [1,2]. Additionally, compared to LiDAR SLAM, stereo
cameras are not only more cost-effective and easier to install, but they also furnish scale
information about the environment and offer rich texture and color details [3].

Visual SLAM systems [4–6] typically assume that the environment is static or quasi-
static, meaning there are no or only a few dynamic objects present. Based on this as-
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sumption, these systems can achieve accurate localization and environmental mapping
in low-dynamic scenes, such as indoors. However, in road scenes, there are numerous
dynamic objects, especially vehicles, which may cover a substantial part of the image and
severely affect the precision of ego vehicle localization and mapping [7].

To address the aforementioned issues, the intuitive approach is to eliminate as many
features as possible from dynamic objects in the scene and rely exclusively on features from
the static environment for pose estimation and map construction. There are two methods
for removing dynamic objects. The first is to treat features on dynamic objects as outliers
using methods such as random sample consensus (RANSAC) [4,5], robust kernel [8], and
geometric consistency functions [9], which allows for more accurate computation of the
pose transformations between camera frames. While this approach reduces the influence of
dynamic objects in predominantly static scenes, it leads to a significant decrease in pose
estimation accuracy in scenes with many dynamic objects or where such objects cover a
substantial part of the image, making it less suitable for road scenes. The other method
involves using semantics [10–12] and object detection [13,14] to detect and categorize
objects, determine their motion states based on prior class, and remove features from
dynamic objects. This can prevent interference from dynamic objects for the localization
system. However, in highly dynamic scenes, directly removing dynamic features can result
in a scarcity of static features and uneven feature distribution, which also leads to decreased
accuracy and stability in pose estimation [15].

In recent years, dynamic SLAM systems that are coupled with dynamic object tracking
have gained widespread attention. These methods [16–20] leverage semantic segmentation
or object detection to detect and track dynamic objects, allowing foreground features to also
be used for ego pose estimation. Subsequently, bundle adjustment (BA) is implemented
with ego pose, dynamic objects, and feature points. These approaches have demonstrated
great precision and stability in dynamic scenes [21]. However, in the dynamic scenes
typical of intelligent vehicles, where most of the dynamic objects are surrounding vehicles,
issues such as dynamic object initialization and dynamic object depth estimation have
not been deeply explored. For dynamic object initialization, in ClusterSLAM [16] and
DynaSLAMII [18], the poses of dynamic objects are initialized with the center of mass
of the 3D points and with the identity matrix. While this method is reasonable for the
position, initializing the orientation with an identity matrix can lead to subsequent dynamic
object movements that do not conform to their kinematic constraints, introducing inevitable
errors into the system. In ClusterVO [17], the pose of dynamic objects is initialized using
the center and the three principal orthogonal directions of the point clouds belonging
to the object as the translational and rotational components; this method relies on the
completeness of the point cloud distribution. Additionally, due to the self-similarity of
the local features of vehicles, directly using stereo disparity in DynaSLAMII [18] to obtain
their three-dimensional structure can easily lead to mismatches, introducing depth errors
for sparse feature points. In VDO-SLAM [20], using depth maps increases the front-end
computational complexity and affects the real-time operational performance of the system.

This paper introduces a stereo visual SLAM system in this paper, named DOT-SLAM,
which combines graph optimization and dynamic object tracking. To address the uncer-
tainty in the initialization poses of dynamic objects, the proposed system utilizes constraints
from the local road plane and the non-holonomic constraints (NHCs) of vehicles to recover
the vehicle’s orientation, reducing the uncertainty in the initialization pose and providing
an accurate initial value for dynamic object tracking and optimization processes. To solve
the problem of large depth estimation errors for foreground points due to the self-similarity
of dynamic objects when using stereo disparity directly, a coarse-to-fine depth estimation
method is proposed. This method obtains a rough depth of dynamic objects using camera–
road plane geometry, which then guides fine object-level stereo matching to obtain accurate
foreground point depth. Ultimately, a nonlinear optimization model utilizing graph opti-
mization is developed that jointly optimizes foreground feature points, background feature
points, the local road plane, the ego vehicle pose, and dynamic object poses. The proposed



Sensors 2024, 24, 4676 3 of 27

system results in an accurate ego vehicle pose, dynamic object poses, and environmental
map, enhancing the precision and stability of the system’s localization and mapping in
dynamic environments.

This paper makes four key contributions:

1. A graph optimization framework that is tightly coupled is introduced. This framework
employs rigid body motion to establish reprojection errors for features associated
with dynamic objects and performs joint optimization of the vehicle pose, dynamic
object poses, local road plane, and visual feature points as optimization nodes.

2. A method for initializing the pose of dynamic objects is introduced, utilizing local
road plane constraints and non-holonomic constraints. This method significantly
reduces uncertainty and enhances the accuracy of dynamic objects’ initial poses.

3. A multi-scale depth estimation method for dynamic objects is presented. It starts
with a coarse initial pose derived from the camera–road plane geometry, which then
guides refined stereo matching to ascertain the 3D spatial locations of feature points
on dynamic objects.

4. A unified SLAM system is introduced that is capable of creating a globally consistent
map of the static environment. The system’s performance is validated through one
public dataset and real vehicle experiments, demonstrating superior localization
accuracy compared to state VSLAM and VISLAM in highly dynamic scenes for
the vehicle.

This paper is structured into the following sections: Section 2 reviews background
research related to the topic. Section 3 introduces the notations and pose representations
of dynamic objects. Section 4 gives an overview of the entire system and its individual
modules. Section 5 details the experimental setup, results, and their analysis. Finally,
Section 6 presents the conclusions.

2. Related Work
2.1. Visual SLAM Systems in Dynamic Scenes

Visual SLAM methods designed for dynamic scenes primarily achieve localization by
filtering out dynamic points, categorizing these methods broadly into two main categories.

The first category is dynamic SLAM without prior-known dynamic object informa-
tion. As the system lacks information about dynamic objects, it needs to segment static
and dynamic features. One approach utilizes epipolar geometry to differentiate between
static and dynamic features. Constraints were built using epipolar lines [22], reprojection
errors [23,24], and Delaunay triangulation [25]. Kundu et al. [22] detected dynamic features
by applying constraints from epipolar geometry and flow vector bounds, further refined
through Bayesian filtering. In [23,24], reprojection errors were used to categorize features
as either static or dynamic, based on the distance of reprojection. Dai et al. [25] employed
the Delaunay triangulation algorithm to create a graph structure for map points, leveraging
the connectivity of map points to separate dynamic objects from the static background,
thus reducing the impact of moving objects on pose estimation. Other methods involve
segmenting dynamic targets based on 2D optical flow and 3D scene flow, where optical
flow and scene flow represent the motion fields in 2D and 3D spaces, respectively, reflecting
the movement of dynamic objects. Klappstein et al. [26] segmented moving objects based
on the extent to which they violated the expected optical flow. In another study [27], by
incorporating the estimated pose transformations into the current frame, predictions were
made for the previous frame’s image. The residuals between this predicted image and the
camera image were then analyzed to identify dynamic objects. Yin et al. [15] presented a
method that combines scene flow and inertial Inertial Measurement Unit (IMU) to detect
dynamic features. Similar to [15], Song et al. [28] rejected features from dynamic objects by
leveraging pose priors estimated by the IMU preintegration. These methods do not rely on
prior information about dynamic objects and offer high real-time performance. However,
in road scenes where dynamic objects dominate, these methods struggle to distinguish
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dynamic objects, leading to a significant decrease in the accuracy of pose estimation and
making them less applicable to road environments.

The second category involves dynamic SLAM that couples with deep learning. Deep
learning networks can provide semantic masks or bounding boxes from object detection
within images, offering prior information about dynamic objects for constructing dynamic
SLAM. This prior information about dynamic objects provides object categories but requires
further integration with geometric methods such as motion consistency [11,12] and multi-
view geometry [10,29] or optical flow techniques [30] to determine the motion state of the
prior objects. DS-SLAM [12] introduced a method that combined semantic segmentation
with motion consistency checks for dynamic feature detection, thus mitigating the impact
of dynamic features on the system. DGS-SLAM [11] introduced a dynamic object detection
module using a multinomial residual model. This module segmented motion in the scene
by integrating motion residuals from neighboring frames with potential motion data from
semantic segmentation. DynaSLAM [29] rejected dynamic objects by integrating semantic
masks with multi-view geometry and reconstructing the static background. Blitz-SLAM [7]
processed features along semantic boundaries by combining semantic masks with depth
images, removing blurry noise blocks, and establishing an accurate point cloud map. Since
semantic segmentation algorithms were computationally intensive, to enhance system
real-time performance, Ballester et al. [31] and Singh et al. [32] did not require semantic
segmentation in every frame. Instead, they combined multi-view geometry or feature
flow to propagate semantics in intermediate frames, thus improving the system’s real-
time performance. Meanwhile, DetectSLAM [13] and Dynamic-SLAM [14] used bounding
boxes provided by object detection algorithms to identify the boundaries of potential
moving objects but could not obtain the complete contours of moving targets, necessitating
further differentiation between moving objects and the background. These methods utilize
prior information provided by deep learning networks, combined with information from
geometric or optical flow, to accurately identify dynamic objects. However, removing
features from dynamic objects can lead to poorer feature distribution in road scenes, which
also adversely affects the accuracy of localization [33].

2.2. Coupled Visual SLAM and Dynamic Object Tracking

To better address the interference of dynamic objects on SLAM systems, dynamic
SLAMs that incorporate multi-object tracking have been proposed. Depending on how
the system integrates both components, these systems are typically categorized as either
loosely coupled or tightly coupled.

Loosely coupled dynamic SLAM and dynamic object tracking independently perform
SLAM and track moving objects. DOT [31] employed multi-view geometry to follow the
trajectory of dynamic objects, avoiding the segmentation of all frames in the sequence and
thus enhancing the robustness and accuracy of the system in dynamic environments. The
main drawback of this method is that its accuracy is highly dependent on the accuracy
of the camera pose estimation. PLDS-SLAM [34] demonstrated how integrating point
and line features within a dynamic SLAM context helps the system better handle urban
environments where static and dynamic objects coexist. This system shows a loosely
coupled integration where multiple object tracking (MOT) is used to track dynamic line
features (such as those on moving vehicles), which are then processed differently from static
features during SLAM computations. Hong et al. [35] correlated objects detected in different
frames, which were identified by projecting their 3D bounding boxes into the bird’s-eye
view. Tracking these objects to analyze their motion states allowed for distinguishing
dynamic objects from static ones. These methods enhance the accuracy of dynamic object
detection through multi-frame tracking, but the main drawback is that their accuracy
is highly correlated with that of the camera pose estimation. RLD-SLAM [36] utilized
information from the IMU to track dynamic objects, thereby enhancing the robustness of
SLAM in highly dynamic environments. Similarly, DGM-VINS [37] adopted a method that
leverages IMU data for dynamic object tracking rather than for camera pose estimation,
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which helps avoid coupling between the DOT and camera pose estimation. However, due
to the constrained motion of vehicles, system initialization and ensuring observability are
challenging aspects for VI-SLAM [38].

Tiny-coupled dynamic SLAM and dynamic object tracking enhance estimation accu-
racy by merging the poses of dynamic objects and ego motion into a single framework
for simultaneous solutions. Research [39,40] has shown that the problems of SLAM and
multi-object tracking are mutually beneficial. Li et al. [41] proposed a method for dynamic
targets such as vehicles using 2D detection boxes, combined with the proposed viewpoint
classification to generate 3D detection boxes for vehicles, which are then jointly optimized
with camera poses in the back-end. CubeSLAM [42] is an object-level SLAM. It generated
3D boxes of objects using 2D detection boxes and vanishing points, tracking these boxes
using semantic segmentation. These methods utilize prior information to recover the 3D
spatial information of targets from 2D boxes, requiring accurate 2D detection data and
heavily depending on prior information. ClusterSLAM [16] clustered point clouds of
dynamic objects using rigid body motion to represent their movement without needing
prior information about dynamic targets. In the back-end, it used factor graph optimization
to correct the shape and trajectory of dynamic objects. ClusterVO [17], an improvement
on ClusterSLAM, introduced a heterogeneous conditional random field (CRF) clustering
approach for clustering and tracking dynamic objects, addressing inaccuracies in segmen-
tation. DynaSLAMII [18] innovatively incorporated object tracking into the visual SLAM
pipeline using deep learning, optimizing both scene understanding and state estimation in
environments characterized by frequent dynamics. These methods do not require prior
information about dynamic targets but tend to simplify the initialization of dynamic object
poses using identity matrices or point cloud distributions. MOTSLAM [43] and VIMOT [44]
detected 3D bounding boxes of dynamic objects using deep learning algorithms, represent-
ing the initial poses of dynamically observed targets as 3D bounding boxes. It is important
to note that learning-based methods are limited in generation and challenging to adapt
to complex autonomous driving scenes [45]. VDO-SLAM [20] used global dense optical
flow to track dynamic feature points and performed the joint optimization of ego pose,
dynamic object pose, and spatial points in the back-end, achieving good results. However,
the entire system requires instance segmentation, global optical flow, and depth maps as
inputs, leading to a heavy computational load at the front-end.

Due to the constraints imposed by both the environment and their kinematics, vehi-
cles have limited freedom in their spatial movements. Therefore, these dynamic targets
require precise initial pose estimation. The incorrect initialization of poses can lead to
subsequent pose estimations that no longer conform to their kinematic constraints, in-
troducing additional errors. Additionally, due to the self-similarity of local features on
vehicles, directly using stereo disparity to derive their three-dimensional structure can
easily lead to mismatches, resulting in depth errors for sparse feature points. In response
to these challenges, this paper designs a tightly-coupled dynamic object tracking SLAM
system specifically for autonomous driving scenes. For the initialization of dynamic object
poses, the system extensively incorporates the vehicle’s kinematic constraints and the
environmental constraints acting on the vehicle, thereby reducing the uncertainty of the
dynamic objects’ poses. The system uses the coarse depth information provided by the
camera–road plane geometry to guide precise stereo matching, enabling the determination
of the 3D spatial positions of feature points on dynamic objects.

3. Preliminaries
3.1. Notation

Initially, the notations used throughout the paper are defined. (·)w stands for the
world frame, (·)c stands for the camera frame, and (·)D stands for the body frame of
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dynamic objects. The matrix representing the transformation from the world frame to the
kth camera frame is as follows:

Tck
w =

[
Rck

w tck
w

0T 1

]
∈ SE(3)

∣∣∣∣ Rck
w ∈ SO(3), tck

w ∈ R3, (1)

where Rck
w is a rotation matrix, tck

w is a translation vector, SE(3) is the group of 3D rigid
body transformations, including rotations and translations, and SO(3) is the group of 3D
rotations. By applying the transformation matrix Tck

w , 3D landmarks Pw are projected from
the world frame into the kth camera frame, as follows: Pck =

(
Tck

w P′w
)
[1:3] = Rck

w Pw + tck
w ,

where P′ denotes the homogeneous version of P. K is the intrinsic matrix of the camera;
the parameters of this intrinsic matrix need to be obtained in advance through calibration.
Local planes of the road are generally represented in the Hesse form (HF), with the plane
equation being π =

[
nT d

]T, where n is the unit vector, with ∥n∥ = 1; d denotes the
distance from the plane to the origin of the coordinate system. Since the HF uses four
parameters to represent a plane, which is overparameterized, the closest point (CP) [46] is
used to represent the plane during back-end optimization, as follows: Π = dn, where Π is
the road plane.

3.2. Pose Representations of Dynamic Objects and Features

In road scenes, dynamic objects are other moving vehicles, and their motion can be
represented by rigid body motion. In Figure 1, the red points represent static features,
i.e., background features, while the blue points denote features from dynamic objects,
i.e., foreground features. Cubes represent the same dynamic object in different camera
frames. The pose transformations of the camera and dynamic objects in the world frame
are indicated by solid lines, while the pose transformations between frames are represented
by dashed lines. l Dwi ∈ SE(3) represents the pose of the lth dynamic object in the world
coordinate in the ith frame. l Dwi+1

wi ∈ SE(3) represents the transformation of a dynamic
object from the camera frame ith to (i + 1)th in the world frame. Given the poses of the
dynamic object in camera frames ith and (i + 1)th, the pose transformation of the dynamic
object between consecutive frames can be expressed as follows:

l Dwi+1
wi =

(
l Dwi+1

)(
l Dwi

)−1
. (2)

Next is the transformation of dynamic feature points between frames. First, let l Mt
D ∈ R3

represent the spatial position of the tth dynamic point from the lth dynamic object in the
body frame of the dynamic object. The position of this dynamic feature point in the world
frame in the ith camera frames can be expressed as follows:

l Mt
wi

=
(

l Dwi

)−1(l Mt
Di

)
, (3)

where l Mt
wi

and l Mt
Di

represent the spatial positions of the tth dynamic point of the lth

dynamic object observed by the ith camera frame within the world frame and the object’s
body frame. By combining Equations (2) and (3), the following can be obtained:

l Mt
wi+1

=
(

l Dwi+1

)−1(l Mt
Di+1

)
=

(
l Dwi

)−1(l Dwi
wi+1

)(
l Mt

Di+1

)
.

(4)
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Since the dynamic object is a rigid body, the spatial position of the dynamic point in
its reference object coordinate system is fixed and can be expressed as follows:

l Mt
Di+1

=
(

l Dwi

)(
l Mt

wi

)
=

(
l Dwi+1

)(
l Mt

wi+1

)
.

(5)

By substituting Equation (5) into Equation (4), the following can be obtained:

l Mt
wi+1

=
(

l Dwi

)−1(l Dwi
wi+1

)(
l Dwi

)(
l Mt

wi

)
. (6)

Using Equation (6), the transformation relationship of dynamic feature points between
consecutive frames can be obtained. The three transformation matrices on the right side
of Equation (6) are defined as a single transformation matrix wi Dwi+1 . Equation (6) can be
expressed as follows:

l
wi

Mt
wi+j

=
(

l
wi

Dwi+j

)(
l Mt

wi

)
(7)

If the motion state of the dynamic object is taken as a state variable of the system, the
reprojection error of feature points on the dynamic object can be constructed to constrain
the ego vehicle pose estimation.
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Background Feature

Foreground Feature

Figure 1. The pose representation of a dynamic object. Cubes represent the same dynamic object
in different frames, solid lines are the pose transformations in the world frame, dashed lines are
transformations between camera frames, and dotted lines originating from the camera optical center.

4. Proposed System
4.1. System Overview

Figure 2 depicts the pipeline of the proposed system, which includes three core
components: the front-end, dynamic object management, and the back-end. The system
takes stereo images and instance segmentation from the images of the left camera, with
inputs consisting of instances of dynamic objects and road masks obtained from an instance
segmentation network [47]. At the first component, oriented FAST and rotated BRIEF
(ORB) feature extraction is performed, and the pose transformation between frames is
calculated based on the background features. In dynamic object management, the first
step is to perform a coarse-to-fine depth estimation of dynamic objects and the foreground
points on these objects to obtain their spatial information. Then, historical dynamic objects
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are associated with instances in the current frame. For associated dynamic objects, the
inter-frame tracking of foreground points is estimated using optical flow. If a new dynamic
object is detected, it is decided that the current frame is a keyframe. The accurate global
pose information of the vehicle can be initialized using the constraints between the road
and the vehicle, as well as the vehicle’s kinematic constraints. Local bundle adjustment
(BA) and global bundle adjustment form the backbone of the back-end. In the local BA, two
types of reprojection errors are designed for dynamic and static feature points, respectively.
Following previous works [48,49], the ground feature points are used to estimate the local
road plane, which will be used for initializing the pose of dynamic objects. Utilizing these
three constraints, a nonlinear optimization is constructed to simultaneously optimize the
spatial positions of feature points, the local road plane, the ego vehicle pose, and the
dynamic object poses. Global BA is executed when the system detects a loop closure,
globally optimizing the vehicle trajectories and the environment map in the system to
correct accumulated pose drift.

ORB Feature 

Extraction and Classification

Instance Segmentation

Tracking by Background Features

KeyFrame?KeyFrame?

Yes

Local Bundle Adjustment

Reprojection

Error for FF

Reprojection

Error for FF

Tightly-Coupled Nonlinear Optimization Tightly-Coupled Nonlinear Optimization 

Loop?Loop?
Yes

Loop Closure Correction

Stereo Feature 

Matching

Stereo Feature 

Matching

3D–2D Feature

Matching

3D–2D Feature

Matching

Camera Pose EstimationCamera Pose Estimation

Global Bundle 

Adjustment

Global Bundle 

Adjustment

Depth Estimation

Coarse Depth 

Estimation

Coarse Depth 

Estimation

Stereo 

Matching

Stereo 

Matching

Fine Depth 

Estimation

Fine Depth 

Estimation

Objects and Features

Tracking

Pose 

Initialization

Pose 

Initialization

Dynamic 

Object?

Dynamic 

Object?

Object Initialization

Foreground Features

No

Reprojection

Error for BF

Reprojection

Error for BF

Rigid 

Constraint

Rigid 

Constraint

Road 

Constraint

Road 

Constraint

Figure 2. The pipeline of the proposed system. The inputs are stereo images and instance segmenta-
tion from the left camera’s images with instances of dynamic objects and masks of road. The outputs
are the vehicle poses and the global map. The system consists of three parts, namely front-end,
dynamic object management, and back-end.

4.2. Front-End

The front-end follows the same process as feature-based visual SLAM [4], where the
input stereo images are processed in sequence through feature extraction, feature matching
between stereo images, feature matching between inter-frames, and pose estimation be-
tween inter-frames. Initially, image pyramids are constructed in both stereo images, with
each level divided into several 60 × 60 patches, and, in each patch, feature points and
descriptors are extracted using the ORB method [4], resulting in uniformly distributed
features. Then, based on the input left image instance segmentation, the extracted features
are classified into the following two categories according to the instance segmenting: back-
ground features and foreground features. It is important to note that, in the front-end,
only background features are used for self-vehicle pose estimation, while the extracted
foreground points are sent to the dynamic object management module for further process-
ing. These static points are then stereo matched to obtain their spatial information and
associated with feature points in the local map using 3D–2D correspondence. Based on the
matching results, the current frame’s pose is computed using perspective-n-point (PnP).
The PnP estimates the camera’s position and orientation by solving for the transformation
from known 3D points to their corresponding 2D image points.
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4.3. Dynamic Object Management

As shown in Figure 3, the dynamic object management module consists of the follow-
ing three submodules: depth estimation, object-level and feature-level tracking of dynamic
objects, and object initialization. First, the depth of dynamic objects is estimated using
stereo disparity. A coarse depth estimation method based on camera–road plane geometry
and a fine depth estimation method based on semi-global block matching (SGBM) [50] are
proposed. The coarse depth guides the SGBM stereo disparity search range, resulting in
more accurate depth estimation. Different tracking algorithms are designed for object-level
and feature-level tracking. The Hungarian algorithm [51] is used for object-level matching.
Object-level tracking guides feature-level tracking by using the result of optical flow to en-
sure the accuracy of feature-level tracking. For unassociated instances, the dynamic object
initialization module performs pose initialization and motion state determination for new
instances. The initial position information can be obtained from depth estimation. Using
constraints between the road and vehicle kinematic constraints, the vehicle’s accurate pose
can be initialized. Lastly, scene flow is used to determine the motion state of the instance;
only the pose of moving objects is estimated in the back-end, while stationary objects are
treated as static features to estimate the ego vehicle pose.

Coarse Depth 
Estimation using Road 

Plane Geometry

Stereo Matching 
using SGBM

Initial Depth

Fine Depth Estimation 

 3D Objects Tracking using 
Hungarian Algorithm 

Object Pose Estimation 
from Back-end 

 2D Features Tracking 
using Optical Flow 

Position Initialization 
from Depth Estimation 

Dynamic or Static?

Orientation Initialization 
using NHC and Road 

Plane Constraint  

Figure 3. The pipeline of dynamic object management module. The red points are the foreground
features and the green points are the background features in the upper left image.

4.3.1. Depth Estimation

For each dynamic object, in order to achieve stable inter-frame tracking, in addition
to the foreground features extracted in the front-end, ordinary pixels are selected at fixed
intervals in a 5 × 5 grid, following the method from VDO [20]. These pixel points, together
with the foreground feature points, will be used to track the inter-frame motion of dy-
namic objects, and are collectively referred to as dynamic feature points in the following
text. For these dynamic feature points, stereo disparity is used to estimate their depth
to recover their spatial position. Here, the SGBM algorithm is employed to calculate the
stereo disparity. This algorithm uses semi-global matching cost aggregation, which only
considers the matching cost of local blocks, achieving high computational efficiency and
matching accuracy.

The SGBM algorithm is sensitive to the initial values of the disparity search range, as
using different initial values can significantly impact depth computation. Figure 4 shows
the disparity result with different initial values. As the initial value of the disparity search
range increases, the disparity maps become more continuous and the disparity computation
improves. However, a larger initial disparity value also means reduced computational
efficiency, making the selection of an appropriate initial value crucial.

Due to the significant variation in the spatial positions of dynamic objects, the best ap-
proach is to determine a rough depth for each dynamic object and allocate an independent
initial value for the disparity search range for each one. Here, road plane geometry is used
to determine the initial depth of dynamic objects. As shown in Figure 5, with a camera
focal length f , a front vehicle model height H, a projection height h in the image plane, and
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a distance d from the front vehicle to the camera, the depth d of the front vehicle can be
approximately expressed as follows:

d =
fyH
h

, (8)

where fy is the focal length in the y direction of the camera measured in pixels. Based on
the depth value, the rough disparity can be calculated as follows:

disp =
fxhb
fy H

, (9)

where disp is the disparity of the dynamic object, fx is is the focal length in the x direction
of the camera measured in pixels, and b is the baseline of the stereo camera.

(a) Left Image (b) Right Image

(c) Search Range: 0–16 (d) Search Range: 0–32

(e) Search Range: 0–64 (f) Search Range: 0–128

Figure 4. The results of SGBM with different initial values of the disparity search range.

Image Planef d

H

Camera
h

Figure 5. Depth estimation using camera–road plane geometry.

The specific calculation process for selecting the initial value of the disparity search
range is shown in Algorithm 1. Lines 1–3 initialize the variables needed for the algorithm;
lines 4–17 iterate over the pixels of the input instance segmentation image, saving the
minimum and maximum row coordinates for each instance; lines 18–22 use Equation (9)
to calculate the rough disparity. Since the SGBM algorithm requires the disparity search
range to be a multiple of 16, it is converted to a multiple of 16 in line 21. After obtaining
the initial value of the disparity search range, the image needs to be sliced into patches
corresponding to each dynamic object, as shown in Figure 4. Then, the SGBM algorithm is
used to calculate the disparity map between the left and right image patches. According to
the disparity map, the accurate depth of the dynamic feature points is computed, which
allows the determination of their spatial positions.
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Algorithm 1: Calculation of stereo disparity search range
Input: Left instance segmentation img, prior height of vehicle h, camera baseline

b, camera focal length fx, fy.
Output: Stereo disparity search range disp.
// Initialize variables

1 num_object← 0 // Number of instances.
2 map← ∅ // A one-to-one associative container of key and value,

used to store pixel values and instance IDs.
3 boundary← ∅ // A 2D matrix with each row storing the minimum

and maximum row coordinates for each instance.
// Iterate through the columns and rows of img

4 for i = 1 : row do
5 for j = 1 : col do
6 if img[i][j] ̸= 0 then
7 if img[i][j] ̸= map.key then
8 num_object ++
9 map← (img[i][j], num_object)

10 boundary[num_object] = [i, i]
11 else
12 id← map(img[i][j])
13 boundary[id]← [min(i, boundary[id][1]), max(i, boundary[id][2])]
14 end
15 end
16 end
17 end

// Calculate the disparity search range based on the camera-road
plane geometry

18 for k = 1 : size(map) do
19 h_di f f ← boundary[k][2]− boundary[k][1]
20 disp_temp = ( fxh_di f f b)/

(
fy H

)
21 disp[k] = 16(disp_temp//16 + 1) // The symbol ′//′ denotes

integer division
22 end
23 return disp

4.3.2. Object and Feature Tracking

In the tracking module, both object-level and feature-level tracking are required.
Object-level tracking adopts the tracking-by-detection method from multi-object tracking [51],
matching instances in consecutive frames to establish correspondences, as shown in Figure 6.
First, the dynamic objects tracked in the ith frame are extrapolated to the (i + 1)th frame
using a constant velocity model. Then, instances in the (i + 1)th frame are searched within
a fixed-size validation gate centered on the predicted object. For each predicted object,
there are two possible situations. The first situation is that no instance falls within the gate,
indicating that the dynamic object is no longer in the camera’s field of view or has become
occluded. Using the constant velocity model, the system extrapolates the object’s position
for the next three frames, and if no instance is associated within three consecutive frames,
the object is removed from the tracked objects. The second situation is that at least one
instance falls within the validation gate. The distance from the object to all instances is
calculated. Once the association results for all targets are obtained, the Hungarian algorithm
is used to match each object with the most suitable instance, achieving a globally optimal
tracking result. Unassociated instances are sent to the subsequent object initialization
module for pose and motion state initialization.



Sensors 2024, 24, 4676 12 of 27

Tracking ID: l

Tracking ID: m

Tracking ID: n

Tracking ID: l

Tracking ID: m

Tracking ID: n

Instance ID: x

Instance ID: y

Instance ID: z

Dynamic Object  from ith  Camera 

Frame

Predicted Dynamic Object from 

ith to (i+1)th Camera Frame 

Detected Instance from (i+1)th 

Camera Frame

Constant Velocity Model

Validation Gate

Figure 6. Tracking-by-detection method for object-level tracking. Dynamic objects from the ith camera
frame, represented by green triangles, are predicted in the (i + 1)th camera frame as blue triangles,
using a constant velocity model. Association gates are then established around these predicted
dynamic objects, within which instances detected in the (i + 1)th camera frame are potentially
associated with the predicted dynamic objects.

After completing object-level tracking, feature-level tracking of the feature points
on the objects is required. Because of the movement of dynamic objects, the expansion
of the search area and significant viewpoints changes, making feature matching difficult.
By leveraging the object-level tracking results, feature-level tracking can be guided. The
images of consecutive frames are divided into patches according to the objects, and for
each dynamic object there is a pair of patches. For dynamic feature point tracking, the
optical flow method is applied. This local optical flow method reduces the computational
load compared to the global optical flow method and avoids some erroneous associations
caused by changes in lighting. As shown in Figure 7, the top figure is the tracking result
using the global optical flow on the entire image, and the bottom figure is the result using
the proposed method of optical flow tracking for each object. It can be seen that feature-
level tracking guided by object-level tracking effectively reduces the number of incorrect
associations and improves the accuracy of feature point tracking.

4.3.3. Object Initialization

Instances that are not successfully associated in the object tracking module are consid-
ered to be new dynamic objects, and their positions and poses need to be initialized. In
Figure 8, the blue points represent the dynamic feature points of the dynamic object, and
the centroid of the dynamic feature points is represented by the red point. Determining the
initial position is relatively simple; the centroid of all feature points in the dynamic object is
used as its initial position. Once the centroid of the dynamic object is determined during
initialization, the centroid position remains unchanged in subsequent tracking, meaning
that the origin of the reference object coordinate system does not change during the motion
of the dynamic object. This ensures that the positions of the feature points in the dynamic
object’s coordinate system remain fixed.
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(a) Optical flow tracking on entire image

(b) Optical flow tracking on each object

Figure 7. Feature-level tracking by optical flow. Incorrect tracking is marked in red boxes.
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Figure 8. The initial position and orientation of dynamic objects. The blue points are the features
in dynamic objects. The cubes represent the positions of the vehicle in consecutive frames, with the
vehicle moving closely along the local road plane.

Since the pose of the dynamic object cannot be directly obtained during initialization,
some methods [16,18] directly initialize the pose as an identity matrix. Such a simple
initialization method will result in the dynamic object’s motion not satisfying the kinematic
constraints of the vehicle during subsequent tracking, i.e., the vehicle’s lateral and vertical
velocities are both zero, introducing inevitable errors in the motion estimation of the
dynamic object. To address this issue, it is necessary to determine the directions of the
three coordinate axes centered at the centroid. For the direction of the z axis, refer to the
constraints between the vehicle and the road plane, as mentioned in [48,49]. Since the
dynamic object moves along the road plane, the normal n of the road plane remains parallel
to the z-axis direction of the vehicle. For the direction of the x axis, it can be obtained
by calculating the translation vector twi+1

wi between consecutive frames. Addressing the
challenge of tracking initial objects without motion information, a zero-velocity model is
employed, initializing the speed of the dynamic object to zero and temporarily ignoring its
orientation. During associations between consecutive frames, a relatively large association
gate is designed. This allows correct instances in the current frame to fall into the association
gate of the zero-velocity dynamic object initialized in the previous frame. The robustness
of the Hungarian algorithm is relied upon for correct association. In cases of fast-moving
dynamic objects or those with large angular velocities, it is acceptable for the dynamic object
to be incorrectly associated. In such cases, the instance in the current frame is initialized
as a zero-velocity dynamic object and participates in the association of instances in the
next frame. Once the zero-velocity dynamic object is associated with an instance, it can be
initialized according to the following method. Due to the non-holonomic constraints of the
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vehicle, meaning the vehicle has only lateral velocity, the x axis direction should remain
parallel to the translation vector. vy and vz are unit vectors parallel to the y axis and z axis,
respectively. vy and vz can be expressed as follows: vx =

t
wi+1
wi∥∥∥t
wi+1
wi

∥∥∥
vz = n

. (10)

It is important to note that the obtained z axis and x axis may not be perpendicular.
Therefore, the z-axis direction needs to be adjusted slightly to ensure it remains perpendicu-
lar to the x axis. The adjustment of the z-axis direction consists of two steps. First, calculate
the projection of vector vz onto vector vx, as shown below:

projvy
(vz) =

vxvz

∥vx∥2 vx, (11)

where projvy
(vz) is the projection vector of vz onto vx. Then, the orthogonalized vector is

calculated as follows:

ṽz =
vz − projvx

(vz)∥∥∥vz − projvx
(vz)

∥∥∥ , (12)

where ṽz represents the adjusted unit vector. According to the properties of the Cartesian
coordinate system, the y-axis direction of the dynamic object can be calculated using the
cross-product of vectors, as shown below:

vy = vx × vz, (13)

where vy is the y-axis direction of the object and × is the cross-product of the vectors. After
obtaining the directions of the three axes of the dynamic object, the initial pose RD ∈ SO(3)
of the dynamic object can be determined, as shown below:

RD =
[

vx vy ṽz
]
. (14)

The initial pose TD ∈ SE(3) of the dynamic object can be expressed as follows:

TD =

[
RD MD
0T 1

]
, (15)

where MD is the centroid of the dynamic object.
Directly treating all prior dynamic objects as dynamic objects not only increases

computational complexity but also affects the accuracy of self-vehicle pose estimation.
Therefore, accurately determining whether prior dynamic classes are in motion is crucial
for tracking dynamic objects. Scene flow is a method commonly employed to differentiate
between the states (dynamic or static) of objects in the scenes. The spatial position of
dynamic objects changes over time, and, if considered as a collection of spatial points, all
these points move in the same direction; therefore, it appears that the spatial points are
flowing through space, hence the term “scene flow”. In contrast, the spatial positions of
static objects do not change over time, so there is no scene flow for them. Therefore, scene
flow can help ascertain whether previously identified dynamic objects are actively moving.
The scene flow ∆M ∈ R3 of a dynamic object from the ith frame to the (i + 1)th frame can
be expressed as follows:

∆M =

∣∣∣∣∣ 1
m

m

∑
t=1

(
l Mt

wi+1
− l Mt

wi

)∣∣∣∣∣, (16)
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where m is the number of tracked feature points in the ith dynamic object. It is important
to note that, due to the errors of depth estimation, the scene flow of a stationary dynamic
object will not be exactly zero. Therefore, a threshold (set to 0.15 in this paper) is required
to determine whether an object is stationary or in motion.

4.4. Back-End

Upon detection of keyframes in the front-end, they are subsequently transmitted to
the back-end. Here, a process of local BA is executed to optimize all keyframes within the
sliding window. The size of the sliding window in the proposed system is not fixed; all
co-visible keyframes of the current keyframe are searched and added to the sliding window.
At the same time, a loop check is performed to assess if the current keyframe forms a loop
closure with previously stored keyframes in the map. If the conditions for loop closure are
met, a global BA is carried out to correct for loop closure.

4.4.1. Local Bundle Adjustment

In local bundle adjustment (LBA), optimization is required for the poses of keyframes
and dynamic objects, the positions of dynamic and static feature points, and the local road
plane. Figure 9 shows the various optimization variables and their corresponding four
types of constraints: the reprojection constraint from static feature points, the reprojection
constraint from dynamic feature points, the rigid body constraint between dynamic feature
points and dynamic objects, and the constraint between road feature points and the local
road plane. Constraints are established between the vehicle camera poses and feature
points, allowing for the adjustment of the camera poses and the spatial positions of the
feature points. This ensures that the rays reflected from each feature point converge at
the camera center after adjustment. This process optimizes the poses of multiple cameras
and the spatial coordinates of the landmarks. Since dynamic objects are in motion, these
moving feature points cannot directly establish constraints with the vehicle. If the motion
state of the dynamic object is known, the motion of the feature points on the dynamic object
can be compensated for, enabling these dynamic feature points to establish constraints with
the vehicle camera poses. This requires simultaneous optimization of the camera poses
and the motion states of the dynamic objects to achieve minimal reprojection error. The
error between the local road plane and road feature points does not constrain the camera
pose. The fitted plane from road points is primarily used for the initialization of dynamic
objects. The error functions are formulated as least squares and iteratively solved using the
Gauss–Newton method by the G2o solver [52], with the maximum number of iterations set
to 10. Based on the above constraints, the corresponding loss functions are established and
iteratively optimized. In local bundle adjustment, the objective is to minimize the following
loss function:

ELBA = ∑
i,j

∥∥∥ei,j
1

∥∥∥
Σ−1

1

+ ∑
i,l,t

∥∥∥ei,l,t
2

∥∥∥
Σ−1

2

+ ∑
i,l,t

∥∥∥ei,l,t
3

∥∥∥
Σ−1

3

+ ∑
k,j

∥∥∥ek,j
4

∥∥∥
Σ−1

4

, (17)

where e1 is the reprojection error from static feature points, e2 is the reprojection error from
dynamic feature points, e3 is the error constructed between dynamic feature points and
dynamic objects, and e4 is the error constructed between road points and the local road
plane. Σ−1

1 , Σ−1
2 , Σ−1

3 , and Σ−1
4 represent the information matrices corresponding to the

four types of errors.
e1 is the reprojection error from the static feature points. By constructing the reprojec-

tion error from 3D map points to image feature points in the keyframe, 3D spatial points
are projected onto the imaging plane of the keyframe. Adjustments are made to both the
pose of the keyframe and the positions of the map points to minimize the distance between
the projected position and the associated feature points. The error is represented as follows:

e
ij
1 = e

(
Tci

w, P′j
)
= uj −

1
sj

KTci
wPj

′, (18)
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where Tci
w is the pose of the ith keyframe, P′j is the homogeneous form of the jth map point, K

is the intrinsic matrix of the camera, uj represents the pixel coordinates of the feature point
associated with the map point Pj, and sj represents the depth of the map point Pj. Using
the pyramid level at which the feature point was extracted to represent the information
matrix of the reprojection error, the information matrix Σ−1

1 for the feature point extracted
at level n can be expressed as follows:

Σ−1
1 =

1
sn p

[
1 0
0 1

]
, (19)

where p is the standard deviation at level 0 of the image pyramid, and s is the scale of the
image pyramid.

. . . . . .

Static Point Feature

KeyFrame 

Point Feature from 

Dynamic Object (ID: X)  

Dynamic Object (ID: X) 

Local Road Plane Model

Static Reprojection Constraint

Dynamic Reprojection Constraint

Road Point–Road Plane  Constraint

Sliding Window

Rigid Constraint

Figure 9. Factor graph of the nonlinear optimization in local bundle adjustment.

e2 is the reprojection error from dynamic feature points. For feature points on dynamic
objects, the position of the dynamic object in space can be obtained by tracking its motion,
and this position can be reprojected into the image. The distance between the reprojected
position and the associated pixel is then calculated according to the optical flow estimation
results. Through adjustments to the pose of the keyframe and the position of the dynamic
feature points, the error is minimized. The error is shown as follows:

ei,l,t
2 = e

(
Tci

w, l Mt
wi

)
= lut

i −
1

lst
i
KTci

w · l Mt
wi

′
, (20)

where Tci
w is the pose of the ith keyframe, l Mt

wi

′
is the homogeneous form of the tth dynamic

feature point in the lth dynamic object, ut
i represents the pixel coordinates of the feature

point associated with the feature point l Mt
wi

′
, and lst

i represents the depth of the dynamic
feature point l Mt

wi
. Since the dynamic feature points are tracked using the optical flow

estimation results, the information matrix Σ−1
2 can be constructed using the photometric

error, as shown below:

Σ−1
2 =

1
1 + |p− q|

[
1 0
0 1

]
, (21)

where p and q are the pixel values of the matching pixel points in the two frames used for
optical flow.

e3 depicts the constraint error of the rigid body between the dynamic object and its
dynamic feature points. Since the dynamic object is assumed to be a rigid body, the positions
of the feature points on the same dynamic object are fixed in consecutive frames, which is
referred to as the rigid body constraint. The following loss function can be constructed based
on the rigid body constraint between the dynamic object and the dynamic feature points:

ei,l,t
3 = e

(
l Mt

wi
, l Mt

wi−1
, l

wi−1
Dwi

)
= l Mt

wi
− l

wi−1
Dwi ·

l Mt
wi−1

, (22)
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where l Mt
wi

and l Mt
wi−1

are the positions of the same feature point in two consecutive
frames and l

wi−1
Dwi is the motion of the dynamic object between two consecutive frames.

For depth calculated using stereo disparity, the depth estimation of the feature points is
inaccurate, leading to errors in their spatial information. Therefore, the information matrix
Σ−1

3 can be expressed as follows:

Σ−1
3 =

1
lst

i · σ

 1 0 0
0 1 0
0 0 1

, (23)

where lst
i is the depth of l Mt

wi
and σ is the standard deviation of depth estimation.

The Jacobian formulas of the error function e3, with respect to each optimization
variable, are shown below:

J
(

l Mt
wi

)
= −l

wi
Dwi+1 , (24)

J
(

l
wi

Dwi+1

)
= −

(
l Mt

wi

)T
⊗ I, (25)

where ⊗ is the Kronecker product.
e4 is the error between the local road plane and road feature points. For the local

road plane, instance segmentation can be used to obtain feature points on the road. These
feature points are then used to fit the local road plane. In the fitting process, the error is
represented by the distance from the road points to the plane, as follows:

ek,j
4 = e

(
Πk, Pj

)
= ∥Πk∥ −

ΠT
k Pj

∥Πk∥
, (26)

where Pj represents the feature points located on the road, Πk is the kth road plane rep-
resented in closest point form, and ΠT

k is the transpose of Πk. The smaller the distance
from the road points to the plane, the closer the road points are to the plane, and the better
the local plane fits the actual road surface. The error between the local road plane and
the road points mainly arises from the uncertainty in the spatial positions of the points.
The construction of its information matrix Σ−1

4 is similar to the reprojection error of static
feature points and can be expressed as follows:

Σ−1
4 =

1
(sn p)

 1 0 0
0 1 0
0 0 1

, (27)

where p is the standard deviation at level 0 of the image pyramid, s is the scale of the image
pyramid, and n is the number of levels in the pyramid.

The Jacobian formulas of the error function e4, with respect to ΠT
k and Pj, are shown below:

J
(

ΠT
k

)
=

ΠT
k

∥Πk∥
+

PT
j ΠkΠT

k

∥Πk∥3 −
PT

j

∥Πk∥
, (28)

J
(
Pj

)
= −

ΠT
k

∥Πk∥
, (29)

where ΠT
k is the kth road plane represented in closest point form, and Pj is the road

feature points.

4.4.2. Loop Correction

Loop correction and LBA are conducted concurrently in the back-end. When a new
keyframe is detected, the system employs a bag-of-words model, specifically DBoW2 [53],
akin to visual SLAM systems [4,5], to identify potential loops with historical keyframes
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in the map. If a loop is confirmed, a global bundle adjustment corrects accumulated drift
within the loop. Throughout global optimization, only the poses of keyframes and static
feature points are adjusted to refine the static map’s accuracy.

5. Experiments

The evaluation of DOT-SLAM included the publicly available KITTI-360 dataset [54],
as well as real-world datasets collected with actual vehicles. For comparison, the open-
source visual SLAM systems ORB-SLAM2 [4] and OV2-SLAM [6], the visual–IMU fusion
SLAM system ORB-SLAM3 [5], and the dynamic visual SLAM system DynaSLAM [18]
were also tested on these datasets to evaluate the performance of DOT-SLAM. As mentioned
before, DynaSLAM, a state-of-the-art system for removing dynamic objects in dynamic
SLAM, uses semantic and multi-view geometry to detect moving objects and effectively
filter out dynamic objects.The experimental setup utilized a computer equipped with an
Intel i7-11700 CPU (Intel, Santa Clara, CA, USA) operating at 3.6 GHz, 16 GB RAM, and an
NVIDIA RTX 3070 GPU (NVIDIA, Santa Clara, CA, USA) for implementing the proposed
system and comparison systems. It is worth emphasizing that both systems were run on
each sequence to reduce the impact of randomness in each system.

To evaluate the performance of the proposed system and the comparison systems, two
metrics were used: absolute trajectory error (ATE) [55] and relative pose error (RPE) [56].
The absolute trajectory error (ATE) evaluates the global consistency of the system by
comparing the root mean square error (RMSE) between the estimated trajectory and the
ground truth. RPE evaluates the local accuracy across every camera frame in this paper,
making it suitable for assessing system drift, including the relative translational error trel
and the relative rotational error rrel . Before evaluation, it is crucial to align the coordinate
systems of each system with the ground truth, and the Umeyama algorithm [57] was
utilized for this purpose.

5.1. KITTI-360 Dataset

The KITTI-360 dataset includes nine sequences that provide ground truth for vehi-
cle poses, with a total length of 73.7 km, including urban streets, residential areas, and
highways. This dataset has various sensor data, including a stereo color camera with a
resolution of 1408 × 376 pixels, operating at a frame rate of 10 Hz and with a baseline of
0.6 m. Additionally, the dataset includes data from a 64-line LiDAR and an OXTS3003
GPS/IMU unit, which provides global localization results. The fisheye cameras have a
180-degree field of view (FOV). In this experiment, calibrated stereo images and ground
truth data from the dataset were utilized. It’s important to note that the ground truth was
derived from OXTS measurements, laser scans, and multi-view images as inputs, through
large-scale optimization, making it more accurate and reliable. Another reason for using
this dataset is that KITTI-360 contains more scenes with dynamic objects, making it more
suitable for evaluating the proposed system. However, this dataset has a significant issue:
the provided ground truth is not completely continuous, and some images in the dataset do
not have corresponding ground truth poses available, so the dataset sequences were filtered
and segmented. Therefore, all sequences were processed to obtain segments with contin-
uous ground truth poses, with the starting and ending camera frames of each sequence
marked. Except for sequences 02 and 09, the other seven sequences contain dynamic scenes
with dynamic objects, thus referred to as dynamic sequences. All selected segments of
sequences do not contain loop closure scenes, so none of the algorithms detected loop
closures or executed global bundle adjustment.

Table 1 shows the evaluation results of the proposed system and four other methods.
In sequences 02 and 09, where the scenes are predominantly static with minimal dynamic
objects, the proposed system achieved results similar to ORB-SLAM2 and slightly better
than DynaSLAM. The static assumption-based ORB-SLAM2 and ORB-SLAM3 achieved
better localization accuracy in such scenes due to the absence of dynamic objects. In these
sequences, the proposed system performed similarly to ORB-SLAM2 and outperformed
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DynaSLAM. This is because, even though there were no dynamic vehicles, there were many
stationary vehicles along the roadsides. The proposed method utilized scene flow during
the dynamic object initialization phase to determine the motion status of vehicles and did
not perform continuous tracking of stationary vehicles. This approach led to results similar
to ORB-SLAM2. In contrast, DynaSLAM failed to fully utilize the features on stationary
vehicles, resulting in poorer localization results compared to ORB-SLAM2. Specifically
analyzing the results from KITTI-360 sequence 04, it was found that the proposed method
had relatively high rotational errors in the initial frames. Although the average relative ro-
tational error was small, the propagation of initial errors over time led to greater deviations
from the ground truth in the absolute trajectory. This error propagation is the contributing
factor to the observed discrepancy wherein the system exhibits minimal relative errors but
not the minimal absolute trajectory errors.

Table 1. Comparison of pose estimation in the KITTI-360 dataset [tate(m), trel(%), rrel(
◦/100 m)].

Seq. Start/Stop
Frame

DOT-SLAM Stereo
ORB-SLAM2

Stereo Inertial
ORB-SLAM3

Stereo
OV2SLAM DynaSLAM

tate trel rrel tate trel rrel tate trel rrel tate trel rrel tate trel rrel

00 9693/10,220 0.29 0.12 0.12 0.33 0.11 0.13 0.46 0.18 0.11 1.35 0.89 0.23 0.31 0.13 0.12

02 11,432/12,944 3.58 0.46 0.19 3.57 0.42 0.20 4.17 0.53 0.23 4.76 0.51 0.21 3.82 0.52 0.20

03 328/900 2.10 0.35 0.18 2.47 0.38 0.22 3.48 0.56 0.25 2.40 0.78 0.45 2.25 0.36 0.17

04 9975/10,220 1.13 0.33 0.12 1.21 0.37 0.15 1.23 0.45 0.15 5.59 0.85 0.20 1.11 0.35 0.14

05 4208/4588 0.42 0.32 0.20 0.58 0.31 0.35 0.72 0.42 0.35 1.45 1.07 0.36 0.48 0.32 0.25

06 8805/9537 2.49 0.52 0.23 2.60 0.57 0.19 2.84 0.59 0.18 5.39 0.67 0.63 2.61 0.53 0.18

07 3/1360 4.38 0.45 0.24 4.63 0.41 0.29 4.44 0.60 0.26 8.73 0.84 0.30 4.27 0.45 0.24

09 1847/4711 6.12 0.50 0.30 6.25 0.62 0.29 5.98 0.48 0.33 6.05 0.45 0.29 6.40 0.58 0.31

10 2611/3212 2.22 1.42 0.70 3.18 1.68 0.68 3.64 2.02 0.62 4.82 2.45 0.70 2.48 1.58 0.72

The best results in each sequence are highlighted in bold.

Overall, the proposed system outperforms the two stereo visual SLAM systems,
ORB-SLAM2 and OV2-SLAM, in most dynamic sequences. ORB-SLAM3 does not show sig-
nificant improvement in localization accuracy over ORB-SLAM2 due to the short sequences
and insufficient stimulation of the IMU. Consequently, the performance of ORB-SLAM3
is also inferior to the proposed system. When compared to DynaSLAM, the proposed
system outperforms DynaSLAM, except in sequence 07. In sequence 07, which has fewer
dynamic objects, DynaSLAM achieves the best localization results. In sequence 00, which
has fewer dynamic objects and can be considered a low-dynamic scene, DynaSLAM and
the proposed system exhibit similar performances. ORB-SLAM2 and ORB-SLAM3 also
extract stable static feature points from all feature points, achieving good localization
accuracy. In sequences 03 and 10, which have a higher number of moving objects, and
sequence 05, where dynamic objects occupy a large portion of the image, the proposed
system outperforms DynaSLAM in terms of both translational and rotational errors, which
aligns with the previous analysis. As shown in Figure 10, when dynamic objects occupy
a large portion of the image in sequence 05, removing these objects leads to poor feature
distribution. Particularly, when dynamic objects are close to the ego vehicle, the removal
of nearby features results in the loss of crucial points that leads to rising ambiguity when
estimating translation and rotation. By combining multi-object tracking with the SLAM
method, the proposed system utilizes a greater number of more evenly distributed feature
points, thereby achieving better pose accuracy.
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Figure 10. ORB features were detected in frame 4218 of KITTI-360 sequence 05. Features of dynamic
objects are marked in red, while other features are marked in green.

To more intuitively compare the alignment of the estimated trajectories of the proposed
method and the comparison methods with the ground truth, Figures 11 and 12 show the
estimated trajectories along with ground truth for KITTI-360 sequences 05 and 10. From
these images, it can be seen that the trajectory estimated by DOT-SLAM is closer to the
ground truth, which corresponds to the minimized ATE demonstrated by the proposed
system, as shown in Table 1. Figure 13a–c further show the comparison of DOT-SLAM and
the comparison methods with the ground truth in three directions on KITTI-360 sequence
10. It can be seen that the proposed system outperforms the other systems, with smaller
errors in the lateral and longitudinal directions, bringing it into closer alignment with the
ground truth. These two directions, in contrast to the vertical direction, are more affected
by dynamic objects. This is because, under the static background assumption, the motion
of vehicles moving in the same or opposite direction is transferred to the estimation of
poses of the ego vehicle.

Ground Truth

OV2-SLAM

ORB-SLAM2
ORB-SLAM3

DOT-SLAM
DynaSLAM

Figure 11. Estimated trajectories along with the ground truth for KITTI-360 sequence 05.
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Ground Truth

OV2-SLAM

ORB-SLAM2
ORB-SLAM3

DOT-SLAM
DynaSLAM

Figure 12. Estimated trajectories along with the ground truth for KITTI-360 sequence 10.

Ground Truth

OV2-SLAM

ORB-SLAM2

ORB-SLAM3

DOT-SLAM

DynaSLAM

Index of camera frames

(a) x direction

Index of camera frames

(b) y direction

Index of camera frames

(c) z direction
Figure 13. Estimated positions along with ground truth in three directions for KITTI-360 sequence 10.
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5.2. Real-World Experiments

A data collection vehicle, equipped with a stereo camera that had a baseline of 0.2 m
and a resolution of 1280 × 720 at 30 Hz, was used to gather real-world scene data. The
vehicle also featured an Xsens MTI-300 IMU operating at 200 Hz, a LiDAR with a 10 Hz
frequency, and a Bynav GNSS/IMU unit. All sensor data were recorded by a dedicated
data logger. Before conducting the experiment, the extrinsic parameters between sensors
and the intrinsic parameters of the stereo cameras were obtained through calibration. The
coordinate systems of the sensors are illustrated on the right side of Figure 14. In this
experiment, the sensor data used included images from the calibrated stereo color camera,
IMU data, and localization results from the Bynav GNSS/IMU unit. The localization
results, after time synchronization and coordinate transformation, were used as ground
truth to evaluate the systems. It is worth noting that, compared to the stereo camera used
in KITTI-360, the collection vehicle was outfitted with a stereo camera featuring a compact
0.2 m baseline, which is more representative of real vehicle configurations. The smaller
stereo disparity meant that the systems could only use feature points close to the vehicle.
Among the four sequences, sequences 01, 02, and 03 were collected on campus, with fewer
dynamic objects. Sequence 00 was collected on a straight road, with a higher number of
dynamic objects. Since the KITTI-360 dataset used before did not have a loop-closure scene,
a loop-closure sequence (sequence 01) was specifically collected, while the other three
sequences did not contain loop-closure scenes.

80 Beams LiDAR
10Hz 

Stereo Camera
30Hz 

GNSS Antenna 2

GNSS Antenna 1

MEMS IMU
200Hz

X

Y
X

Y

L

R

X
Y

I

GNSS/INS Navigation 
System 125Hz

Data Logger

Y

GT

Figure 14. The data collection vehicle and its equipped sensors. The sub-image shows coordinate
systems of different sensors: the red represents the LiDAR coordinate system, the green represents
the stereo camera coordinate system, and the blue represents the IMU coordinate system.

Table 2 displays the experimental results of DOT-SLAM and the comparison systems
on the real-world dataset collected in the campus and highway scenes. OV2-SLAM demon-
strated poor stability when detecting loop closure, while the other systems identified loop
closure in sequence 01 and applied correction accordingly, as shown in Figure 15. After
performing loop closure, DOT-SLAM and DynaSLAM achieved the best localization accu-
racy. This is because both systems used only static features for loop closure optimization,
excluding dynamic features, which also allowed for the construction of a globally consistent
static map. In sequences 02 and 03, which had fewer dynamic objects, the proposed system
achieved better results than DynaSLAM. One of the reasons for this may be that, compared
to the KITTI-360 dataset, the experiment used cameras that are more representative of those
equipped on real vehicles, with a relatively smaller baseline. The smaller baseline resulted
in larger depth errors from stereo matching, allowing only features closer to the vehicle to
be used to reduce the impact of feature point depth errors on pose estimation. If the features
on nearby dynamic objects were directly removed, it would significantly affect the number
and distribution of available feature points. The proposed system tracked dynamic objects
and utilized these dynamic feature points, resulting in better performance. In sequence
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03, the proposed system also had the minimum relative errors, but the absolute trajectory
error was higher than OV2-SLAM, which was similarly affected by error propagation, as
mentioned above.

Table 2. Comparison of pose estimation on real-world dataset [tate(m), trel(%), rrel(
◦/100 m)], with

loop closure.

Seq.
DOT-SLAM Stereo

ORB-SLAM2
Stereo

OV2-SLAM
Stereo Inertial
ORB-SLAM3 DynaSLAM

tate trel rrel tate trel rrel tate trel rrel tate trel rrel tate trel rrel

00 5.62 1.21 0.59 10.01 1.52 1.09 9.04 1.59 1.25 11.32 1.61 1.28 6.25 1.43 0.64
01 2.19 1.25 0.23 3.56 1.52 0.24 3.77 1.74 0.33 3.74 1.85 0.26 2.93 1.39 0.43
02 2.83 0.99 0.39 2.94 1.03 0.45 2.84 1.32 0.40 7.01 2.49 0.56 2.92 1.04 0.43
03 3.85 0.89 0.24 3.99 0.94 0.26 3.79 0.93 0.29 4.70 1.06 0.33 4.04 0.98 0.26

The best results in each sequence are highlighted in bold.

Ground Truth

OV2-SLAM

ORB-SLAM2
ORB-SLAM3

DOT-SLAM
DynaSLAM

Figure 15. Estimated trajectories along with the ground truth for real-world sequence 01.

Sequence 00 was collected on a straight road in front of the campus, with dynamic
objects traveling in the same and opposite directions. The motion trajectories of the dynamic
objects were also relatively clear, so the experimental results on this sequence were analyzed
more specifically. Figure 16 shows the comparison of the trajectories of each system with
the ground truth, and Figure 17a–c further illustrate the comparison of DOT-SLAM and
the other systems in three directions with the ground truth. It can be seen that the other
systems were significantly affected by dynamic objects except for the proposed system
and DynaSLAM. At the beginning of the trajectory, as shown in the bottom right image of
Figure 16, there was a moving bus in the opposite direction. The green points denote static
feature points, while the red points denote dynamic feature points. The performance of
the three SLAM systems relying on the static assumption was significantly impacted, and
their trajectories deviated noticeably from the ground truth, while the proposed system
maintained a more stable trajectory. This is because SLAM systems based on the static
assumption consider the moving bus as stationary, so the feature points on the bus are
treated as static feature points. In reality, these feature points moved in space, and the
SLAM system incorrectly estimated the self-vehicle’s motion based on these moving feature
points, resulting in erroneous pose estimation. In the latter part of the trajectory, the
three SLAM systems based on the static assumption were again affected by the vehicle
on the right front, causing noticeable changes in the lateral direction of the trajectory.
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Compared to DynaSLAM, which removes dynamic features, the proposed system had
smaller lateral errors and a scale closer to the ground truth. This is because the proposed
system used features on dynamic objects, making the distribution of feature points used
for pose estimation more uniform. Additionally, features closer to the vehicle significantly
help to improve the accuracy of both translation and rotation.

Ground Truth

OV2-SLAM

ORB-SLAM2
ORB-SLAM3

DOT-SLAM
DynaSLAM

Figure 16. Estimated trajectories along with the ground truth for real-world sequence 00.

Ground Truth

OV2-SLAM

ORB-SLAM2

ORB-SLAM3

DOT-SLAM

DynaSLAM

Index of camera frames

(a) x direction

Index of camera frames

(b) y direction

Index of camera frames

(c) z direction
Figure 17. Estimated positions along with ground truth in three directions for real-world sequence 00.
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6. Conclusions

This work introduces a stereo visual SLAM system with dynamic object tracking based
on graph optimization tailored for intelligent vehicles. The proposed system tightly coupled
dynamic object tracking with the visual SLAM system, performing joint optimization of the
ego vehicle pose, dynamic object poses, and feature points during BA, resulting in accurate
ego vehicle pose estimation and a static map. The system fully considered the kinematic and
environmental constraints of intelligent vehicles to initialize the poses of dynamic objects,
improving the accuracy of dynamic object pose initialization. For dynamic object depth
estimation, the system also utilized the geometric relationship between the camera and the
road plane to obtain the initial depth of dynamic objects, guiding a more refined dynamic
object depth estimation. Experiments using the KITTI-360 dataset demonstrated that the
DOT-SLAM system could fully utilize static and dynamic features in scenes, providing
more accurate vehicle trajectory estimation. Real-world data validation further proved the
effectiveness of the system. In summary, the DOT-SLAM system significantly improved
localization and mapping accuracy for autonomous vehicles in dynamic environments,
showing higher localization precision and reliability compared to current state-of-the-
art VSLAM and VISLAM systems. In future work, the proposed system will be tested
in more diverse scenes. Additionally, the tracking of non-rigid moving objects will be
further developed, and the accuracy of dynamic object tracking will be further optimized
and evaluated.
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