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Abstract: Advanced footwear technology featuring stack heights higher than 30 mm has been proven
to improve running economy in elite and recreational runners. While it is understood that the
physiological benefit is highly individual, the individual biomechanical response to different stack
heights remains unclear. Thirty-one runners performed running trials with three different shoe
conditions of 25 mm, 35 mm, and 45 mm stack height on an outdoor running course wearing a
STRYD sensor. The STRYD running variables for each participant were normalized to the 25 mm shoe
condition and used to cluster participants into three distinct groups. Each cluster showed unique
running patterns, with leg spring stiffness and vertical oscillation contributing most to the variance.
No significant differences were found between clusters in terms of body height, body weight, leg
length, and running speed. This study indicates that runners change running patterns individually
when running with footwear featuring different stack heights. Clustering these patterns can help
understand subgroups of runners and potentially support running shoe recommendations.

Keywords: running shoes; running biomechanics; wearable sensor; cluster analysis; principal
component analysis

1. Introduction

The introduction of advanced footwear technology (AFT) in 2017 started with the
Nike Vaporfly 4%, which has been proven to improve running economy in elite [1–3]
and recreational runners [4]. While there is no known comprehensive biomechanical
explanation for the improvements caused by shoes featuring AFT [5], several studies have
been looking into the different AFT characteristics independently.

The three major characteristics of AFT are a high stack height (>30 mm), a curved
rocker geometry of the midsole, and a stiff element embedded into the midsole [6]. The
stack height of shoes raised particular interest, as it was quickly regulated for official races
by the World Athletics in 2021 to not exceed 40 mm [7].

Increasing the shoe midsole thickness inherently increases the overall weight. In-
creased footwear weight leads to higher oxygen consumption and therefore lowers running
economy [8,9]. Other effects that can be created with higher midsoles could potentially
counteract the detrimental effect of a heavier shoe. An example could be the ‘teeter-totter-
effect’, where during the push-off phase the generated force in the forefoot creates a reaction
force at the heel in the upwards direction. This is possible through the midsole curvature in
the forefoot, acting as a fulcrum and therefore contributing to better running economy [10].
Barrons et al. 2023 [11] could not find an influence of stack height on running economy
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using weight-matched shoes with thermoplastic polyester elastomer (TPEE) midsoles rang-
ing from 35 to 50 mm in 5 mm increments. This was confirmed by Bertschy et al., 2023 [12],
who used shoes with two different foams with the lowest featuring a stack height of 30 mm
and the highest featuring a stack height of 60 mm. Although no significant difference was
found in running economy, it was stated that the more compliant and resilient foam could
decrease metabolic power.

As a biomechanical response, it has been shown that a higher stack height leads to
reduced loading rates, a longer ground contact time, a longer stride length, and a lower
cadence [13,14]. The transfer of these findings to AFT shoes is limited though, as stack
height was either not systematically controlled or the highest stack height was lower than
30 mm.

Recent studies have focused on understanding the unique responses of runners under
varying shoe conditions. The use of AFT compared to more conventional or racing flat
running shoes has been shown to improve running economy only for a limited number of
individuals. Furthermore, the magnitude of the benefit appears to be highly individual as
well. This was found to be true for runners from elite and recreational levels [15], while
metabolic savings of 4% or more can only be expected for around 25% of runners [16].

All of the studies have been conducted in a laboratory environment mainly performed
on treadmills, and, to the best of our knowledge, research has never focused on the indi-
vidual responses of runners other than metabolic costs when running in shoes featuring
different stack heights. The purpose of this study was to investigate individual biomechani-
cal running responses with the aim of finding distinctive clusters using a wearable sensor in
the field. It was hypothesized that runners would change running patterns differently when
running in shoes with varied midsole stack heights. Clustering these running patterns
would facilitate the distinction and comprehension of subgroups of runners.

2. Materials and Methods
2.1. Shoes

Three different experimental shoe conditions were specifically developed and man-
ufactured for this study. All shoes featured the same upper, outsole, and carbon plate
embedded into the midsole. While in each shoe condition the midsole foam (TPEE) was
identical, the stack heights in the three shoe conditions were 25 mm, 35 mm, and 45 mm
(see Figure 1). Shoes were produced in sizes UK 8.5 and UK 10.5 to increase the potential
participant pool.
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Figure 1. Shoe conditions displayed by stack height in ascending order, from left to right (25 mm,
35 mm, 45 mm).

2.2. Footwear and Mechanical Testing Shoes

The shoes were evaluated for rearfoot and forefoot cushioning, energy return, and
forefoot bending stiffness (see Table 1) using a servo-hydraulic testing machine (Instron®,
Norwood, MA, USA). Cushioning and energy return tests followed the same test method-
ology described by Dorschky et al. 2019 [17], with a maximal load of 2000 N for the UK 8.5
shoes and 2250 N for the UK 10.5 shoes for both forefoot and rearfoot testing. The stiffness
was calculated at 30–50% of the maximal load. The bending stiffness was captured through
a three-point bending test, with a maximum bending angle of 40 degrees.
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Table 1. Mechanical test results of all shoe conditions.

Size
(UK)

Stack Height
(mm)

Weight
(g)

Cushioning (N/mm)
Rearfoot/Forefoot

Energy Return
(Rel) (%)

Energy Return
(Abs) (J)

Bending Stiffness
(Nm/◦)

8.5 25.0 186.0 128/136 83.0 8.0 0.22
8.5 35.0 211.0 86/100 82.0 12.4 0.20
8.5 45.0 229.0 66/77 83.0 16.4 0.20

10.5 25.0 202.2 144/155 80.0 9.6 0.22
10.5 35.0 229.0 99/108 82.0 14.5 0.23
10.5 45.0 246.0 76/83 83.0 18.9 0.21

2.3. Human Participants

Thirty-one male subjects (31.13 ± 6.92 y, 181.34 ± 5.71 cm, 72.46 ± 5.95 kg,
51.58 ± 18.97 km/week) participated in this study. Inclusion criteria for participants
were having a shoe size that matched the footwear used in the study, a documented his-
tory of running 10 km in under 44 min (35.46 ± 2.89 min, n = 24) and/or 5 km in under
22 min (16.66 ± 1.67 min, n = 25), and no self-reported major musculoskeletal injuries of
the lower extremities in the past 6 months. Prior to testing, body height and leg lengths
were measured, and body weight was captured (seca 634, Seca GmbH & Co. KG, Hamburg,
Germany). All participants provided informed consent, and this study was approved by
the ethics committee of the Medical Faculty at the FAU Erlangen-Nürnberg, Germany
(Ref.-No.: 22-437-B).

2.4. Study Protocol

Subjects were instructed to complete an 8-min warm up in their own shoes following
their individual usual warm-up routine. After the 8-min warm-up period, each participant
also completed two 60 m strides for a final muscle activation. Upon completion of the warm
up, each participant was equipped with a GARMIN Forerunner 245 Music (Garmin Inc.,
Olathe, KS, USA) for starting and stopping data recording and a STRYD sensor (Stryd Inc.,
Boulder, CO, USA) model 26 with firmware version 2.1.30, which was attached to the right
shoe covering the three most distal lace crossings. The STRYD sensor is a commercially
available wearable device featuring an inertial measurement unit to inform runners about
specific running parameters of their runs. Testing took place in two different locations, both
featuring a flat running course with a concrete surface. Subjects ran a 1.2 km distance in
each experimental shoe condition featuring a randomized order. For each run, subjects
were instructed to set the individual effort to competing in a 10 km race, and subjects were
ordered to not check running speed during and after the trials. In between runs, subjects
had a 5-min break to recover and to switch shoes.

2.5. Data Analysis

The data output from the sensor consisted of eight different variables: cadence, speed,
flight time, ground contact time, stride length, leg spring stiffness, vertical oscillation, and
peak ground reaction force, with a temporal resolution of 1 Hz. To consider the individual
body weight and leg length of each participant, peak ground reaction force, leg spring
stiffness, vertical oscillation, flight time, and stride length were recalculated using the
methodology from Morin et al. 2005 [18]. For all further calculations, the first 500 m
and last 100 m of each run were cut off to eliminate the shoe adaptation phase and any
speed inconsistencies while approaching the finish line, leaving 600 m of running data for
further analysis.
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For each participant, the data collected from the sensor were averaged for the re-
maining 600 m and underwent normalization, calculating the percentage difference of the
35 mm shoe and the 45 mm shoe with respect to the 25 mm shoe. With the normalized
dataset, a principal component analysis (PCA) was performed with the goal of reducing
the number of dimensions. The number of dimensions for further analysis was determined
based on the criterion that more than 80% of the data variance could be explained by the
retained principal components. The principal component values were used as input for
clustering with Ward’s method [19], aiming to generate three clusters, which were chosen
after using the Silhouette and Elbow methods to determine the optimal number of clusters.
It was evaluated if the average running trial speed or the anthropometric data, which were
recorded from the participants, had a significant influence on the cluster classification using
a one-sided ANOVA. Normal distribution of the data was confirmed with a Shapiro–Wilk
test (α > 0.05), and the level of significance for the ANOVA was set to α = 0.05. Finally,
average values and standard deviations of the sensor outputs were calculated for each
cluster to describe their respective running response to the shoe conditions. Only the
parameter contributing most to the variance of the dataset and explaining more than 80%
of variance of both principal components was considered in the display of the results. The
complete overview of parameters can be found in Appendix A.

3. Results

Figure 2 shows the cumulative proportion of variance explained by the respective
number of dimensions. With two dimensions, the explanation of variation reached 85.6%
and therefore passed the set threshold of 80%. The following clustering was therefore
conducted using the principal component values of the two retained dimensions.
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The result of the clustering analysis with Ward’s method [19] is displayed in Figure 3.
The distribution of participants between clusters differs with cluster 0 containing 14 subjects,
cluster 1 including 4 subjects, and cluster 2 having 13 subjects. No significant differences
were observed between clusters in terms of body height, body weight, leg length, or average
trial running speed among the participants (see Table 2).
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Figure 3. Cluster analysis results based on two principal components (PC1 and PC2) using Ward’s
method [19].

Table 2. Mean ± standard deviation of anthropometrical characteristics and running speed
across clusters.

Cluster 0 Cluster 1 Cluster 2 F-Score p-Value

Body height (cm) 180.3 (±5.61) 182.5 (±5.07) 182.0 (±6.24) 0.40 0.674
Body weight (kg) 73.7 (±5.08) 74.3 (±4.79) 70.8 (±6.99) 0.96 0.396
Leg length (cm) 94.78 (±3.32) 95.5 (±3.42) 95.7 (±4.34) 0.19 0.832

Running speed (m/s) 4.7 (±0.57) 4.8 (±0.11) 4.9 (±0.30) 0.80 0.458

The average values and standard deviations of the recorded running parameters of
each cluster are displayed in Figure 4 in descending order of variance contribution. The
numeric values are listed in Table A1 in Appendix A. Cluster 0 showed a gradual increase
in leg spring stiffness and a decrease in both vertical oscillation and ground contact time
when running in shoes with increasing stack heights. The flight times were longer and
the peak ground reaction force was higher for the participants in this cluster. Cluster 1
gradually decreased in leg spring stiffness but increasd in vertical oscillation and ground
contact time using the shoes with 35 mm and 45 mm stack heights. In this group, the flight
times and peak ground reaction forces were both reduced with higher stack heights. The
leg spring stiffness of Cluster 2 decreased using the 35 mm shoe but increased 1.4% in the
45 mm shoe compared to the 35 mm shoe. The vertical oscillation and ground contact time
both increased for cluster 2 and had their peak with the 35 mm shoe. Furthermore, the
flight time was reduced with the 35 mm shoe but showed an increase with the 45 mm shoe.
The peak ground reaction forces were reduced in both shoe conditions with a higher stack
height by less than 1%.
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4. Discussion

The results of this study show that runners respond differently when running in shoes
featuring varied stack heights. Clustering methods based on sensor outputs were used to
create distinct groups showing different response patterns, which confirmed the hypothesis
of this study. While subjects in cluster 2 showed only small changes in the recorded running
parameter, cluster 0 and cluster 1 had a contrary pattern. The difference in responses aligns
with the findings that runners show individual benefits using AFT [15,16].

Interpreting the response patterns of the three clusters in this study, cluster 2 could
be seen as “non-responders”, as runners in this cluster showed minimal changes in the
recorded parameters when running in the different shoes. Running with less vertical
oscillation and higher leg spring stiffness is associated with better running economy [20].
This could potentially define runners in cluster 0 as positive (more economical) and run-
ners in cluster 1 as negative (less economical) responders to increased stack heights. The
considerably bigger size of the cluster with potential positive responders could explain the
effect that running with AFT shoes on average significantly benefits running economy [1–4].
While this would need to be verified with oxygen consumption measurements, these find-
ings could potentially help to recommend to runners the most economical shoe condition
using running parameters from wearable sensors.
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In this study, no significant influence was found on the classification of runners
through running speed or simple anthropometrical data like body height, body weight, and
leg length. Further research should investigate the reasons why runners react differently
to shoes featuring different stack heights. Increasing participant numbers could enable
further machine learning methods trying to predict cluster classification.

The shoes that have been used in this study have not been weight-matched because
it represents the realistic weight increase when using higher stack heights, as no oxygen
consumption measurement has been performed. Additionally, the resulting maximum
weight difference of 44 g should have had limited effects on the running performance
and response [8,9]. The increase in stack height also directly influences the cushioning
and energy return properties of running shoes. Using the same foam at higher stack
heights consequently decreases cushioning stiffness and increases absolute energy return.
Therefore, the running responses cannot be solely isolated for the stack height, which
is a limitation in interpreting these results. In the future, foams could be specifically
engineered for the different shoe versions to better isolate the differences to one specific
shoe parameter. The bending stiffness in between the shoes was very similar, despite
their having substantially different stack heights. This shows that the carbon plate as the
stiffening element is the dominant feature contributing to the bending stiffness and secures
bending stiffness comparability in between shoes when using different foam geometries.

The runners in this study were instructed to run at a self-selected speed that reflected
their subjective effort in a 10 km race, without the possibility of checking their pace. This
could have led to speed differences between the individual runs with effects on speed-
dependent variables like stride length. Having speed-controlled runs, on the other hand,
would have taken away the option to vary the running speed of the runner based on their
subjective effort. In this study, it was decided to take an effort-based approach, allowing
potential speed changes using the different shoes and taking it into consideration as a
parameter in the analysis. As speed differences between the shoe conditions and therefore
contributions to the data variance were minimal, ranging on average between −2.3% and
+1.9% (Appendix A, Table A1), it was not considered in the display of results.

To the best of our knowledge, this is the first study that investigated shoe properties
and clustering running pattern responses in the field with a commercially available sensor.
The reliability of the STRYD sensor has been proven accurate for ground contact time, leg
spring stiffness, flight time, stride length, and cadence [21,22], but it is yet to be validated
for vertical oscillation and peak ground reaction force. Having the possibility to use the
individual’s leg length could give a more individualized approach in the results for the
end user and would be recommended as an option in further software development of
wearable sensors.

Using a wearable sensor to collect measurements in the field provides researchers with
the possibility of creating large data sets for limited costs in a natural environment. Still,
limitations like reduced parameter availability and accuracy need to be considered when
designing studies “in the wild” to generate meaningful insights [23].

This study could provide the blueprint for runners to evaluate their running response
to different footwear models themselves. Running with different footwear models using
the same running course and subjective effort, the comparison of vertical oscillation and leg
spring stiffness between runs could potentially support the choice of footwear providing
better running economy.

Author Contributions: Conceptualization, J.K.; methodology, J.K., S.H., M.G. and C.H.; software,
J.K. and S.H.; validation, J.K., S.H. and M.G.; formal analysis, J.K. and S.H.; investigation, J.K., S.H.
and M.U.; resources, J.K. and C.H.; data curation, J.K., S.H., M.U. and C.H.; writing—original draft
preparation, J.K.; writing—review and editing, J.K, S.H., M.G., M.U., C.H., E.D. and B.E.; visualization,
J.K. and S.H.; supervision, E.D. and B.E.; project administration, J.K. All authors have read and agreed
to the published version of the manuscript.

Funding: This research received no external funding.



Sensors 2024, 24, 4694 9 of 10

Institutional Review Board Statement: This study was conducted in accordance with the Declaration
of Helsinki and approved by the ethics committee of the Medical Faculty at the FAU Erlangen-
Nürnberg, Germany (Ref. No.: 22-437-B).

Informed Consent Statement: Informed consent was obtained from all subjects involved in this study.

Data Availability Statement: Data are available upon request.

Conflicts of Interest: Authors Martin Ullrich and Christian Heyde were employed by the company
adidas AG. The remaining authors declare that the research was conducted in the absence of any
commercial or financial relationships that could be construed as a potential conflict of interest.

Appendix A

Table A1. Mean and standard deviation (std) of all running parameters in % difference to the 25 mm
shoe, separated by clusters.

Cluster 0 Cluster 1 Cluster 2

Mean std Mean std Mean std

Leg Spring Stiffness Shoe 35 mm 1.8 2.85 −8.7 3.26 −3.3 1.63
Shoe 45 mm 5.0 5.26 −14.1 3.36 −1.9 2.91

Vertical Oscillation
Shoe 35 mm −0.9 1.72 5.9 2.74 2.6 1.90
Shoe 45 mm −2.6 3.41 9.7 3.50 1.7 1.46

Ground Contact Time
Shoe 35 mm −0.8 1.19 4.2 1.69 1.6 0.86
Shoe 45 mm −2.0 2.21 7.0 2.06 −0.2 1.23

Flight Time Shoe 35 mm 1.0 1.77 −3.6 2.91 −0.2 1.93
Shoe 45 mm 2.5 3.17 −6.8 2.24 0.5 2.59

Peak Ground Reaction Forces
Shoe 35 mm 0.9 1.27 −3.5 1.85 −0.8 0.76
Shoe 45 mm 2.2 2.11 −6.0 1.50 −0.2 1.69

Speed Shoe 35 mm 0.6 1.23 −1.5 4.00 −1.0 1.88
Shoe 45 mm 1.9 3.48 −2.3 4.15 −0.1 1.60

Stride Length Shoe 35 mm 0.7 1.18 −1.0 2.88 −0.3 1.32
Shoe 45 mm 2.0 2.83 −1.7 3.49 0.6 1.63

Cadence
Shoe 35 mm −0.1 0.72 −0.5 1.48 −0.8 1.18
Shoe 45 mm −0.1 1.43 −0.6 1.26 −0.7 0.74
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