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Abstract: Acoustic cameras (ACs) have become very popular in the last decade as an increasing
number of applications in environmental acoustics are observed, which are mainly used to display
the points of greatest noise emission of one or more sound sources. The results obtained are not
yet certifiable because the beamforming algorithms or hardware behave differently under different
measurement conditions, but at present, not enough studies have been dedicated to clarify the issues.
The present study aims to provide a methodology to extract analytical features from sound maps
obtained with ACs, which are generally only visual information. Based on the inputs obtained
through a specific measurement campaign carried out with an AC and a known sound source in
free field conditions, the present work elaborated a methodology for gathering the coordinates
of the maximum emission point on screen, its distance from the real position of the source and
the uncertainty associated with this position. The results obtained with the proposed method can
be compared, thus acting as a basis for future comparison studies among calculations made with
different beamforming algorithms or data gathered with different ACs in all real case scenarios. The
method can be applicable to any other sector interested in gathering data from intensity maps not
related to sound.

Keywords: acoustic camera; beamforming algorithms; sound signals; microphone array; source
localization; sound maps; environmental noise; noise measurements

1. Introduction

The rapid development of computationally efficient and technological improvements
has led to the current status of acoustic cameras (ACs) as the state-of-the-art microphone
array evolution. These devices comprise numerous microphones that work in unison to
capture sound signals simultaneously along with a video camera and a computational unit
that analyzes the arrival angle of the waves. This final operation is carried out through the
use of algorithms based on beamforming techniques. New instruments can now rapidly
process large quantities of data, enabling real-time applications of beamforming to the
acquired signal. The combination of a video camera and a microphone array allows the
beamforming to visualize the origin of a sound in a video acquisition or static frame [1–4].

In recent years, ACs have been used for investigating the sound emissions of different
sources: trains [5,6], cars [6,7], aircrafts [8] and helicopters [3,9–11], Unmanned Aerial
Vehicles (UAVs) [12,13] , wind turbines [14,15], ports and ships [16,17]. Other applications
are in the automotive sector [18,19] or inside yachts [20] to identify sound leakages and
then improve the acoustic comfort.
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The increase in applications and the consequent commercialization of ACs has led
to the development of different models and brands. However, all ACs create a sound
map with the acquired signals according to the incident angle and overlap it with an
image simultaneously taken with the video camera. The detection of a source emerging
over the background implies a main lobe in the sound map due to the direct sound wave
from the source. In the presence of more or less reflective surfaces along the propagation,
sound waves other than the direct one are generated due to reflections and diffraction. The
detection of those waves can lead to the generation of secondary lobes on the sound maps,
corresponding to fake sources (also known as ghost sources). These artifacts increase the
complexity of the estimation of the direction of arrival of the signals. After the first Delay
and Sum (DAS) [21,22], different researchers or manufacturers have then investigated
and elaborated increasingly sophisticated algorithms in order to distinguish real and fake
sources. Commercial development has then led several manufacturers or research groups to
work independently and produce proprietary and closed algorithms [23]. Technicians who
use ACs for field measurements at present must face technical difficulties such choosing
which algorithm to apply independently in different scenarios. This is a crucial step to
ensure the highest reliability and optimize AC applications, as applying different algorithms
to the same AC acquisition can result in varying source locations [16]. To date, there have
been few comparisons between algorithms in the literature with the majority of studies
conducted under test conditions. This leaves room for further research.

A method allowing the verification of the effectiveness of source localization would
therefore be necessary. In the literature, few works investigated a performance evaluation
procedure for ACs and different beamforming algorithms [24] or evaluate through Monte
Carlo simulations [25,26], while others focused on performance evaluation on specific
experimental setups [27,28]. However, all the studies were based on the availability of raw
data from the AC, which are only few times available due to the manufacturers’ choice.

In fact, to the authors’ knowledge, most ACs have different proprietary software for
the analysis of acquired signals. Most of the time, the outputs are not the 2D matrix of
sound pressure data but rather only the sound maps as images. The absence of values
represents a difficulty for those who wish to carry out comparisons and analysis of an
analytical kind.

The present study seeks a solution to this limitation by providing a methodology for
extracting features from sound maps, thus passing from a simple visualization of images to
numerical values that can be analyzed or used for comparisons. The objective is reached
starting from measurements carried out on a test site with an omnidirectional white source,
where the origin of the sound signals is then known. The features extraction algorithm,
applied to any AC’s sound map, returns the difference between the location of the posi-
tioned measurement point on the image plane and the true position of the source as well as
the associated uncertainty. Other visual parameters are also developed in order to better
support the evaluation of beamforming algorithms not originating symmetrical maps.
The authors expect the work to have great utility because, in addition to defining specific
parameters for evaluating efficiency, a method is proposed for extracting analytical infor-
mation from sound maps obtained with any AC, especially for those that do not provide
numerical results. The proposed features extraction algorithm would then be applicable
independently from the hardware product and, in most cases, would spare computational
time and facilitate sharing/transfer of data. Moreover, it would allow correlating and
comparing data from different origins, thus acting as a basis for the subsequent evaluation
of the effectiveness of different algorithms or ACs in various conditions.

The rest of the paper is organized as follows: in Section 2, Materials and Methods, the
experimental setup is described; in Section 3, the developed feature extraction algorithm is
described in detail; in Section 4, the effects of the tunable parameters on the results of the
procedure are discussed. Conclusions are finally reported in Section 5.
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2. Materials and Methods

The present paragraph describes the experimental set-up, the instrumentation speci-
fications and a summary of the proposed features extraction algorithm with a particular
focus on its inputs. Measurements were carried out with the acoustic camera available at
the Physics Department of the University of Pisa. The useful AC specs are outlined below:

• Diameter of the array: 170 cm in Fibonacci spiral;
• Number of MEMS microphones: 112;
• Resolution: 24-bit;
• Sampling rate: 48 kHz;
• Frequencies range of acquisition: from 10 Hz to 24 kHz;
• Camera aperture angle: 55.2◦.

According to the manufacturer’s specifications, beamforming should be reliable above
150 Hz. To be on the safe side, no calculations were made below 250 Hz. The measurements
were performed in a field with a flat, grass-covered ground to reproduce a real case scenario
without reflection from surfaces except from the ground. Throughout the duration of the
recordings, the periods in which external sources were perceptible were avoided in order
to reduce artifacts. A dodecahedron loudspeaker was used to diffuse white noise in the
20 Hz–20 kHz frequency range and fixed intensity. The AC remained in a fixed position
throughout the experiment while the source was moved. Recordings were taken with
the source moved at different distances and positions, including four distances and six
positions for a total of twenty-four combinations. The distances were 15, 30, 45, and 60 m,
respectively; left, center and right measurements were taken for each distance with the
source first on the ground and then 1.2 m above it. These arrangements generated various
angles of incidence for the sound rays going from the source to the AC. By measuring at
those angles of incidence, the performance of the AC in identification and representing the
source can be investigated and evaluated.

These measurements had the sole purpose of providing AC images to be elaborated
with the developed analysis method. The signals acquired with AC were then processed
using the native software provided by the manufacturer.

The software’s output are black-and-white images of the scene with the sound map
superimposed. The values are drawn following a chromatic scale depending on the
dynamic range selected by the operator. For the purpose of the present work, the images
were processed with each image taking an average of six seconds over the twenty-second
acquisition, with a dynamic range of 6 dB; i.e, the color scale started from the highest
measured level down to minus 6 dB from the maximum measured level (Lmax). Images as
shown in Figure 1 are used as input images for the features extraction algorithm.

The features extraction algorithm is based on the following steps:

1. Correlation between level scale (dB) and colors in hue saturation and value (HSV).
2. Conversion to HSV and initial filtering.
3. Artifacts removal.
4. Data extraction.
5. Data definition and representation.

The following outputs of this process list the parameters defined to characterize the
sound map and that would be used to evaluate beamforming algorithms and
AC performances:

• r: distance modulus between the expected and the measured centers of the source,
measured in pixels (px).

• σr: dispersion of the sound map, measured in pixels (px).
• A−1dB: surface of sound map from Lmax to Lmax – 1 dB.
• OVL−1dB: percentage of overlapping between the real source and the A−1dB mask.
• SC−1dB: surface comparison between the real source dimension and A−1dB

in percentage.
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Figure 1. Example of output image from an acoustic camera software, which was used as input to the
procedure. By convention, the software assigned 0 dB to the maximum level (red); thus, negative
values are assigned to the others.

3. Features Extraction Algorithm

The present section describes the features extraction algorithm, whose inputs are the
image with a superimposed sound map processed by the native software of AC. The output
can be used to evaluate the real distance between the source localized on screen and the
real position of the source together with its uncertainty. A flow chart of the algorithm is
depicted in Figure 2.

Cropping

RGB to HSV

H-L correlation

Saturation mask

H from [0, 360] 
to [1, 0] Artifact removal Gaussian Fit x,y

Feature 
extraction

Original Image

Figure 2. Flow chart of the feature extraction algorithm.
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3.1. dB–HSV Correlation

The procedure starts by using a dB–hue correlation scale. In the input images, the
color “red” indicates the highest level measured. As the level goes down, the colors also
move down on the color scale according to the dynamic range set by the user. An example
is reported in Figure 3, where the dynamic range is set to 80 dB, which implies that the
color scale ranges from Lmax to Lmax-80 dB. The color scale used by the software may not
be common to all the available AC software in the market. By the identification of the
parameters connected to the sound level (L), the proposed approach can be applied to the
vast majority of the used color pattern. In fact, the presented methodology is applicable to
any color scale based on a bijective relation between the measured sound level and one of
the variables of the color space (HSV, RGB, etc). For example, in the case of a grayscale,
there will be a bijective relationship between value and sound pressure.

Figure 3, where the dynamic range is set to 80 dB, implies that the color scale ranges
from Lmax to Lmax-80 dB.

Figure 3. Example of dB–hue scale (top) and detail of the color range (bottom).

The analyzed color scale is connected to the hue (H) parameter that is used in the
HSL (hue, saturation, lightness) and HSV (hue, saturation, value) color representations.
As reported in Figure 4, HSV represents colors in a cylindrical system of coordinates
where saturation (S) represents the radius, volume (V) represents the z coordinate and H
represents the angle associated with the color. H varies from 0° for red, through green at
120° and blue at 240°, and then back to red at 360°.

Figure 4. HSL and HSV color space [29].

Digital images are conventionally coded in the red–green–blue (RGB) color system.
If the chromatic scale is somehow connected to the H value, as in the present work, it is
convenient to convert the images from RGB to HSV. The bottom part of Figure 3 reports
the details of the color range input of the present work, which are used to verify the link
between L and H and make the calibration in order to have a linear correlation as explained
in the following.
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In this way, as can be seen in Figure 1, where the sound map is present, i.e., the S is
nonzero (0 < S ≤ 1), the H channel would somehow represent the sound level calculated
by the beamforming algorithm. The remaining part of the image is characterized by a zero
value of S but by the same H as the red color, i.e., H = 0°. A discontinuity in the H value at
the border of the sound map occurs, as reported in Figure 5. In the present case, the −6 dB
color is purple, corresponding to H = 295° and equal to the discontinuity at the border.

0 200 400 600 800 1000
Position (px)

0

0.2

0.4

0.6

0.8

1
H

ue

Figure 5. Discontinuity in H. Trend of the H value along the x direction in the correspondence of the
center of sound map.

The discontinuity in H visible in Figure 5 is due to the transition from a colored
area (the sound map) to a black and white area. In the latter, H is not well defined, and
an arbitrary value of H = 1 is assigned to it in the RGB to HSV conversion process.
The saturation filter described in Section 3.2 was implemented in order to handle this
discontinuity. The strategy used to correctly extrapolate the sound level (L) from the sound
map is to evaluate the transfer function F between H and L, as defined in Equation (1). In
the discussion section, a different approach is tested and compared to the chosen one.

H = F(L) (1)

The result of the evaluation of F(L) is shown in Figure 5. The reported H is scaled to
the interval between 0 and 1 in order to have a more intuitive representation. Then, it is
inverted to let the maximum of L correspond to the maximum of H.

Figure 5 highlights how F(L) is not linear but has a knee around i = 0.2. An inverse
relation is then needed to determine the level from the hue value H. In fact, performing
a linear regression between the two quantities and inverting the relation would not be
sufficient to retrieve the relation. The proper inverse transfer function G(H) is more
conveniently derived directly from the data. The trend of L based on the value of H derived
from the image in Figure 3 is reported in yellow in Figure 6. In blue and in orange are also
reported the two linear models calculated at each side of the knee (g1(H) and g2(H)). The
G(H) is then a piecewise-defined function according to Equation (2).

G(H) =

{
g1(H) f or H < Hknee
g2(H) f or H ≥ Hknee

(2)

where Hknee is the H value corresponding with the knee and g1(H) and g2(H) are the two
models estimated before and after the knee. The obtained G(H) is general and has validity
for all the images produced with the same AC software and the same color scale regardless
of the dynamic range selected. Thus, it has been used to convert the H value from maps to
the level value for all the analyzed images.
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Figure 6. G(H), inverse transfer function between H and L, in yellow; in blue and orange, the two
models g1(H) and g2(H).

As the H interval covered by the provided color scale in Figure 3 (0.25–0.99) is smaller
than the typical H interval found in the output images like the one in Figure 1 (0.23–1.00),
the obtained calibration curve G(H) refers to a limited level scale that, if applied to the data
extracted from the original image, would produce level values bigger than 0 and lower
than −6 dB. This first attempt to correlate H and L needs a further step where the G(H) is
scaled for a correct reproduction of the required level interval.

3.2. Conversion to HSV and Initial Filtering

Some preliminary operations for the image are needed before executing the extraction
process. The original image from Figure 1 is firstly cropped to carve out the user interface
which can interfere with the process. The resulting cropped image is a matrix y by x, where
x is the width and y is the height, with dimensions of 1000 × 575 px. Then, a first filtering
stage consists of implementing a saturation mask that selects the pixels with a nonzero
value of S, as reported in Figure 7. This stage allows excluding the black-and white part of
the image and avoiding the discontinuity in H reported in Figure 5. After this step, H is
transposed to the 0–1 interval. The S channel filter is then used to set the black-and-white
area of the image to “Not a Number” value to exclude them from the fit.

Figure 7. Saturation mask in which the zero S pixels are represented in black.

3.3. Artifacts Removal

Due to the manipulation described in the previous subsection, spurious pixels can
emerge at the border of the sound map, as shown in Figure 8a. Those are likely due to the
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original compression of the image that generates H oscillations at the border of the colored
area. A blurring function (B) is applied in order to clean up those artifacts and obtain a
clear image as in Figure 8b, according to the implemented code that follows:

%% A r t i f a c t s r emova l
B = 1 ;
h = ones ( 2 * B+1 ,2*B + 1 ) ; % f i l t e r ma t r ix
weight = sum(sum( h ) ) ; % c o e f f i c i e n t we ig h t
h = h/weight ; % w e i g h t e n i n g o f c o e f f i c i e n t f i l t e r
for i = 1 : length ( d a t i )

d a t i ( i ) . Clean_image = i m f i l t e r ( d a t i ( i ) . Raw_image , h ) ;
end

in which

• dati(i).Raw\_image is the original image with artifacts;
• dati(i).Clean\_image is the clean image after the blurring function.

(a) (b)
Figure 8. Blurring effect. (a) A raw image with spurious peak values. (b). Result of artifact removal
with the blurring function B = 5.

The blurring in the pixel pij is applied based on the value of the near pixels inside the
square of 2B + 1’s long edge with a total number of elements n equal to (2B + 1)2. The
blurring matrix with B = 2 is reported in Figure 9 where all the pixels are associated with a
weight equal to 1/n. How the various intensities of the blur function affect the extracted
data is studied in Section 4.

1/25 1/25 1/25 1/25 1/25

1/25 1/25 1/25 1/25 1/25

1/25 1/25 1/25 1/25 1/25

1/25 1/25 1/25 1/25 1/25

1/25 1/25 1/25 1/25 1/25

Figure 9. Blurring matrix with B equal to 2. A weight equal to one over the total number of elements
is given to each element.

Once clear images are obtained, a fitting operation should be performed to extract
parameters from the sound map. The first step consists of the identification of the maximum
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of L, indicated in green in Figure 10. Then, two Gaussian fits are made along the x and y
direction on the axes passing through the maximum.

(a)

0 200 400 600 800 1000

Position (px)

-6

-5

-4

-3

-2

-1

0

Le
ve

l (
dB

)

Data
Fit:

R2=0.93
B=10; Cal=0

(b)

Figure 10. The fit process. (a) The identification of the fit axes: in green the maximum of L, in red
the axes along the fits are performed. (b) The fit results along the x direction. R2 is the coefficient of
determination of the performed fit. Cal = 0 stands for the calibration performed correlating the H
interval to the actual dynamic range.

The fitting functions are non-normalized Gaussian functions as reported in
Equations (3) and (4), respectively, for x and y axes.

f (x) = Cx exp

(
− (x − x0)

2

2c2
x

)
(3)

f (y) = Cy exp

(
− (y − y0)

2

2c2
y

)
(4)

where

• x and y are the positions along the x and y axes;
• x0 and y0 are the center of symmetry of the functions;
• cx and cy are the standard deviation dx (dy) of the function;
• Cx and Cy are the height of the functions.

3.4. Features Definition and Representation

Once the fits are performed, the modulus of distances r, in px, between the calculated
center with coordinates (x0, y0) and the expected center with coordinates (xS, yS) of the
sound source can be calculated with the simple relation reported in Equation (5).

r =
√
(xs − x0)

2 + (ys − y0)
2 (5)

The coordinates of the sources are obtained manually by the operator using the original
AC image. Then, the total standard deviation dr is calculated from the original dispersion
of the two functions following Equation (6).

σr =
√

σ2
x + σ2

y (6)

Finally, A−1dB is calculated as the area corresponding to H > −1dB. OVL−1dB and
SC−1dB are obtained by comparing the A−1dB mask with the position of the real source:
OVL−1dB multiplies the masks and then counts the remaining pixels, while SC−1dB car-
ries out the ratio between the dimensions of the two masks. An example is reported in
Figure 11a, with the area corresponding to A−1dB in plain red and the surface of the real
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source in cyan. Figure 11b shows the corresponding curve of H along the x direction and
two horizontal thresholds corresponding to the surface A−1dB, in a continuous red line,
and to σr, in a green dashed line. σr corresponds to a level of −2.4 dB, meaning that the
area corresponding to the parameter σr is greater than A−1dB.

(a)

0 200 400 600 800 1000

Position (px)

-6

-5

-4

-3

-2

-1

0

Le
ve

l (
dB

)

Σ-1dB

σr

Data
Fit:

R2=0.93
B=10; Cal=0

(b)
Figure 11. Source overlapping. (a) Example of positive overlapping of real source position, in cyan,
and Σ−1dB in red. (b) Comparison between the section at −1 dB and the section corresponding to σ

which is equal to the σr value. R2 is the coefficient of determination of the performed fit. Cal = 0
stands for calibration performed correlating the H interval to the actual dynamic range.

As AC measurements may produce different results depending on the different fre-
quency band, sound maps should be produced for at least the third-octave bands between
250 and 4000 Hz. A brief representation of the result for a single measurement that would
include all these bands is shown in Figure 12, where for each frequency band, the distance
from source r and the uncertainties, in terms of standard deviation σr, are reported. Dis-
tance can be eventually converted into meters by knowing the conversion factor from pixel
to meter, which is unique for each distance.
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Source boundary
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Figure 12. Representation of the results in the third-octave band for a single measurement with a
source distance of 45 m. Red line is the physical dimension of the source, blue crosses are the r in
each band, and σr are the error bars.

A−1dB, OVL−1dB and SC−1dB can be calculated for each frequency, distance source AC,
as the example reported in Table 1 for distance 45 m. When A−1dB is very large, overlapping
is very likely and therefore OVL−1dB becomes a simple true or false check. For the example,
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as shown in Table 1, up to 2 kHz, the ratio between the SC−1dB areas is very small, while
for higher frequencies, A−1dB is very small; thus, overlapping becomes more difficult.

Table 1. Overlapping results.

Frequencies (Hz) Σ−1dB (px) OV L−1dB (%) SC−1dB (%)

250 244,619 100 0.03
400 134,034 100 0.05
500 71,262 100 0.10
315 47,042 100 0.15
630 28,732 100 0.24
800 16,608 100 0.42

1000 10,936 100 0.63
1250 6280 100 1.10
1600 4373 100 1.58
2000 2964 67 2.33
2500 1788 0 3.86
3150 1048 0 6.58
4000 763 0 9.4

4. Discussion

In this section, we investigate and discuss how the tunable parameters affect the
results of the procedure. These are the intensity of blurring (B), introduced in Section 3.3
for artifact removal, and the calibration method of the H − i relationship (Section 3.1).

A variation of B could affect the fit function, as the more intense the blurring is, the
more artifacts are removed from the image, with a consequent lowering of the fault rate.
The fault rate is defined as the percentage count of the fit functions that failed during the
overall process. It has been noted that this can happen if an image is too influenced by the
presence of artifacts, which is detected by the R2 value of the fit being greater than 1 or
less than 0. In these cases, a bigger B would save the data and allow its processing with
the procedure.

The downside of the blurring function lies in the fact that modifying the image also
involves changing the dispersion (σr). It is then important to analyze how B affects the
results to evaluate its pros and cons and report the best choice obtained.

The effects brought by the variation of B are investigated by performing the computa-
tions with different intensities of B = 1, 2, 3, 5, 10 and then comparing the outcomes with
the original image (B = 0). The fitting results are reported in Figure 13.

In Figure 13, the oscillations occurring just below 400 px and just above 600 px are
indicative of the artifacts present in the original images. The increase in B clearly reduces
the intensity of the artifacts without visually altering the general trend of the figure and the
R2 of the fit.

Another significant effect of the variation of B can be visible in the fault rate, as
reported in Table 2. The fault rate is evaluated through the value of R2 on the different
singular axis and, as faults can happen on both of them, the total fault rate is the union
of both. A measurement is considered as “faulted” if one of the following conditions is
encountered: R2

x > 1, R2
y > 1, R2

x < 0 or R2
y < 0. Each of these conditions corresponds

to clear malfunction symptoms of the fitting process. The analysis is performed over all
297 images, and the percentages represent the number of images that failed the fit.

The calibration between H and L set in Section 3.1, and based on the chromatic scale
(Cal = 1) provided by the manufacturer’s software, can also have an influence on the
results. Its effect is here tested and compared to an alternative approach (Cal = 0), which is
a simpler method consisting of correlating the H interval to the actual dynamic range (i.e.,
−6–0 dB) and assuming a priori that the relationship between H and L is linear.
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Figure 13. Example of fits over the same image on the x-axis while changing B. The source is at the
center of the image. Cal = 0 stands for calibration performed correlating the H interval to the actual
dynamic range. (a–d) are produced with an increasing value of B, respectively 0, 1, 3, and 10. As can
be seen, the artifacts diminish while B increases.

Table 2. Fault rate and singular axis fault rates evaluated over R2 at different B values for all the
figures.

B = 0 B = 1 B = 3 B = 5 B = 10
(%) (%) (%) (%) (%)

Cal = 0 − Fault rate on x 5.1 1.0 1.0 1.0 1.0
Cal = 0 − Fault rate on y 4.1 0.3 0.3 0.3 0.7

Cal = 0 − Fault rate 7.2 1.4 1.4 1.4 1.7

Cal = 1 − Fault rate on x 4.8 1.4 1.0 1.0 1.0
Cal = 1 − Fault rate on y 4.8 1.0 0.3 0.7 0.3

Cal = 1 − Fault rate 7.9 2.1 1.4 1.7 1.4

Table 2 shows that when B increases, the fault rate decreases from 7% for the raw
images to 1.4% with the highest B value. Calibration, on the other hand, does not signifi-
cantly affect the fault rate, resulting in very similar results between Cal = 0 and Cal = 1.
Figure 14 also shows that the moderate variation in the R2

x and R2
y values is caused by the

introduction of blurring, confirming that it produces little to no modification to the relevant
part of the signal.
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Figure 14. Averages of the R2
x and R2

y over all images as a function of B. “Cal = 0” stands for
calibration assuming linearity of the color scale and “Cal = 1” stands for the calibration based on the
chromatic scale.

Figure 15 reports r and σr averaged over all the images as a function of B for the two
calibration strategies. Calculations are based on all the images with successful fit in the
two directions (x and y). It comes out that the change in B also affects the average r and its
dispersion σr. Both the distance r between the real sources and the extrapolated position
and the size of the sound map (σr) decrease while increasing B, confirming the advantage of
the introduction of the blurring. The bigger variation in r is spotted at B = 0, and negligible
differences can be seen at B > 1 for the two calibration strategies. Little variations are
present between the two calibration results for σr, where Cal = 1 leads to a slightly lower
σr for B = 0 and causes a light increase for B > 1.
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Figure 15. Box plot of the combined effects of B and calibration on r (a) and σr (b).

B is confirmed to not significantly affect the results, while it could increase the accuracy.
An increase of B also generates a little variation of σr.

Figures 14 and 15 serve as examples, and the data reported in this study were extracted
from sound maps calculated across various frequency bands. These maps were considered
independent measurements intended to enhance data analysis. It is important to note that
outliers and variations in r, σr and R2 are due to the inclusion of all obtained maps. Indeed,
the map’s size is highly correlated with the wavelength of the corresponding frequency
band. Other variations may arise from the different positions of the source in relation to
the AC or from reflections induced by the height from the ground. A further exploration of
these aspects can be conducted in future studies utilizing the developed tool.
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5. Conclusions

The present work developed a methodology for extracting features from images with
superimposed sound maps and provided parameters that will serve as the basis for future
studies comparing sound maps calculated with different algorithms or acquired with
different ACs.

The images used as input/tests in the present work have their sound maps computed
using only the Delay and Sum (DAS) algorithm applied to AC acquisition in the free field.
During the measurements, the AC was in a fixed position, while the known sound source
was moved in height, distance and position.

The features extraction algorithm presented in this work starts from correlating the
sound level scale (dB) to the color one (HSV). As preliminary steps, the image is cropped
and transformed from RGB to HSV, and then a saturation mask is applied in order to
exclude the non-relevant parts. While extracting the HUE data from the images, these steps
simultaneously highlight the original defects due to the compression and quantization
of the image. Artifacts also emerge, and they are removed with a blurring function (B).
Finally, the real features extraction consists of the identification of the maximum point in
the sound map and two subsequent Gaussian fits along the x and y directions passing
through the maximum. The final defined data are the modulus of distances (r) between
the calculated center and the expected center (in px) and the total standard deviation (σr),
which was calculated from the original dispersion of the two functions. The two parameters
numerically provide the position of the point of emission in the image and allow evaluation
of the precision of localization. They are easily comparable with those calculated from
different sound maps.

The effects on the algorithm’s output brought by the tunable parameters’ intensity of
blurring (B) and calibration of HUE level relationship have been investigated and discussed.
More artifacts are removed from the image with bigger B with a consequent lowering of the
fault rate; i.e., the percentage count of the fit functions that failed on the overall process. The
cost of the blurring function is a very marginal loss in the overall number of pixels where
the fit is applied. The best value of B should be the one that maximizes the cost–benefit
ratios, i.e., the value that improves the results without altering the results too much. The
analysis indicates that B = 1 is the most appropriate because, compared to the case of
B = 0, it is the first value of B that reduces the error rate of the fit to close to 2%, minimizing
the waste of data and having a higher reliability of the results. B = 3 significantly improves
r estimation while slightly reducing σr, and it yields excellent R2 fit results.

The authors do not exclude that a different calibration for the B coefficient may be
required with images taken with other instruments. The results obtained show that any
value of B improves the output compared to the case of not using blurring (B = 0), and that
whatever B is chosen, this does not negatively affect the results of the algorithm. As a result,
the effect of calibration was limited. As a refined calibration is desirable in case of color
scales with more pronounced non-linearity, the authors suggest performing a preliminary
evaluation before the first application.

The proposed features extraction algorithm is deliberately very simple to implement,
easy to reproduce and has a fast computation. While these qualities are required for
elaborating a big number of images in a series, it can have some critical issues if not
used under specific conditions. At present, the algorithm works on images with a single
predominant source, as it does one fit per image. The multi-source case will be the aim
of future developments investigating the separation of two known sources with ad hoc
masks over the search domain. Another aspect to be further investigated, still due to
the simplicity of the code, is that fits are performed only along the axes with possible
discrepancy occurring for sources generating high asymmetrical sound maps.

In order to compare sound maps elaborated with several algorithms and analytically
investigate their source localization efficacy in upcoming works, more operator-oriented
parameters have been defined: A−1dB is the surface of the map from the max level to 1 dB
below it, OVL−1dB is the percentage of overlapping between the real source dimension on
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screen and the A−1dB mask, and SC−1dB is the surface comparison between the real source
dimension and the A−1dB dimension in percentage. They further support the analysis of
beamforming algorithms that do not create symmetric images like DAS commonly does.
A good algorithm, with high accuracy and precision, is expected to have high OVL−1dB
and SC−1dB values and low r and σr values. DAS has been shown to generate a large
sound map, and consequently large A−1dB, which means a higher probability of gaining
a positive overlap and a reduced surface comparison. The applicability of the method
can be much broader, because it could be used for generic applications in other sectors,
such as the infrared output maps of thermal imaging cameras. This is particularly the case
for closed proprietary software that only takes out hit maps and extracts data from old
software and/or machines that only provide images. In these eventualities, the procedure
can be easily adapted by only adjusting the dB-HSV correlation.

Author Contributions: Conceptualization, L.F. and M.B. (Marco Bernardini); Data curation, G.P. and
M.B. (Matteo Bolognese); Formal analysis, L.F., G.P., M.B. (Matteo Bolognese) and M.B. (Marco Bernar-
dini); Funding acquisition, F.F. and G.L.; Investigation, L.F. and M.B. (Marco Bernardini); Methodol-
ogy, L.F., M.B. (Matteo Bolognese) and M.B.; Project administration, L.F., F.F. and G.L.; Software, G.P.
and M.B. (Matteo Bolognese); Supervision, F.F. and G.L.; Validation, L.F. and M.B. (Matteo Bolognese);
Visualization, G.P. and M.B. (Matteo Bolognese); Writing—original draft, L.F., G.P. and M.B. (Matteo
Bolognese); Writing—review and editing, L.F., G.P., F.F., G.L. and M.B. (Matteo Bolognese). All
authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: The raw data supporting the conclusions of this article will be made
available by the authors on request.

Conflicts of Interest: The authors declare no conflicts of interest.

Abbreviations
The following abbreviations are used in this manuscript:

AC acoustic camera
UAV Unmanned Aerial Vehicles
DAS Delay and Sum
EVOB eigenvalue-optimized beamforming
HSV hue saturation value
OVL surface overlapping
SC surface comparison
RGB red–green–blue

References
1. Leclère, Q.; Pereira, A.; Bailly, C.; Antoni, J.; Picard, C. A unified formalism for acoustic imaging based on microphone array

measurements. Int. J. Aeroacoustics 2017, 16, 431–456. [CrossRef]
2. Chiariotti, P.; Martarelli, M.; Castellini, P. Acoustic beamforming for noise source localization—Reviews, methodology and

applications. Mech. Syst. Signal Process. 2019, 120, 422–448. [CrossRef]
3. Merino-Martínez, R.; Sijtsma, P.; Snellen, M.; Ahlefeldt, T.; Antoni, J.; Bahr, C.J.; Blacodon, D.; Ernst, D.; Finez, A.; Funke, S.; et al.

A review of acoustic imaging methods using phased microphone arrays: Part of the “Aircraft Noise Generation and Assessment”
Special Issue. CEAS Aeronaut. J. 2019, 10, 197–230. [CrossRef]

4. Allen, C.S.; Blake, W.K.; Dougherty, R.P.; Lynch, D.; Soderman, P.T. Aeroacoustic Measurements; Springer: Heidelberg/Berlin,
Germany, 2013. [CrossRef]

5. Noh, H.M.; Choi, J.W. Identification of low-frequency noise sources in high-speed train via resolution improvement. J. Mech. Sci.
Technol. 2015, 29, 3609–3615. [CrossRef]

6. Ginn, B.; Gomes, J.; Hald, J. Recent advances in rail vehicle moving source beamforming. In INTER-NOISE and NOISE-CON
Congress and Conference Proceedings of the The 42nd International Congress and Exposition on Noise Control Engineering, Innsbruck,
Austia, 15–18 September 2013; Institute of Noise Control Engineering: Wakefield, MA, USA, 2013; Volume 247, pp. 1983–1992.

7. Ballesteros, J.A.; Sarradj, E.; Fernandez, M.D.; Geyer, T.; Ballesteros, M.J. Noise source identification with beamforming in the
pass-by of a car. Appl. Acoust. 2015, 93, 106–119. [CrossRef]

http://doi.org/10.1177/1475472X17718883
http://dx.doi.org/10.1016/j.ymssp.2018.09.019
http://dx.doi.org/10.1007/s13272-019-00383-4
http://dx.doi.org/10.1007/978-3-662-05058-3
http://dx.doi.org/10.1007/s12206-015-0804-8
http://dx.doi.org/10.1016/j.apacoust.2015.01.019


Sensors 2024, 24, 4696 16 of 16

8. Ginn, K.B.; Newton, G. Contribution Analysis in Pass-by Testing Using Moving Source Beamforming; Technical Report, SAE Technical
Paper; SAE International: Warrendale, PA, USA, 2011. [CrossRef]

9. Joshi, A.; Rahman, M.M.; Hickey, J.P. Recent Advances in Passive Acoustic Localization Methods via Aircraft and Wake Vortex
Aeroacoustics. Fluids 2022, 7, 218. [CrossRef]

10. Camussi, R.; Bennett, G.J. Aeroacoustics research in Europe: The CEAS-ASC report on 2019 highlights. J. Sound Vib. 2020,
484, 115540. [CrossRef]

11. Bu, H.; Huang, X.; Zhang, X. An overview of testing methods for aeroengine fan noise. Prog. Aerosp. Sci. 2021, 124, 100722.
[CrossRef]

12. Malgoezar, A.M.; Vieira, A.; Snellen, M.; Simons, D.G.; Veldhuis, L.L. Experimental characterization of noise radiation from a
ducted propeller of an unmanned aerial vehicle. Int. J. Aeroacoustics 2019, 18, 372–391. [CrossRef]

13. Martinez-Carranza, J.; Rascon, C. A review on auditory perception for unmanned aerial vehicles. Sensors 2020, 20, 7276.
[CrossRef] [PubMed]

14. Sun, S.; Wang, T.; Chu, F. A generalized minimax-concave penalty based compressive beamforming method for acoustic source
identification. J. Sound Vib. 2021, 500, 116017. [CrossRef]

15. Sun, S.; Wang, T.; Yang, H.; Chu, F. Damage identification of wind turbine blades using an adaptive method for compressive
beamforming based on the generalized minimax-concave penalty function. Renew. Energy 2022, 181, 59–70. [CrossRef]

16. Fredianelli, L.; Bernardini, M.; Del Pizzo, L.G.; Tonetti, F.; Fidecaro, F.; Licitra, G. Acoustic source localization in ports with
different beamforming algorithms. In INTER-NOISE and NOISE-CON Congress and Conference Proceedings of the InterNoise22,
Glasgow, UK, 21–24 August 2022; Institute of Noise Control Engineering: Wakefield, MA, USA, 2023; Volume 265, pp. 2702–2711.

17. Bocanegra, J.A.; Borelli, D.; Gaggero, T.; Rizzuto, E.; Schenone, C. A novel approach to port noise characterization using an
acoustic camera. Sci. Total. Environ. 2022, 808, 151903. [CrossRef] [PubMed]

18. Cook, V.G.C.; Ali, A. End-of-line inspection for annoying noises in automobiles: Trends and perspectives. Appl. Acoust. 2012,
73, 265–275. [CrossRef]

19. Dupré, T.; Denjean, S.; Aramaki, M.; Kronland-Martinet, R. Spatial Sound Design in a Car Cockpit: Challenges and Perspectives.
In Proceedings of the 2021 Immersive and 3D Audio: From Architecture to Automotive (I3DA), Bologna, Italy, 8–10 September
2021; IEEE: Piscataway, NJ, USA, 2021; pp. 1–5. [CrossRef]

20. Kanka, S.; Fredianelli, L.; Artuso, F.; Fidecaro, F.; Licitra, G. Evaluation of Acoustic Comfort and Sound Energy Transmission in a
Yacht. Energies 2023, 16, 808. [CrossRef]

21. Dougherty, R.P., Beamforming In Acoustic Testing. In Aeroacoustic Measurements; Mueller, T.J., Ed.; Springer: Berlin/Heidelberg,
Germany, 2002; pp. 62–97. [CrossRef]

22. Perrot, V.; Polichetti, M.; Varray, F.; Garcia, D. So you think you can DAS? A viewpoint on delay-and-sum beamforming.
Ultrasonics 2021, 111, 106309. [CrossRef] [PubMed]

23. Licitra, G.; Artuso, F.; Bernardini, M.; Moro, A.; Fidecaro, F.; Fredianelli, L. Acoustic beamforming algorithms and their
applications in environmental noise. Curr. Pollut. Rep. 2023, 9, 486–509. [CrossRef]

24. Herold, G.; Sarradj, E. Preliminary benchmarking of microphone array methods. In Proceedings of the 5th Berlin Beamforming
Conference, Berlin, Germany, 19–20 February 2014; pp. 19–20.

25. Herold, G.; Sarradj, E. Performance analysis of microphone array methods. J. Sound Vib. 2017, 401, 152–168. [CrossRef]
26. Sarradj, E.; Herold, G.; Jekosch, S. Automatic Choice of Microphone Array Processing Methods for Acoustic Testing; Universitätsbiblio-

thek der RWTH: Aachen, Germany, 2019; pp. 2737–2744.
27. Yardibi, T.; Zawodny, N.S.; Bahr, C.; Liu, F.; Louis N Cattafesta, I.; Li, J. Comparison of Microphone Array Processing Techniques

for Aeroacoustic Measurements. Int. J. Aeroacoustics 2010, 9, 733–761. [CrossRef]
28. Chu, Z.; Yang, Y. Comparison of deconvolution methods for the visualization of acoustic sources based on cross-spectral imaging

function beamforming. Mech. Syst. Signal Process. 2014, 48, 404–422. [CrossRef]
29. Hue Saturation Brightness. Available online: https://it.wikipedia.org/wiki/Hue_Saturation_Brightness (accessed on

4 April 2024).

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.4271/2011-01-1669
http://dx.doi.org/10.3390/fluids7070218
http://dx.doi.org/10.1016/j.jsv.2020.115540
http://dx.doi.org/10.1016/j.paerosci.2021.100722
http://dx.doi.org/10.1177/1475472X19852952
http://dx.doi.org/10.3390/s20247276
http://www.ncbi.nlm.nih.gov/pubmed/33352997
http://dx.doi.org/10.1016/j.jsv.2021.116017
http://dx.doi.org/10.1016/j.renene.2021.09.024
http://dx.doi.org/10.1016/j.scitotenv.2021.151903
http://www.ncbi.nlm.nih.gov/pubmed/34838563
http://dx.doi.org/10.1016/j.apacoust.2011.06.019
http://dx.doi.org/10.1109/I3DA48870.2021.9610910
http://dx.doi.org/10.3390/en16020808
http://dx.doi.org/10.1007/978-3-662-05058-3_2
http://dx.doi.org/10.1016/j.ultras.2020.106309
http://www.ncbi.nlm.nih.gov/pubmed/33360053
http://dx.doi.org/10.1007/s40726-023-00264-9
http://dx.doi.org/10.1016/j.jsv.2017.04.030
http://dx.doi.org/10.1260/1475-472X.9.6.733
http://dx.doi.org/10.1016/j.ymssp.2014.03.012
https://it.wikipedia.org/wiki/Hue_Saturation_Brightness

	Introduction
	Materials and Methods 
	Features Extraction Algorithm
	dB–HSV Correlation
	Conversion to HSV and Initial Filtering
	Artifacts Removal
	Features Definition and Representation

	Discussion
	Conclusions
	References

