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Abstract: This paper proposes a full-automatic high-efficiency Mueller matrix microscopic imaging
(MMMI) system based on the tissue microarray (TMA) for cancer inspection for the first time. By
performing a polar decomposition on the sample’s Mueller matrix (MM) obtained by a transmissive
MMMI system we established, the linear phase retardance equivalent waveplate fast-axis azimuth
and the linear phase retardance are obtained for distinguishing the cancerous tissues from the normal
ones based on the differences in their polarization characteristics, where three analyses methods
including statistical analysis, the gray-level co-occurrence matrix analysis (GLCM) and the Tamura
image processing method (TIPM) are used. Previous MMMI medical diagnostics typically utilized
discrete slices for inspection under a high-magnification objective (20×–50×) with a small field of
view, while we use the TMA under a low-magnification objective (5×) with a large field of view.
Experimental results indicate that MMMI based on TMA can effectively analyze the pathological
variations in biological tissues, inspect cancerous cervical tissues, and thus contribute to the diagnosis
of postoperative cancer biopsies. Such an inspection method, using a large number of samples within
a TMA, is beneficial for obtaining consistent findings and good reproducibility.

Keywords: Mueller matrix microscopy imaging; cancerous cervical inspection; tissue microarray;
polarization measurement

1. Introduction

Cervical cancer is the most common gynecological malignancy [1,2]. Conventional
methods for cervical cancer detection include colposcopy [3], cervical cytology (pap
smear) [4], human papilloma virus (HPV) testing [5], and biopsy [6]. However, the col-
poscopy, the cervical cytology, and the HPV testing methods can only assist in determining
cervical abnormalities and cannot provide definitive diagnostic results. The “gold stan-
dard” for diagnosing cancerous cervical tissues remains the combination of biopsy and
pathological examination. Biopsy can be performed preoperatively [7], intraoperatively [8],
or postoperatively [9]. The histopathological diagnosis in the postoperative biopsy pro-
cess involves three steps: firstly, multiple samples are taken from the entire lesion and its
surrounding affected tissues and organs, as well as relevant lymph nodes; secondly, the
collected samples are prepared as pathological tissue slices; thirdly, pathologists exam-
ine the slices under a microscope to diagnose the condition of the lesion and determine
the treatment plan. However, due to the labor-intensive process of preparing multiple
pathological tissue slices for postoperative biopsy, it typically takes 3 to 7 days to issue a
diagnostic report. Therefore, a new technique is urgently needed to improve the efficiency
of postoperative biopsy.

TMA provides a high-throughput histological technique [10,11] that allows multiple
tissue samples to be arranged on a single glass slice, creating a small tissue microarray
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for diagnosis. This technology enables efficient and rapid large-scale histological analysis,
significantly shortening the time required for postoperative biopsy diagnosis. Currently,
TMA has been widely applied in life sciences and clinical fields, including disease diagnosis
and prognostic evaluation [12], drug research and development [12,13], cancer research [14],
and more. Common detection methods for TMA include immunohistochemistry [15], in
situ hybridization [16], fluorescence in situ hybridization [17], polymerase chain reaction
(PCR) [18], and mass spectrometry imaging [19]. However, the immunohistochemistry, the
in situ hybridization, and the PCR methods require specific probes. On the other hand, the
fluorescence in situ hybridization and the mass spectrometry imaging methods both rely
on fluorescent labeling. These techniques have high technical requirements and relatively
strict storage conditions, which hinder their widespread adoption. Therefore, it is crucial to
develop a new label-free and simplified detection technology for TMA.

Humans have a long history of utilizing light waves for biological microstructure
examination. Light waves possess four fundamental properties: intensity, wavelength,
phase, and polarization. Although optics-based biosensing has been extensively utilized
in clinical diagnostics, polarization, being the last discovered fundamental property of
light waves by humans, has only recently garnered significant attention in the biomedical
field [20].

The polarization state of light undergoes changes during its propagation in biological
tissues, and the polarization information also varies with different microscopic structures
within biological tissues. The MM records the complete polarization information of biologi-
cal tissues, fully reflecting their polarization properties [21]. MMMI [22–24], as a label-free,
non-contact, and non-invasive imaging technique, reflects the polarization characteristics of
the sample by measuring the polarization state changes between the incident and the trans-
mission lights and has been applied in the detection of liver cancer [25], skin cancer [26],
breast cancer [27], and others by using their pathological tissue slices.

Considering the high complexity of traditional TMA inspection techniques and the
low efficiency of the polarization detection technique, this study proposes a high-efficiency
TMA-based cancer inspection method based on MMMI. It is found in the experiment
that, by using a modified commercial microscope, the 4 × 4 MM of TMA samples can
be acquired, and the equivalent waveplate fast-axis azimuth angle (θ) and the phase
retardation (δ) of the sample can be obtained through MM polar decomposition. In addition,
by analyzing the statistical features of the θ and δ images using kurtosis and skewness and
further combining them with the texture feature analysis methods of GLCM and TIPM, the
effective diagnosis of cancerous cervical samples on TMA can be achieved. The method,
based on the high-throughput nature of TMA and the MMMI technique, enables high-
throughput, label-free, non-invasive, and non-contact cancer detection. It should be pointed
out that, based on many previously reported research works on tissue slice detection, the
above two polarization parameters are effective by using a high-magnification objective
(20×–50×) under high-resolution imaging with a small field of view; in our cases, when
using the TMA, it is found that they are also effective where a low-magnification objective
(5×) is used. Although high-magnification objectives (20×–50×) capture more detailed
tissue information due to their high resolution and small field of view for providing more
precise tissue identification, this high-resolution imaging is less efficient. It requires using
a low-magnification objective first to identify abnormal tissue and then switching to a
high-magnification objective for detailed observation. This paper uses a low-magnification
objective (5×), which, despite its lower resolution, offers a larger field of view, facilitating
rapid detection.

In this study, we constructed a fully automated MMMI system and developed a corre-
sponding software platform. This system can automatically complete image acquisition,
MM computation, and polarization parameter analysis, enabling automated differentiation
and providing a detailed analysis of cancerous and normal tissues. This technological
platform not only enhances the efficiency and accuracy of data processing but also provides
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a powerful tool for in-depth studies of the microstructure and polarization characteristics
of cancerous tissues.

2. Materials and Methods
2.1. Schematic Diagram of Full-Automatic MMMI System

The MMMI system used in this study is modified from a commercial microscope,
which is shown in Figure 1. The system primarily comprises a microscope (Olympus,
BX53M, Tokyo, Japan) and the polarization modulation modules. The polarization modula-
tion modules include a polarization generator unit and a polarization analyzer unit. The
polarization generator unit consists of a linear polarizer (Olympus, U-AN360P, Japan) and a
quarter waveplate (manufactured by Union Optics, Wuhan, China), while the polarization
analyzer unit consists of a similar quarter waveplate and a linear polarizer. Each optical
element within the polarization modulation module is driven to rotate by an electrically
controlled servo through a uniform electric control unit, and each polarization modulation
module unit is integrated into a designed 3D-printed structure.

Sensors 2024, 24, x FOR PEER REVIEW 3 of 18 
 

 

differentiation and providing a detailed analysis of cancerous and normal tissues. This 
technological platform not only enhances the efficiency and accuracy of data processing 
but also provides a powerful tool for in-depth studies of the microstructure and polariza-
tion characteristics of cancerous tissues. 

2. Materials and Methods 
2.1. Schematic Diagram of Full-Automatic MMMI System 

The MMMI system used in this study is modified from a commercial microscope, 
which is shown in Figure 1. The system primarily comprises a microscope (Olympus, 
BX53M, Tokyo, Japan) and the polarization modulation modules. The polarization mod-
ulation modules include a polarization generator unit and a polarization analyzer unit. 
The polarization generator unit consists of a linear polarizer (Olympus, U-AN360P, Japan) 
and a quarter waveplate (manufactured by Union Optics, Wuhan, China), while the po-
larization analyzer unit consists of a similar quarter waveplate and a linear polarizer. Each 
optical element within the polarization modulation module is driven to rotate by an elec-
trically controlled servo through a uniform electric control unit, and each polarization 
modulation module unit is integrated into a designed 3D-printed structure. 

 
Figure 1. Schematic diagram of MMMI system. P1 and P2, polarizers; R1 and R2, quarter wave-
plates. 

In general, the P1 and the R1 are considered as an ensemble that is a polarization 
state generator (PSG). The light from the light source is modulated firstly by the PSG and 
then illuminates the sample. On the other hand, the R2 and the P2 construct another en-
semble that is called the polarization state analyzer (PSA). The transmission light of the 
sample is modulated by the PSA and then captured by the camera (Olympus, OHXDP60, 
2048 × 3076 pixels). 

In what follows, we introduce several main components of our MMMI system, to-
gether with the reasons why we selected them. 

Modern microscopes use a variety of light sources, and selecting an appropriate light 
source is crucial depending on the specific microscopy techniques and imaging require-
ments. Halogen lamps and light emitting diodes (LEDs) are the most common choices for 
routine imaging [28,29]. Halogen lamps have a continuous spectrum, providing a range 
from ultraviolet to infrared, and are suitable for both transmitted and reflected light mi-
croscopy due to their high brightness. In addition, halogen lamps are often used in con-
ventional brightfield microscopes and differential interference contrast (DIC) micro-
scopes. LEDs are low in power consumption, highly efficient, produce minimal heat, and 
have a long lifespan and are commonly used in conventional brightfield microscopes and 
fluorescence microscopes. Specifically, some applications may require LEDs with specific 
wavelengths. Laser sources, with their excellent monochromaticity and single-wavelength 
characteristic, are ideal for high-precision imaging, offering very high brightness and the 
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In general, the P1 and the R1 are considered as an ensemble that is a polarization
state generator (PSG). The light from the light source is modulated firstly by the PSG and
then illuminates the sample. On the other hand, the R2 and the P2 construct another
ensemble that is called the polarization state analyzer (PSA). The transmission light of the
sample is modulated by the PSA and then captured by the camera (Olympus, OHXDP60,
2048 × 3076 pixels).

In what follows, we introduce several main components of our MMMI system, together
with the reasons why we selected them.

Modern microscopes use a variety of light sources, and selecting an appropriate light
source is crucial depending on the specific microscopy techniques and imaging require-
ments. Halogen lamps and light emitting diodes (LEDs) are the most common choices
for routine imaging [28,29]. Halogen lamps have a continuous spectrum, providing a
range from ultraviolet to infrared, and are suitable for both transmitted and reflected light
microscopy due to their high brightness. In addition, halogen lamps are often used in
conventional brightfield microscopes and differential interference contrast (DIC) micro-
scopes. LEDs are low in power consumption, highly efficient, produce minimal heat, and
have a long lifespan and are commonly used in conventional brightfield microscopes and
fluorescence microscopes. Specifically, some applications may require LEDs with specific
wavelengths. Laser sources, with their excellent monochromaticity and single-wavelength
characteristic, are ideal for high-precision imaging, offering very high brightness and the
ability to focus on very small spots, but they are costly and require complex optical path
designs [30]. Hence, we modified a commercial microscope to build an MM imaging
system, using the halogen lamp provided by the microscope as the light source.
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Charge-coupled device (CCD) and complementary metal-oxide-semiconductor
(CMOS) detectors are the most common choices in modern microscopes [25,31]. CCD
detectors offer low noise and high resolution, suitable for applications requiring detailed
and clear imaging. CMOS detectors are favored for their fast readout speeds, low power
consumption, lower cost, and high integration, making them ideal for fast imaging appli-
cations such as live-cell imaging. In our MMMI system, we use a high-resolution CCD
camera to obtain clear polarization images of the samples.

Electronic controllers play a crucial role in achieving automation and high-precision
control in optical imaging systems. By precisely controlling the rotation angles of polariza-
tion modulation modules (including linear polarizers and quarter waveplates), different
polarization states of the light source and detection light can be generated for obtaining
complete MM data. In the MMMI system, we use servo controllers to achieve high-precision
rotation control of the polarization modulation modules through a unified electronic con-
trol unit, which ensures the stability and precision of the system, resulting in high-quality
imaging data.

This paper employs a low-magnification objective (5×) for MMMI. The low-
magnification objective provides a larger field of view, suitable for rapid detection, whereas
high-magnification objectives offer higher resolution, suitable for capturing tissue microde-
tails. Our method ensures detection efficiency while still effectively distinguishing between
cancerous and normal tissues.

2.2. Measurement of Mueller Matrix

The MM can characterize the linear modulation of light by the sample between the
incident light and the transmission light, as shown in Equation (1), where M represents the
MM of the sample, MP1 and MP2 represents the MM of the linear polarizer, MR1 and MR2
represents the MM of the quarter waveplate, and S and S’ represent the Stokes vectors of
the incident and the transmission lights, respectively.

S′ = MP2MR2MMR1MP1S, (1)

Expanding Equation (1) yields the following:
S′

0
S′

1
S′

2
S′

3

 = MP2MR2


m11 m12 m13 m14
m21 m22 m23 m24
m31 m32 m33 m34
m41 m42 m43 m44

MR1MP1


S0
S1
S2
S3

, (2)

where S0, S1, S2, S3 and S’0, S’1, S’2, S’3 represent the Stokes parameters of S and S’,
respectively, and mij denotes the (i, j)-th element of M.

To obtain the MM M of the sample, the MMMI system employs a series of polarized
lights generated by altering the azimuth angles of the linear polarizer and the quarter
waveplate in the PSG. These polarized lights include the horizontal polarization at 0◦

(H), the diagonal polarization at 45◦ (P), the vertical polarization at 90◦ (V), and the right-
handed circular polarization (R), which are used to illuminate the sample. Once the sample
is illuminated, the transmission light via the sample is collected by an objective with
a magnification factor of 5× and then analyzed by the PSA. In detail, the PSA can be
controlled to filter the polarization component of H, P, V, and R out of the transmission light
of the sample. These components are finally captured by the camera. Therefore, for each
incident polarized light, there are four images captured by the camera, corresponding to
intensities of polarization components of H, P, V, and R. In a complete measurement process,
the camera captures a total of 16 images for the four types of incident polarized light. For
simplicity, we use IHV to represent the image captured under the incident polarization state
of H and filtering polarization state of V, and based on similar expressions, the images of
the MM elements of the sample can be calculated by formulas in Table 1.
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Table 1. Formulas of the Mueller matrix elements of the sample.

Element Formula

m11 IHH + IHV + IVH + IVV
m12 IHH + IHV − IVH − IVV
m13 2IPH + 2IPV − IHH − IHV − IVH − IVV
m14 2IRH + 2IRV − IHH − IHV − IVH − IVV
m21 IHH − IHV + IVH − IVV
m22 IHH − IHV − IVH + IVV
m23 2IPH − 2IPV − IHH + IHV − IVH + IVV
m24 2IRH − 2IRV − IHH + IHV − IVH + IVV
m31 2IHP + 2IVP − IHH − IHV − IVH − IVV
m32 2IHP − 2IVP − IHH − IHV + IVH + IVV
m33 4IPP − 2IPH − 2IPV − 2IHP − 2IVP + IHH − IHV − IVH − IVV
m34 4IRP − 2IRH − 2IRV − 2IHP − 2IVP + IHH − IHV − IVH − IVV
m41 2IHR + 2IVR − IHH − IHV − IVH − IVV
m42 2IHR − 2IVR − IHH − IHV + IVH + IVV
m43 4IPR − 2IPH − 2IPV − 2IHR − 2IVR + IHH + IHV + IVH + IVV
m44 4IRR − 2IRH − 2IRV − 2IHR + 2IVR + IHH + IHV − IVH − IVV

2.3. Two Kinds of Useful Images Derived from Mueller Matrix Polar Decomposition

The MM contains all the polarization information of the sample, but its physical inter-
pretation for each element is not clear in relation to the sample. On the other hand, MMMI
is usually highly sensitive to sample features and related to the microscopic structure.
However, considering the fact that the TMA sample is usually quite thin, with the thickness
of only 4 µm and thus having the weak scattering, this study adopts the linear phase
retardation (δ) and the equivalent waveplate fast-axis azimuth angle (θ) as two primary
parameters to characterize the properties of the sample. Note that both parameters can be
derived from the MM polar decomposition [32], and they are well-defined, stable, and with
clear physical meanings. Normal tissues contain abundant collagen fibers, which exhibit
birefringence and thereby cause significant linear phase retardation (δ). Conversely, in
cancerous tissues, collagen fibers undergo degradation and destruction, resulting in notably
reduced linear phase retardation (δ). The equivalent waveplate fast-axis azimuth angle
(θ) characterizes the angle of the birefringence optical axis; in normal tissues, this axis is
relatively orderly distributed, whereas in cancerous tissues, it is comparatively disordered.
In fact, similar treatment has been adopted in Ref. [33].

Next, we use the MM polar decomposition to extract polarization parameters with
clear physical meanings from the MM. MM polar decomposition provides three main
polarization parameters, i.e., the depolarization (∆), the phase retardance (R), and the
diattenuation (D). The forward polar decomposition of the MM is described by Equation
(3), where M∆, MR, and MD represent the MM corresponding to the depolarizer, the
retarder, and the diattenuator, respectively. And MR can be further decomposed into a
linear-phase-retarder MM MLR and a circular-phase-retarder MM MCR. Note that the linear
phase retardance δ and the equivalent waveplate fast-axis azimuth angle θ of the sample
can be calculated by using Equations (4) and (5), respectively, where the lower case mLR is
the 3 × 3 sub-matrix of MLR, and ϵijk denotes the Levi-Civita permutation symbol, mLR(j, k)
represents the elements of mLR, and r1 and r2 are the vectorial elements of retardance.

M = M∆MRMD, (3)

δ = cos−1


[
(mLR(2, 2) + mLR(3, 3))2+

(mLR(3, 2) + mLR(2, 3))2

] 1
2
− 1, (4)

θ = 0.5tan−1
(

r2

r1

)
, ri =

1
2sin δ

×
3

∑
j=1,k=1

ϵijkmLR(j, k). (5)
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In what follows, we will conduct three types of analysis on the images of δ and
θ, extracting relevant parameters to examine the differences and similarities between
cancerous and normal samples.

2.4. Formatting of Mathematical Components

To analyze the polarization parameter images of samples, the statistics method, the
GLCM method, and the TIPM are used in this paper.

Two statistical parameters, i.e., skewness and kurtosis, are widely utilized in biometric
detection based on MM [34]. The analysis of the images is performed by calculating kurtosis
and skewness, as shown in Equations (6) and (7).

Kurtosis =

(
1
n

)
∑n

i=1

(
xi − xmean

s

)4
, (6)

Skewness =

(
1
n

)
∑n

i=1

(
xi − xmean

s

)3
, (7)

where n represents the number of samples in the data, xi denotes the i-th data, xmean is the
mean value of the data, and s represents the standard deviation of the data. Xu has pointed
out that these two statistical parameters have been widely applied in various fields such as
biology [35] and physics [36].

The GLCM is a statistical representation obtained by counting the occurrences of
pixel pairs with specific gray-level values at a certain distance in an image. Let f (x,y) be
a two-dimensional digital image and S be the set of pixel pairs within the target region
that exhibit a specific spatial relationship. The GLCM, denoted by P, which captures the
occurrences of grayscale values satisfying the defined spatial relationship, can be defined
as follows:

P(i, j) =
#{[(x1, y1), (x2, y2)] ∈ S| f (x1, y1) = i& f (x2, y2) = j}

#S
, (8)

where the numerator on the right-hand side of Equation (9) represents the count of pixel
pairs with a specific spatial relationship and given grayscale values of i and j, respectively,
while the denominator #S represents the total count of pixel pairs. Thus, the profile
integration of P obtained in this way is one.

It should be noted that, although the calculated GLCM cannot be directly applied for
texture inspection, texture features can be extracted from it using second-order statistical
measures. In this study, parameters including the contrast, the energy, the homogeneity,
and the correlation from the GLCM are used for texture analyses of sample images. (1) The
parameter of contrast reflects the clarity of an image and the degree of variation in texture.
The greater the depth of texture grooves, the higher the contrast, resulting in a clearer visual
effect. Conversely, if the contrast is low, the texture grooves appear shallow, resulting in a
blurry effect. (2) The parameter of energy is the sum of squared values of the elements in
the GLCM, which reflects the degree of uniformity in the grayscale distribution and the
coarseness of the texture in an image. Therefore, if all the values in the GLCM are equal,
the energy value will be small; if some values are large while others are small, the energy
value is large. When the elements in the GLCM are concentrated, the energy value is high.
(3) The parameter of homogeneity reflects the roughness of the image texture. Roughness
textures have a lower degree of uniformity, while fine textures exhibit a higher degree of
uniformity. (4) The parameter of correlation quantifies the similarity between elements of
the GLCM in the row or column direction, thereby capturing the local gray-level correlation
within an image. The magnitude of the correlation serves as an indicator of the level of
local gray-level correlation. A higher correlation is observed when the matrix elements
are uniformly distributed and equal. Conversely, a lower correlation is obtained when the



Sensors 2024, 24, 4703 7 of 17

matrix elements exhibit significant differences. These parameters can be calculated using
Equations (9)–(12).

Contrast =
Ng−1

∑
n=0

n2


Ng

∑
i=1

Ng

∑
j=1

|i−j|=n

P(i, j)

, (9)

Energy = ∑
i

∑
j

P(i, j)2, (10)

Homogeneity = ∑
i

∑
j

1

1 + (i − j)2 P(i, j), (11)

Correlation =
∑i ∑j (ij)P(i, j)− µxµy

σxσy
, (12)

Here, Ng represents the number of quantization levels after quantizing the image gray
values. µx, µy, σx, and σy are the mean and standard deviation of px and py, respectively.
The GLCM is a method used to describe texture features in digital images. It is based on the
spatial relationship between pixel gray values in the image; by analyzing the frequency and
positional relationship of different gray levels appearing between pixels, one can extract
texture information from the image. Currently, GLCM has been used for the analysis of
tumor tissues [37,38].

The TIPM developed by Tamura et al. has gained significant popularity as a powerful
approach for selecting optimal image features and designing texture analyzers [39]. To
facilitate image description, the TIPM provides a set of quantitative indicators. In this
study, we use three textural features, namely, the coarseness, the contrast, and the line-
likeness. These parameters can be calculated by using Equations (13)–(15). The parameter
of coarseness quantitatively reflects the granularity of texture and is considered as the
most fundamental textural feature. When comparing two texture patterns with different
elementary scales, the pattern with larger elementary scale is perceived as coarser. The
parameter of contrast is derived from the statistical analysis of pixel intensity distribution
and is determined by four factors: the grayscale dynamic range, the degree of polarization
between the black and white portions on the histogram, the edge sharpness, and the
periodicity of repetitive patterns. The parameter of line-likeness is an indicator used to
differentiate between line-like and dot-like texture structures.

Coarseness =
1

m × n

m

∑
i=1

n

∑
j=1

Sbest(i, j), (13)

Contrast =
σ

(α4)
n , (14)

Line-likeness =
∑m

i=1 ∑n
j=1 P(i, j)cos

[
(i − j)

( 2π
n
)]

∑m
i=1 ∑n

j=1 P(i, j)
, (15)

Here, m and n represent the width and height of the image, respectively; Sbest denotes
the neighborhood size for maximum intensity similarity; σ is the standard deviation of
the image; α4 is the kurtosis of the intensity histogram of the image; P is the m × n local
direction co-occurrence matrix; P(i, j) is the element in the i-th row and j-th column of the
matrix P. More details about the parameters can be found in the original work [39].

3. Results
3.1. Original Images of TMA

The TMA used in this study is a cancerous cervical and normal cervical tissue compos-
ite microarray (provided by Xi’an Zhongke Guanghua, China), where a total of 13 cases
are included. Each case consists of two spots: one representing cancerous tissue and the
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other representing normal tissue. The diameter of each spot is 1.5 mm, and the thickness
is 4 µm. The original images of the TMA are shown in Figure 2, where Figure 2a repre-
sents the original image of the TMA captured by a general camera, and Figure 2b–e show
some samples from the TMA. Figure 2b,c represent two spots of the original microscopic
image of cancerous cervical tissue, and Figure 2d,e represent two spots of the original
microscopic image of normal cervical tissue. According to the original microscopic images
shown in Figure 2b–e, it is challenging to distinguish the cancerous cervical tissue from the
normal one.
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3.2. Mueller Matrix of Cancerous and Normal Cervical Tissues

To accurately distinguish between cancerous and normal tissues, we obtain the MM
microscopic images of TMA. Figure 3 shows the MM images of two cancerous cervical
tissues (Figure 3a,b) and two normal cervical tissues (Figure 3c,d) in the TMA. We can
observe the structural features of the tissues from Figure 3. Compared to cancerous tissues,
the m24, m34, m42, and m43 of normal tissues exhibit more pronounced intensity distributions,
which mainly show birefringence. From Figure 3, it can be observed that the values of m22,
m33, and m44 are significantly large. This can be attributed to the limited thickness of the
tissues, as well as the inverse relationship between the values of m22, m33, and m44 and the
depolarization abilities of the tissues. The use of thin tissue samples with a thickness of
4~12 µm for transmission imaging implies limited scattering capability. In this study, the
thickness of the samples used is 4 µm, resulting in very small depolarization values for
the samples. The values of m12, m13, m21, and m31, which reflect the diattenuation of the
samples, are relatively small. Here, the m12, m13, m21, and m31 elements of normal tissues
show some slightly larger values compared with the cancerous tissues. The MM images
demonstrate some differences between the cancerous tissues and the normal tissues shown
in Figure 3.

3.3. δ and θ Images of Cancerous and Normal Cervical Tissues

The MM physical interpretation for each element is not clear in relation to the sample,
so we adopt the linear phase retarder (δ) and the equivalent waveplate fast-axis azimuth
angle (θ) derived from the MM polar decomposition to characterize properties of the
sample. The polarization parameter images of two cancerous cervical tissues and two
normal cervical tissues in the TMA are shown in Figure 4, where Figure 4a,b and Figure 4c,d
represent θ images of the cancerous and the normal cervical tissues, respectively, while
Figure 4e,f and Figure 4g,h represent the δ images of the cancerous and the normal cervical
tissues, respectively. θ can characterize the angle of the birefringent optical axis in the
sample. The θ images of cancerous cervical tissue exhibit a relatively ordered distribution of
anisotropic angles throughout the tissue, while the θ images of normal cervical tissue show
a disordered distribution of anisotropic angles throughout the tissue. Furthermore, from
Figure 4g,h, it can be observed that the δ value for normal cervical tissue is significantly
larger. This is due to the presence of stromal collagen, one of the main components of
cervical tissue extracellular matrix, which exhibits birefringence. In cancerous cervical
tissue, the stromal collagen is disrupted and degraded, resulting in a significantly smaller
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δ value compared to normal cervical tissue. The two polarization parameters previous
research [27] proposed for tissue slice detection can be used in TMA for inspection.
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3.4. δ and θ Grayscale Images of the Histograms

To further analyze the grayscale image of the spot shown in Figure 2, Figure 5 illus-
trates the histograms of grayscale images for θ and δ parameters. The x-axis represents
spot numbers (1, 2, 3, and 4), the y-axis shows normalized grayscale values, and the z-axis
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denotes the normalized pixel count. Spot 1 and 2 correspond to cancerous tissues, while
spot 3 and 4 are normal tissues.
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Figure 5a displays the histogram of θ grayscale images. The grayscale values of
cancerous tissues (red curves) predominantly concentrate in the high grayscale region
(approximately 0.8 to 1), with normalized pixel counts ranging from 0.5 to 1. This indicates
a higher concentration of pixels in the high grayscale range. In contrast, the grayscale
values of normal tissues (green curves) are also centered in the high grayscale region
(approximately 0.8 to 1), but with a lower peak (normalized pixel count between 0.2 and
0.5). This suggests that cancerous tissues contain a greater number of high grayscale pixels
compared to normal tissues.

Figure 5b shows the histogram of δ grayscale images. The red curves demonstrate
that the grayscale values of cancerous tissues are primarily around 0.7, with normalized
pixel counts between 0.4 and 0.45. The green curves indicate that the grayscale values of
normal tissues are centered around 0.75, but with a higher peak (normalized pixel count
from 0.6 to 1). This implies that cancerous tissues have fewer pixels in the high grayscale
region compared to normal tissues.

The analysis of these histograms reveals that although the grayscale value distributions
of cancerous and normal tissues are similar for both θ and δ parameters, there are significant
differences in pixel count distributions. Specifically, cancerous tissues exhibit more high
grayscale pixels in θ grayscale images and fewer high grayscale pixels in δ grayscale images.
These findings validate the efficacy of our method in distinguishing between cancerous
and normal tissues.

3.5. Quantitative Analyses of δ and θ Images Using Statistics Method, GLCM, and TIPM

To further analyze the texture features of cancerous and normal tissue images, Fig-
ure 6, Figure 7, and Figure 8 present statistics method parameter, GLCM parameter, TIPM
parameter boxplots of θ, δ images, respectively.
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Figure 6 presents the boxplots of kurtosis and skewness for 26 samples in the TMA.
Figure 6a, b represent the boxplots of θ, while Figure 6c,d represent the boxplots of δ. In
all boxplots, the red dots represent cancerous cervical tissue samples, and the green dots
represent normal cervical tissue samples. Figure 6a,d show that the values of cancerous
cervical tissues are consistently larger and have a wider distribution compared to that of
normal cervical tissues. The kurtosis of θ for normal cervical tissues is concentrated around
30, and the median skewness of δ is around 2. On the other hand, Figure 6b,c reveal that
the values for normal cervical tissues are generally larger than those for cancerous cervical
tissues. The skewness values of θ for normal cervical tissues are concentrated around −4.5,
and the median kurtosis of δ is around 17. The kurtosis and skewness of θ and δ images
can effectively differentiate between cancerous cervical tissues and normal cervical tissues.

Figure 7 presents boxplots of the GLCM parameters for all samples on the TMA,
with the cancerous cervical tissues indicated by red dots and the normal cervical tissues
indicated by green dots. From Figure 7a,e, it can be observed that the contrast parameter
of the GLCM reflects the differences in gray levels in the image. The values for cancerous
cervical tissues are lower than those for normal cervical tissues, indicating higher contrast
in the images of normal cervical tissue. From Figure 7b,f, the overlapping red and green
dots suggest similarities in texture features between cancerous cervical tissues and normal
cervical tissues. The homogeneity parameter of the GLCM reflects the orderliness of
image textures, where smaller values indicate more frequent changes in texture features.
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In Figure 7c, most of the red dots are distributed above the green dots, indicating that
the texture features in the θ images of cancerous cervical tissues change more frequently.
However, Figure 7g cannot distinguish between cancerous cervical tissues and normal
cervical tissues based on this parameter. On the other hand, the correlation parameter of
the GLCM reflects the grayscale correlation in the images. As shown in Figure 7d,h, the
values for cancerous cervical tissues are lower than those for normal cervical tissues. This
is because one of the main components of normal cervical tissue is collagen fibers, which
have nearly equal grayscale values in the collagen fiber regions. Therefore, due to the
homogeneous internal structure of normal cervical tissue, it exhibits higher autocorrelation.
In contrast, the destruction of collagen fibers in cancerous cervical tissues leads to lower
autocorrelation compared to normal cervical tissues. From Figure 7a,e,d,h, it is evident that
the red and green dots do not overlap. Thus, the contrast and correlation parameters of the
GLCM of θ and δ images can serve as auxiliary diagnostic tools.

Figures 8a–c and 8d–f, respectively, show the boxplots of the Tamura texture features
parameters coarseness, contrast and line-likeness for the 26 samples of θ and δ images. It
can be seen from Figure 8a,b,d,e that the coarseness and contrast of normal tissues (green
dots) are all higher than those of cancerous tissues (red dots). The line-likeness of cancerous
tissues are all larger than normal tissues in Figure 8c,f. From Figure 8, it can be indicated
the three parameters can well be used to diagnose cancerous cervical tissues.

4. Discussion

The traditional pathological diagnostic process typically requires pathologists to first
observe tissue samples using a low-magnification microscope to identify abnormal areas,
followed by a high-magnification microscope to determine if the tissue is diseased. This
process is not only time-consuming but also extends diagnostic times due to the limited
number of pathologists. TMA technology, which consolidates hundreds of different tissue
samples onto a single substrate, significantly reduces the need to frequently change slides
under the microscope. By understanding these differences, we aim to enhance the efficiency
of cancer diagnostics.

We have developed an automated MMMI system capable of capturing TMA samples
and performing MM decomposition. This system captures images of cancerous cervical
TMA using a low-magnification objective (5×) and directly uses MM parameters for
diagnosis, eliminating the need to switch to a high-magnification objective and thus saving
substantial time.

Unlike traditional MM microscopic techniques that use high-magnification objectives
(20× to 50×) [40,41], our study focuses on analyzing the MM parameters of pathological
tissues under a low-magnification objective (5×) specific to TMA characteristics. It should
be noted that high-magnification objectives (20×–50×) provide high-resolution imaging
with a small field of view, whereas a low-magnification objective (5×) offers low-resolution
imaging with a large field of view. This implies that the polarized images under high magni-
fication due to their high resolution can reveal more detailed information, thereby allowing
more accurate differentiation between cancerous and normal tissues. However, the process
is less efficient as it requires initially using a low-magnification objective to determine the
range of abnormal tissues, followed by gradual switching to high-magnification objectives
to delineate the diseased and non-diseased areas. Although a low-magnification objective
provides less detailed information compared to high-magnification objectives, according to
the data in Table 2, the information contained is sufficient to distinguish between cancerous
and normal tissues. Furthermore, due to the larger field of view of a low-magnification
objective, a more rapid diagnosis of cancerous tissues can be achieved. The data presented
in Table 2 clearly show the differences between cancerous and normal tissues in the TMA,
providing critical auxiliary diagnostic data for postoperative biopsies.
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Table 2. Values of grayscale, statistics method parameters, GLCM parameters, and TIPM parameters
for θ and δ images.

θ Images δ Images
Cancer Normal Cancer Normal

High grayscale
normalized pixels 0.5–1 0.2–0.5 0.4–0.45 0.6–1

Median value of statistics
method parameters

Kurtosis 200 30 −8 17
Skewness −12 −4.5 3 2

Median value of
GLCM parameters

Contrast 40 90 40 100
Energy 0.76 0.67 0.0022 0.0023

Homogeneity 0.89 0.87 0.34 0.345
Correlation 0.89 0.930 0.93 0.952

Median value of
TIPM parameters

Coarseness 16.4 17 16.2 16.7
Contrast 0.082 0.122 0.041 0.006

Line-likeness 0.036 0.028 0.024 0.019

To further illustrate the differences between low- and high-magnification objectives
in MMMI, Table 3 presents the variation in the θ images and δ images mean gray values
measured using 5×, 10×, 20×, and 50× objectives. It is found that the differences in mean
gray values of θ and δ between the cancerous image and the normal image increase as
the magnification increases. This is because higher-magnification objectives offer higher
resolution, capturing more tissue details. However, even for a 5× objective, the differences
are still sufficient for distinguishing normal and cancerous tissues.

Table 3. Mean gray values of θ and δ images.

Objective θ Images δ Images
Cancer Normal Difference Cancer Normal Difference

5× 251 235 16 78 90 12
10× 251 220 31 70 100 30
20× 253 200 53 69 110 41
50× 254 190 64 60 130 70

The high-throughput TMA and low-magnification objectives (5×) used in this study
have clear advantages in rapid diagnosis, particularly in large-scale screening and initial
examination. Nonetheless, rapid diagnosis may impact the accuracy and sensitivity of the
diagnosis to some extent. Low-magnification objectives, while providing a larger field of
view beneficial for rapid scanning and detection, have lower resolution, which may lead
to the insufficient identification of certain subtle pathological features, thereby affecting
diagnostic accuracy and sensitivity. Cancer cells can be classified into stages I, II, III, and IV
based on their differentiation; they can be precisely distinguished under high-magnification
objectives, but under low-magnification objectives, only the distinction between cancerous
tissues and normal tissue is achieved but not differentiation between different stage of
cancerous tissues.

For further discussion, we have provided a summary comparison Table 4 on the
recently reported literature with Limit of detection (LOD), sensitivity, measurement error,
and application. Classifying MM microscopy techniques, they can be divided into two
major categories: (1) MM microscopy explores the polarization characteristics of unstained
pathological slices, aiming to diagnose different stages of unstained pathological sections
through polarization parameters, and therefore does not report sensitivity. Number 1 [40]
of the Table 4 demonstrates that the depolarization, the equivalent waveplate fast-axis
azimuth angle, and the phase retardation parameters can differentiate normal colon tissue,
stage II, and stage III colon cancer. Number 2 [42] of the Table 4 shows that depolarization,
the equivalent waveplate fast-axis azimuth angle and the phase retardation, and anisotropy
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parameters can distinguish between stages I to IV of Breast ductal carcinoma. (2) MM
microscopy explores the polarization characteristics of stained slices. Number 3 [41] of the
table utilizes 16 MM elements combined with deep learning to diagnose giant cell tumor,
achieving a sensitivity of 99.45%. Number 4 [43] of the table combines MM elements with
deep learning techniques to diagnose mouse skin cancer, achieving a sensitivity of 94%.
Table 4 summarizes the above data and lists the magnification and measurement error used
in each work.

Table 4. LOD, sensitivity, measurement error, and application of Mueller matrix microscopic imaging
under different magnifications.

Number Method LOD Sensitivity Measurement
Error Application

1 25× objective stage II / 6% Colon cancer

2 10× objective stage I / About 1% Breast ductal
carcinoma

3 40× objective and
deep learning

Distinguish between
normal and

abnormal tissues
99.45% About 1% Giant cell tumor

of bone

4 100× objective and
deep learning

Distinguish between
normal and

abnormal tissues
94% About 1% Mice non-melanoma

skin cancer

TMA technology has been widely applied, for instance, in placental research, to
achieve high-throughput tissue analysis [11]. However, existing studies often employ
tissue staining or immunohistochemistry, which require specific probes and stringent
experimental conditions. In contrast, our combination of TMA technology with MMMI
achieves label-free, efficient detection for the first time, significantly enhancing the clinical
applicability of TMA.

Despite demonstrating a highly reliable method for detecting cervical cancer, our
study has some limitations. First, the sample including 13 cases of cancerous cervical
and normal cervical tissues is relatively small, potentially affecting statistical significance.
Future studies should increase the sample size to verify the generalizability of our results.
Second, the TMA samples in this study are 4 µm thick, which may introduce biases. Future
research should explore the impact of different sample thicknesses on detection results.

This study aims to provide an efficient postoperative pathological diagnostic method.
The combination of MMMI and TMA technology shows great potential in tissue detection
and cancer diagnosis. Future studies could further apply this technology to other cancer
types (such as breast cancer and prostate cancer) and high-throughput tissue analysis
platforms (such as pathological slide scanning) to improve clinical diagnostic efficiency.
Optimizing system configuration and image analysis algorithms will also help enhance
detection sensitivity and specificity.

In summary, this study combines MMMI and TMA technology to achieve efficient
detection of cancerous cervical tissue. The results indicate that linear phase retardance (δ)
and effective waveplate fast-axis orientation (θ) are effective parameters for distinguishing
cancerous from normal tissues. While there is still room for improvement, our preliminary
results provide a new technical pathway for postoperative pathological diagnosis and offer
key references for future research directions.

5. Conclusions

TMA technology has the potential to significantly enhance the efficiency of sample
preparation, thereby reducing the postoperative biopsy histopathological diagnosis time.
The MMMI technique can overcome the limitations of specific probes, storage conditions,
and fluorescent labeling requirements, enabling the label-free, non-destructive, and non-
contact detection of TMA inspection. In this study, we employed TMA in conjunction with
the MMMI technique for cancerous cervical detection. The two polarization parameters
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by using a high-magnification objective (20×–50×), namely the linear phase retardance
equivalent waveplate fast-axis azimuth θ and linear phase retardance δ images, which
were previously proposed for tissue slice detection, can also be used for TMA inspection.
Statistics methods, GLCM, and TIPM were utilized to extract features from these polar-
ization parameter images. The experimental and analytical results obtained using the
low-magnification objective (5×) indicate that the θ and δ images can serve as effective
parameters for distinguishing the polarization microscopy image features of cancerous
cervical tissues from normal cervical tissues. These findings highlight the significant value
of the proposed approach for the histopathological diagnosis of cancer in postoperative
biopsies, as well as the detection of tissue microarrays (TMAs).
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Abbreviations

Abbreviations Full name
MMMI Mueller matrix microscopic imaging
TMA Tissue microarray
MM Mueller matrix
GLCM Gray-level co-occurrence matrix analysis
TIPM Tamura image processing method
HPV Human papilloma virus
PCR Polymerase chain reaction
DIC Differential interference contrast
LED Light emitting diode
CCD Charge-coupled device
CMOS Complementary metal oxide semiconductor
PMT Photomultiplier tube
APD Avalanche photodiode
θ The equivalent waveplate fast-axis azimuth angle
δ The phase retardation
PSG Polarization state generator
PSA Polarization state analyzer
H The horizontal polarization at 0◦

P The diagonal polarization at 45◦

V The vertical polarization at 90◦
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R The right-handed circular polarization
D Diattenuation
∆ Depolarization
R Phase retardance
L Linear
C Circular
LOD Limit of detection
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