Full-Automatic High-Efficiency Mueller Matrix Microscopy Imaging for Tissue Microarray Inspection
Abstract
:1. Introduction
2. Materials and Methods
2.1. Schematic Diagram of Full-Automatic MMMI System
2.2. Measurement of Mueller Matrix
2.3. Two Kinds of Useful Images Derived from Mueller Matrix Polar Decomposition
2.4. Formatting of Mathematical Components
3. Results
3.1. Original Images of TMA
3.2. Mueller Matrix of Cancerous and Normal Cervical Tissues
3.3. δ and θ Images of Cancerous and Normal Cervical Tissues
3.4. δ and θ Grayscale Images of the Histograms
3.5. Quantitative Analyses of δ and θ Images Using Statistics Method, GLCM, and TIPM
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
Abbreviations | Full name |
MMMI | Mueller matrix microscopic imaging |
TMA | Tissue microarray |
MM | Mueller matrix |
GLCM | Gray-level co-occurrence matrix analysis |
TIPM | Tamura image processing method |
HPV | Human papilloma virus |
PCR | Polymerase chain reaction |
DIC | Differential interference contrast |
LED | Light emitting diode |
CCD | Charge-coupled device |
CMOS | Complementary metal oxide semiconductor |
PMT | Photomultiplier tube |
APD | Avalanche photodiode |
θ | The equivalent waveplate fast-axis azimuth angle |
δ | The phase retardation |
PSG | Polarization state generator |
PSA | Polarization state analyzer |
H | The horizontal polarization at 0° |
P | The diagonal polarization at 45° |
V | The vertical polarization at 90° |
R | The right-handed circular polarization |
D | Diattenuation |
Depolarization | |
R | Phase retardance |
L | Linear |
C | Circular |
LOD | Limit of detection |
References
- Rahaman, A.; Anantharaju, A.; Jeyachandran, K.; Manideep, R.; Pal, U.M. Optical imaging for early detection of cervical cancer: State of the art and perspectives. J. Biomed. Opt. 2023, 28, 080902. [Google Scholar] [CrossRef] [PubMed]
- Perkins, R.B.; Wentzensen, N.; Guido, R.S.; Schiffman, M. Cervical cancer screening: A review. JAMA 2023, 330, 547–558. [Google Scholar] [CrossRef] [PubMed]
- Qin, D.; Bai, A.; Xue, P.; Seery, S.; Wang, J.; Mendez, M.J.G.; Li, Q.; Jiang, Y.; Qiao, Y. Colposcopic accuracy in diagnosing squamous intraepithelial lesions: A systematic review and meta-analysis of the International Federation of Cervical Pathology and Colposcopy 2011 terminology. BMC Cancer 2023, 23, 187. [Google Scholar] [CrossRef] [PubMed]
- Sachan, P.L.; Singh, M.; Patel, M.L.; Sachan, R. A study on cervical cancer screening using pap smear test and clinical correlation. Asia. Pac. J. Oncol. Nurs. 2018, 5, 337–341. [Google Scholar] [CrossRef] [PubMed]
- Castellsagué, X. Natural history and epidemiology of HPV infection and cervical cancer. Gynecol. Oncol. 2008, 110, S4–S7. [Google Scholar] [CrossRef] [PubMed]
- Salvo, G.; Ramirez, P.T.; Levenback, C.F.; Munsell, M.F.; Euscher, E.D.; Soliman, P.T.; Frumovitz, M. Sensitivity and negative predictive value for sentinel lymph node biopsy in women with early-stage cervical cancer. Gynecol. Oncol. 2017, 145, 96–101. [Google Scholar] [CrossRef] [PubMed]
- Hartwig, W.; Schneider, L.; Diener, M.K.; Bergmann, F.; Büchler, M.W.; Werner, J. Preoperative tissue diagnosis for tumours of the pancreas. BJS 2009, 96, 5–20. [Google Scholar] [CrossRef] [PubMed]
- AlHilli, M.M.; Podratz, K.C.; Dowdy, S.C.; Bakkum-Gamez, J.N.; Weaver, A.L.; McGree, M.E.; Kumar, S.; Keeney, G.L.; Cliby, W.A.; Mariani, A. Preoperative biopsy and intraoperative tumor diameter predict lymph node dissemination in endometrial cancer. Gynecol Oncol. 2013, 128, 294–299. [Google Scholar] [CrossRef] [PubMed]
- Hünerbein, M.; Totkas, S.; Moesta, K.T.; Ulmer, C.; Handke, T.; Schlag, P.M. The role of transrectal ultrasound-guided biopsy in the postoperative follow-up of patients with rectal cancer. Surgery 2001, 129, 164–169. [Google Scholar] [CrossRef]
- Fernandes, T.G.; Diogo, M.M.; Clark, D.S.; Dordick, J.S.; Cabral, J.M. High-throughput cellular microarray platforms: Applications in drug discovery, toxicology and stem cell research. Trends Biotechnol. 2009, 27, 342–349. [Google Scholar] [CrossRef]
- Richani, K.; Romero, R.; Kim, Y.M.; Cushenberry, E.; Soto, E.; Han, Y.M.; Espinoza, J.; Kim, C.J. Tissue microarray: An effective high-throughput method to study the placenta for clinical and research purposes. J. Matern. Fetal Neonatal Med. 2006, 19, 509–515. [Google Scholar] [CrossRef] [PubMed]
- Singh, A.; Sau, A.K. Tissue microarray: A powerful and rapidly evolving tool for high-throughput analysis of clinical specimens. Int. J. Case Rep. Images 2010, 1, 1–6. [Google Scholar] [CrossRef]
- Kallioniemi, O.-P.; Wagner, U.; Kononen, J.; Sauter, G. Tissue microarray technology for high-throughput molecular profiling of cancer. Hum. Mol. Genet. 2001, 10, 657–662. [Google Scholar] [CrossRef] [PubMed]
- Vassella, E.; Galván, J.A.; Zlobec, I. Tissue microarray technology for molecular applications: Investigation of cross-contamination between tissue samples obtained from the same punching device. Microarrays 2015, 4, 188–195. [Google Scholar] [CrossRef]
- De, J.; Brown, R.E. Tissue-microarray based immunohistochemical analysis of survival pathways in nodular sclerosing classical Hodgkin lymphoma as compared with Non-Hodgkin’s lymphoma. Int. J. Clin. Exp. Med. 2010, 3, 55. Available online: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2848307/ (accessed on 8 January 2023). [PubMed]
- Chu, Y.-H.; Hardin, H.; Eickhoff, J.; Lloyd, R.V. In situ hybridization analysis of long non-coding RNAs MALAT1 and HOTAIR in gastroenteropancreatic neuroendocrine neoplasms. Endocr. Pathol. 2019, 30, 56–63. [Google Scholar] [CrossRef]
- Bubendorf, L.; Kononen, J.; Koivisto, P.; Schraml, P.; Moch, H.; Gasser, T.C.; Willi, N.; Mihatsch, M.J.; Sauter, G.; Kallioniemi, O.P. Survey of gene amplifications during prostate cancer progression by high-throughput fluorescence in situ hybridization on tissue microarrays. Cancer Res. 1999, 59, 803–806. Available online: https://aacrjournals.org/cancerres/article/59/4/803/505877 (accessed on 1 July 2023). [PubMed]
- D’andrea, M.; Monego, S.D.; Pallavicini, A.; Modonut, M.; Dreos, R.; Stefanon, B.; Pilla, F. Muscle transcriptome profiling in divergent phenotype swine breeds during growth using microarray and RT-PCR tools. Anim. Genet. 2011, 42, 501–509. [Google Scholar] [CrossRef] [PubMed]
- Galli, M.; Pagni, F.; De Sio, G.; Smith, A.; Chinello, C.; Stella, M.; L’Imperio, V.; Manzoni, M.; Garancini, M.; Massimini, D.; et al. Proteomic profiles of thyroid tumors by mass spectrometry-imaging on tissue microarrays. Biochim. Biophys. Acta Proteins Proteom. 2017, 1865, 817–827. [Google Scholar] [CrossRef]
- Dremin, V.; Marcinkevics, Z.; Zherebtsov, E.; Popov, A.; Grabovskis, A.; Kronberga, H.; Geldnere, K.; Doronin, A.; Meglinski, I.; Bykov, A. Skin complications of diabetes mellitus revealed by polarized hyperspectral imaging and machine learning. IEEE Trans. Med. Imaging 2021, 40, 1207–1216. [Google Scholar] [CrossRef]
- Schucht, P.; Lee, H.R.; Mezouar, H.M.; Hewer, E.; Raabe, A.; Murek, M.; Zubak, I.; Goldberg, J.; Kovari, E.; Pierangelo, A.; et al. Visualization of white matter fiber tracts of brain tissue sections with wide-field imaging Mueller polarimetry. IEEE Trans. Med. Imaging 2020, 39, 4376–4382. [Google Scholar] [CrossRef] [PubMed]
- Jütte, L.; Bernhard, R. Mueller matrix microscopy for in vivo scar tissue diagnostics and treatment evaluation. Sensors 2022, 23, 9349. [Google Scholar] [CrossRef] [PubMed]
- Phan, Q.H.; Han, C.Y.; Lien, C.H. Dual-retarder Mueller polarimetry system for extraction of optical properties of serum albumin protein media. Sensors 2021, 21, 3442. [Google Scholar] [CrossRef] [PubMed]
- Rivet, S.; Dubreuil, M.; Bradu, A.; Le Grand, Y. Fast spectrally encoded Mueller optical scanning microscopy. Sci. Rep. 2019, 9, 3972. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; He, H.; Chang, J.; He, C.; Liu, S.; Li, M.; Zeng, N.; Wu, J.; Ma, H. Mueller matrix microscope: A quantitative tool to facilitate detections and fibrosis scorings of liver cirrhosis and cancer tissues. J. Biomed. Opt. 2016, 21, 071112. [Google Scholar] [CrossRef] [PubMed]
- Le, D.L.; Huynh, T.N.; Nguyen, D.T.; Van Vo, T.; Pham, T.-T. Characterization of healthy and nonmelanoma-induced mouse utilizing the Stokes–Mueller decomposition. J. Biomed. Opt. 2018, 23, 125003. [Google Scholar] [CrossRef] [PubMed]
- Liu, T.; He, H.; Dong, Y.; Ma, H. Quantitative detection of breast ductal carcinoma tissues at different progression stages using Mueller matrix microscope. Proc. SPIE 2018, 10493, 59–65. [Google Scholar] [CrossRef]
- Yamagata, K.; Iwamoto, D.; Terashita, Y.; Li, C.; Wakayama, S.; Hayashi-Takanaka, Y.; Kimura, H.; Saeki, K.; Wakayama, T. Fluorescence cell imaging and manipulation using conventional halogen lamp microscopy. PLoS ONE 2012, 7, e31638. [Google Scholar] [CrossRef] [PubMed]
- Tian, L.; Waller, L. 3D intensity and phase imaging from light field measurements in an LED array microscope. Optica 2015, 2, 104–111. [Google Scholar] [CrossRef]
- Kulkarni, M.B.; Reed, M.; Jiang, S.; Cao, X.; Hasan, T.; Doyley, M.M.; Pogue, B.W. Prototype dual-channel fluorescence/transmission optical tomography system for quantification of capillary permeability and porphyrin production. Proc. SPIE 2024, 12825, 81–89. [Google Scholar] [CrossRef]
- Mei, E.; Fomitchov, P.A.; Graves, R.; Campion, M. A line scanning confocal fluorescent microscope using a CMOS rolling shutter as an adjustable aperture. J. Microsc. 2012, 247, 269–276. [Google Scholar] [CrossRef] [PubMed]
- Lu, S.Y.; Chipman, R.A. Interpretation of Mueller matrices based on polar decomposition. J. Opt. Soc. Am. A 1996, 13, 1106–1113. [Google Scholar] [CrossRef]
- Sun, M.; He, H.; Zeng, N.; Du, E.; Guo, Y.; Liu, S.; Wu, J.; He, Y.; Ma, H. Characterizing the microstructures of biological tissues using Mueller matrix and transformed polarization parameters. Biomed. Opt. Express 2014, 5, 4223–4234. [Google Scholar] [CrossRef] [PubMed]
- Liu, T.; Lu, M.; Chen, B.; Zhong, Q.; Li, J.; He, H.; Mao, H.; Ma, H. Distinguishing structural features between Crohn’s disease and gastrointestinal luminal tuberculosis using Mueller matrix derived parameters. J. Biophotonics 2019, 12, e201900151. [Google Scholar] [CrossRef] [PubMed]
- Armijo-Olivo, S.; Warren, S.; Fuentes, J.; Magee, D.J. Statistical significance versus clinical relevance. Nephrol. Dial. Transplant. 2017, 32, ii6–ii12. [Google Scholar] [CrossRef]
- Verde, L. Statistical Methods in Cosmology. In Lectures on Cosmology. Lecture Notes in Physics; Springer: Berlin/Heidelberg, Germany, 2010; Available online: https://arxiv.org/abs/0911.3105 (accessed on 23 July 2023).
- Wang, F.; Zhang, Z.; Zhong, Q.; Yu, Z. Design of polarization imaging detection system for lung cancer cells based on microfluidic chip. J. Med. Syst. 2019, 43, 85. Available online: https://link.springer.com/article/10.1007/s10916-019-1199-3 (accessed on 22 July 2023). [CrossRef] [PubMed]
- Wang, Y.; Wang, J.; Meng, J.; Ding, G.; Shi, Z.; Wang, R.; Zhang, X. Detection of non-small cell lung cancer cells based on microfluidic polarization microscopic image analysis. Electrophoresis 2019, 40, 1202–1211. [Google Scholar] [CrossRef] [PubMed]
- Tamura, H.; Mori, S.; Yamawaki, T. Textural features corresponding to visual perception. IEEE Trans. Syst. Man Cybern. 1978, 8, 460–473. Available online: https://ieeexplore.ieee.org/document/4309999 (accessed on 22 July 2023). [CrossRef]
- Sharma, M.; Unni, S.N.; Shaji, C.; Balasubramanian, S.; Sundaram, S. Characterizing colon cancer stages through optical polarimetry-assisted digital staining. Lasers Med. Sci. 2024, 39, 59. Available online: https://link.springer.com/article/10.1007/s10103-024-04006-1 (accessed on 23 July 2023). [CrossRef]
- Zhao, Y.; Reda, M.; Feng, K.; Zhang, P.; Cheng, G.; Ren, Z.; Kong, S.G.; Su, S.; Huang, H.; Zang, J. Detecting giant cell tumor of bone lesions using Mueller matrix polarization microscopic imaging and multi-parameters fusion network. IEEE Sens. J. 2020, 20, 7208–7215. [Google Scholar] [CrossRef]
- Dong, Y.; Qi, J.; He, H.; He, C.; Liu, S.; Wu, J.; Elson, D.S.; Ma, H. Quantitatively characterizing the microstructural features of breast ductal carcinoma tissues in different progression stages by Mueller matrix microscope. Biomed. Opt. Express 2017, 8, 3643–3655. [Google Scholar] [CrossRef] [PubMed]
- Pham, T.-T.; Luu, T.-N.; Nguyen, T.-V.; Huynh, N.-T.; Phan, Q.-H.; Le, T.H. Polarimetric imaging combining optical parameters for classification of mice non-melanoma skin cancer tissue using machine learning. Heliyon 2023, 9, e22081. [Google Scholar] [CrossRef] [PubMed]
Element | Formula |
---|---|
m11 | |
m12 | |
m13 | |
m14 | |
m21 | |
m22 | |
m23 | |
m24 | |
m31 | |
m32 | |
m33 | |
m34 | |
m41 | |
m42 | |
m43 | |
m44 |
θ Images | δ Images | ||||
---|---|---|---|---|---|
Cancer | Normal | Cancer | Normal | ||
High grayscale normalized pixels | 0.5–1 | 0.2–0.5 | 0.4–0.45 | 0.6–1 | |
Median value of statistics method parameters | Kurtosis | 200 | 30 | −8 | 17 |
Skewness | −12 | −4.5 | 3 | 2 | |
Median value of GLCM parameters | Contrast | 40 | 90 | 40 | 100 |
Energy | 0.76 | 0.67 | 0.0022 | 0.0023 | |
Homogeneity | 0.89 | 0.87 | 0.34 | 0.345 | |
Correlation | 0.89 | 0.930 | 0.93 | 0.952 | |
Median value of TIPM parameters | Coarseness | 16.4 | 17 | 16.2 | 16.7 |
Contrast | 0.082 | 0.122 | 0.041 | 0.006 | |
Line-likeness | 0.036 | 0.028 | 0.024 | 0.019 |
Objective | θ Images | δ Images | ||||
---|---|---|---|---|---|---|
Cancer | Normal | Difference | Cancer | Normal | Difference | |
5× | 251 | 235 | 16 | 78 | 90 | 12 |
10× | 251 | 220 | 31 | 70 | 100 | 30 |
20× | 253 | 200 | 53 | 69 | 110 | 41 |
50× | 254 | 190 | 64 | 60 | 130 | 70 |
Number | Method | LOD | Sensitivity | Measurement Error | Application |
---|---|---|---|---|---|
1 | 25× objective | stage II | / | 6% | Colon cancer |
2 | 10× objective | stage I | / | About 1% | Breast ductal carcinoma |
3 | 40× objective and deep learning | Distinguish between normal and abnormal tissues | 99.45% | About 1% | Giant cell tumor of bone |
4 | 100× objective and deep learning | Distinguish between normal and abnormal tissues | 94% | About 1% | Mice non-melanoma skin cancer |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wei, H.; Zhou, Y.; Ma, F.; Yang, R.; Liang, J.; Ren, L. Full-Automatic High-Efficiency Mueller Matrix Microscopy Imaging for Tissue Microarray Inspection. Sensors 2024, 24, 4703. https://doi.org/10.3390/s24144703
Wei H, Zhou Y, Ma F, Yang R, Liang J, Ren L. Full-Automatic High-Efficiency Mueller Matrix Microscopy Imaging for Tissue Microarray Inspection. Sensors. 2024; 24(14):4703. https://doi.org/10.3390/s24144703
Chicago/Turabian StyleWei, Hanyue, Yifu Zhou, Feiya Ma, Rui Yang, Jian Liang, and Liyong Ren. 2024. "Full-Automatic High-Efficiency Mueller Matrix Microscopy Imaging for Tissue Microarray Inspection" Sensors 24, no. 14: 4703. https://doi.org/10.3390/s24144703
APA StyleWei, H., Zhou, Y., Ma, F., Yang, R., Liang, J., & Ren, L. (2024). Full-Automatic High-Efficiency Mueller Matrix Microscopy Imaging for Tissue Microarray Inspection. Sensors, 24(14), 4703. https://doi.org/10.3390/s24144703