
Citation: Zhao, T.; Li, Z. Distributed

Resources Allocation Method for

Space–Ground Integrated Mobile

Communication System. Sensors 2024,

24, 4711. https://doi.org/10.3390/

s24144711

Academic Editor: Omprakash

Kaiwartya

Received: 24 June 2024

Revised: 17 July 2024

Accepted: 18 July 2024

Published: 20 July 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Distributed Resources Allocation Method for Space–Ground
Integrated Mobile Communication System
Tingyin Zhao 1,2 and Zhidu Li 1,2,*

1 School of Communications and Information Engineering, Chongqing University of Posts and
Telecommunications, Chongqing 400065, China; 2021210213@stu.cqupt.edu.cn

2 Information and Communications Institute, Chongqing University of Posts and Telecommunications,
Chongqing 400065, China

* Correspondence: lizd@cqupt.edu.cn

Abstract: This paper presents an innovative approach towards space–ground integrated communi-
cation systems by combining terrestrial cellular networks, UAV networks, and satellite networks,
leveraging advanced slicing technology. The proposed architecture addresses the challenges posed
by future user surges and aims to reduce network overhead effectively. Central to our approach is the
introduction of a marginal mobile station (MS)-assisted network resource allocation decision architec-
ture. Building upon this foundation, we introduce the DP-DQN model, an enhanced decision-making
algorithm tailored for MSs in dynamic network environments. Furthermore, this study introduces a
feedback mechanism to ensure the accuracy and adaptability of the marginalization model over time.
Through extensive simulations and experimental validations, our DP-DQN-based edge decision
method demonstrates substantial potential in alleviating core network overhead while improving
success access ratios compared to conventional methods.
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1. Introduction

The integrated space–ground communication systems hold a promising future in the
evolving landscape of mobile communication networks, particularly with their potential to
expand coverage significantly [1–3]. Such systems are pivotal in advancing the Internet
of Things (IoT), enabling a vast network of interconnected devices across more extensive
and varied terrains [4–6]. Moreover, the fusion of these integrated systems with existing
cellular networks promises to diversify and enrich the service types available to individual
users, marking a significant leap forward in communication technology [7,8].

To realize the full potential of space–ground integrated communication systems, one
crucial challenge is the efficient allocation of resources [9–11]. This involves the devel-
opment of network slicing strategies and cross-network resource scheduling algorithms
that take the unique characteristics of both satellite and cellular networks into account.
Specifically, the location of MS will no longer be limited to the ground, but will expand and
include sea and air [12–15]. Thus, certain devices can access not only the cellular network
but also the satellite or drone network at the same time. When necessary, the MS also needs
to switch between the network. Therefore, for the new generation of network resource
allocation algorithms, it is necessary to include location information in order to maximize
network efficiency and ensure seamless service delivery across the different layers of the
integrated system.

Despite numerous advancements, current resource allocation methods, particularly
those based on deep reinforcement learning techniques such as Deep Q-Networks (DQN)
and Deep Deterministic Policy Gradient (DDPG) exhibit limitations. These algorithms
often fall short in real-time performance and fail to consider the integration of multiple
physical channels within the space–ground system, thus leaving considerable room for
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improvement in network efficiency. These gaps in existing methodologies underscore the
necessity for our research.

To address these shortcomings, we introduce a novel integrated network slicing ap-
proach coupled with a Distributed Deployment Deep Q-Network (DP-DQN) resource
allocation method. Our approach decentralizes the decision-making process by distributing
the decision models to the user end, thus facilitating on-the-spot network resource decisions.
This not only ensures real-time responsiveness but also reduces network overhead while
accommodating the demands of various physical channels [16–19]. Through this innova-
tion, our study seeks to significantly enhance the operational efficiency of space–ground
integrated communication systems.

The contributions of this paper are summarized as follows:

• Firstly, we propose a new converged system based on the existing infrastructure of
cellular and satellite communication networks, in which all resources are deployed in
a unified manner rather than “separate and conquer”.

• Secondly, based on the idea of SDN, we propose a new network controller based on a
distributed resource allocation decision-making model, which assigns the implemen-
tation body of decision-making behavior from the original core network controller
to the access mobile terminal, so as to alleviate the dilemma of the rapid increase in
access volume which will cause a huge burden on the core network in the future.

• Thirdly, based on DQN and negative feedback network technology, we propose a
new DP-DQN model based on reinforcement learning for the overall system resource
allocation, so that the mobile station can consider the problem of resource allocation
from the perspective of the core network overhead, so as to make access requests
conducive to the efficiency of the core network.

The remainder of this article is organized in the following order. The related works
involved in this paper are reviewed in Section 2. In Section 3, the allocation system
model is proposed and the optimization problem is formulated. Data rate optimization
is investigated in Section 4 while physical network optimization is studied in Section 5.
Finally, simulation and numerical results are presented and discussed in Section 6 followed
by the Section 7.

2. Related Work

In this section, the paper introduces the related works from three aspects: network
slicing, satellite navigation and resource allocation methods. In previous studies, these
three topics were usually studied separately.

2.1. Network Slicing

Slicing technology is proposed to enhance the differentiated service capability of
the network, which is mainly carried by the cellular mobile communication network. In
recent years, the concept of satellite slicing has been proposed, so we introduce it from the
following two parts: cellular network slicing and satellite network slicing.

In Cellular Scenarios, emphasis is usually placed on improving slice efficiency and in-
creasing service types while reducing inter-slice interference. In [20], the author introduced
a novel cooperative multi-agent reinforcement learning (RL) algorithm for RAN slicing,
designed to adapt to variable slice numbers and effectively scale as they grow. In [21], the
author formulated the slice-based service function chain embedding (SBSFCE) problem
as an integer linear programming (ILP) that aims to fulfill differentiated requirements of
flows. In [21], the proposed architecture leveraged new SDN extended federation modules
in compliance with the ETSI requirements for inter-MEC system coordination. In [22], the
author presented an innovative actor–critic Reinforcement Learning (RL) model named
Slice Isolation based on RL (SIRL) to ensure the isolation between different slices while
maximizing the user requests. In [23], the author proposed a QoS and security-oriented slic-
ing resource allocation scheme in a multi-cell and multi-slice scenario in order to minimize
the slice interference.
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In Satellite Scenarios, emphasis is usually placed on improving resource usage effi-
ciency and communication coverage. In [24], the author proposed a trust-based satellite
Internet resource-slicing access authentication scheme to solve the efficient and secure
access requirements in satellite communication. In [25], the author proposed a two-layer
dynamic reconfigurable RAN slicing architecture for the ultra-dense low earth orbit satel-
lite network (UD-LSN) to improve the slices’ efficiency. In [26], an architecture of IoT
supportable satellite edge computing (SatEC) enabled by LEO satellite was proposed for
global coverage extension and 3-D mobility enhancement. In [27], the author proposed an
optimization satellite slicing framework able to exploit the available resources allocated to
the defined network slices in order to meet the diverse QoS/QoE requirements exposed by
the network actors. In [28], a hierarchical resource slicing framework was proposed for dy-
namic allocation of multidimensional resources to solve the problem of resource slicing and
scheduling of joint 3C resources in a RAN edge scenario assisted by LEO content caching.

In summary, previous research on network slicing technology has regarded satellite
and cellular networks as two independent individuals, and ignored the possibility of
combining the two systems. This circumstance in the future wide coverage and diversified
services of the new generation of mobile communication scenarios will lead to the problem
of resource utilization.

2.2. Satellite Navigation

The Global Navigation Satellite System (GNSS) plays a pivotal role in delivering posi-
tioning services that are essential for a wide range of applications, from personal navigation
to complex industrial operations. In recent years, there have been two research hotspots:
satellite signal processing methods and navigation algorithms in severe climate situations.

In Signal Processing, the focus of research is often on how to improve the positioning
accuracy by changing the transmission sequence or modulation mode. In [29], the author
proposed an optimization-based tightly-coupled precise point positioning (PPP) inertial
navigation system (INS) vision integration method to achieve precise and continuous
state estimation. In [30], the author presented a new broadband multi-carrier navigation
modulation, namely orthogonal frequency division multiplexing with binary offset carriers
(OFDM-BOC) in order to improve spectrum efficiency, tracking performance and anti-
interference ability. In [31], a novel M-estimation-based robust iterated cubature Kalman
filter (ICKF) was developed to minimize the impact of GNSS outliers while improving the
correction effect of high-quality line-of-sight (LOS).

In Severe Climate Algorithms, the focus of research is the algorithm design to reduce
the interference in remote areas with severe climate. In [32], the author implemented the
tightly coupled integration of navigation satellites with a low-cost micro-electromechanical
system’s (MEMS) inertial measurement unit (IMU) to improve vertical accuracy and applied
nonholonomic constraints to improve the standalone MEMS inertial navigation system
(INS) performance during an outage. In [33], the author developed an adaptive–robust
fusion strategy for low-cost GNSS systems which can provide reliable fusion positioning
solutions when the GNSS signal is challenged.

In summary, navigation systems used to be studied as separate modules. Other
navigation-related services simply invoke the navigation module as clients. Such a frag-
mented design approach obviously has a large room for improvement in resource utiliza-
tion and system reliability, especially in many emerging scenarios that require navigation
system assistance.

2.3. Network Decision Method

In the research on network resource allocation, there are two main aspects: traditional
non-AI resource allocation algorithms and AI-assisted intelligent resource allocation algo-
rithms. Because of its unique flexibility, the latter can often greatly improve the efficiency
of the network.
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In non-AI Methods, a distributed power allocation was performed in [34] to optimize
the performance of cell-edge users by Lagrange method. In [35], the author introduced a
distributed structure for the resource allocation problem by forming a convex optimization
problem, maximizing the overall system utility function. In [36], a new resource allo-
cation optimization and network management framework for wireless networks using
neighborhood-based optimization has been proposed instead of fully centralized or fully
decentralized methods to reduce interference and increase capacity.

In AI-based Methods, researchers are aiming to offer a more dynamic and responsive
approach to resource allocation. In [37], the author proposed a multi-agent deep rein-
forcement learning (DRL) approach with an action space reduction strategy to achieve the
dynamic VNF orchestration, backup and mapping solution. In [38], the author proposed
a resource allocation (RA) method using dueling double deep Q-network reinforcement
learning (RL) with low-dimensional fingerprints and soft-update architecture (D3QN-LS)
based on a Manhattan grid layout urban virtual environment. In [39], an improved deep Q-
network (DQN) algorithm was introduced to improve the efficiency of resource utilization.
In [40], the author investigated the dynamic offloading of packets with finite block length
(FBL) in an edge-cloud collaboration system consisting of multi-mobile IoT devices (MIDs)
with energy harvesting (EH), multi-edge servers and one cloud server (CS) in a dynamic
environment based on a multi-device hybrid decision-based DRL solution. In [41], based on
the enhanced K-mean algorithm and multi-agent PPO (MAPPO) algorithm, a cooperative
trajectory design method was proposed for the UAVs to minimize interaction overhead and
optimize deployment efficiency. In [42], the author proposed a novel algorithm based on
Soft Actor–Critic (SAC) to solve the system cost minimization problem considering vehicle
users’ satisfaction, RSUs’ cost and vehicle workers’ reward.

In summary, although AI-based network resource allocation methods solve the prob-
lems of traditional non-AI methods in terms of flexibility, the current AI methods, especially
the use of deep network cases, still have problems when talking about real-time process-
ing. In addition, these methods have rarely taken space–ground integrated circumstances
into consideration.

2.4. Motivation of Our Works

In summary, current research on network slicing, satellite navigation and resource
allocation is poor in terms of the converged control and real-time requirement emphasized
by the integrated space–ground communication system, which motivates this paper.

3. System Model

In this section, we consider a new kind of distributed resources allocation structure
based on the slicing technology of the space–ground integrated communication system.

3.1. Network Scenario

In the architecture designed by us, there are three types of physical information carriers,
namely satellite networks, cellular networks and drone networks, which are marked as M1,
M2 and M3. At the same time, each physical channel contains three network slices, T1, T2
and T3. By the way, we define a virtual concept as a ‘location area’. As shown in Figure 1,
each ‘area’ contains several MSs with the similar properties.

Also, each of the networks Mi will serve a number of MSs. For example, the distances
between users from K21 to K2N and certain base stations are relative high, where we call
them sub-urban or rural areas. In these circumstances, we introduce a satellite network
that acts as the carrier of eMBB service instead of cellular network.

In Figure 1, we can see a special access device, the K2N . For the same kind of service
slice, its state is bounded between suburban and urban areas, so both networks can be used
as its carrier.
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Figure 1. The deployment of decision model: the decision model will be pre-trained on the core
network controller and sent to the MS.

In order to select a more suitable network for access, we conduct our works based on
core network overhead, which means the network access decision will be made by the MS
from the perspective of network overhead.

The whole decision process of network access at the MS side will follow the proce-
dure below.

• First of all, the MS will analyze the data size and service type of the data to be sent,
and determine its transmission power.

• Secondly, this information is fed into the DP-DQN model (discussed in detail later in
this article) delivered from the network side and determines the type of network that
is ultimately accessed.

Different from the traditional network, the training and deployment process of DP-
DQN model is based on SDN (Software Defined Network). Here, we introduce the DP-DQN
deployment method.

Firstly, as shown in Figures 1 and 2, the basic model will be trained at the side of the
core network controller. Specifically, the input parameters are service types, average data
volume and current network congestion. After this process, the pre-trained model is sent
to each network carrier without distinction. The red dashed line in Figure 1 represents the
model transfer flow for this process.

Secondly, each network will then train the model twice, adding its own parameters
based on the model of core network controller, such as the signal transmission power on
the network side, the average delay of the network and the user amount in the coverage.

Finally, these secondary training models will be passed to the MS at the edge, where
these models will undergo the final training. Here, the third (final) training process at
the MS side will also conduct integrated learning with all the models received. Here, the
training of the model will take the following parameters into account: the user’s own
average amount of data, location information (i.e., latitude and longitude altitude), the
state of the three networks at this time and the records of past resource decisions. Thus,
what the core network controller should do is to keep monitoring the crowd state while
renewing the basic decision model.

The parameters included in the three training sessions are summarized in Table 1.
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Table 1. Summary of parameters in the three training processes.

Training Process Parameter Descriptions

Round 1
Total Service Types

Average Data Volume
Network Congestion

Round 2
Network Side Transmission Power

Average Delay of the Network
User Amount in the Coverage

Round 3

Average Data Amount
MS Location Information
States of Three Networks

Records of Past Resource Decisions

The overall frequency resource mapping relationship is shown in Figure 3. On the left
is the frame structure of the three physical networks, in the middle is the time–frequency
domain resource allocation diagram and on the right is the data packet to be sent by the
user. The data to be sent by the user are first analyzed to determine the type of service they
belong to. The data are then mapped to the appropriate resource block. Finally, the access
network is determined according to the user’s location and other related information.

Figure 2. Distributed network decision-making structure.

Figure 3. The diagram contains three service types (three slices) for two users. Here, user 1 is located
in countryside industrial areas away from the cellular network, so the eMBB service is mapped to the
satellite network, while mMTC is mapped to the drone network.
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In Figure 2, the allocation decision-making process is given, consisting of three aspects,
package and access strategy analysis at the MS side, slice management at the side of the
core network controller and the location analysis provided by navigation systems (GNSS).

Figure 2 is consistent with what is described in the previous chapters, and we further
elaborate it from the perspective of model training. In the initial training stage, the DP-DQN
model will first be trained based on the reinforcement learning method, and then in the
process of continuous iterative update of the initial model, data from Channel Monitor
will be used to improve the adaptability of the model. Then, the secondary training will
be performed on each network node before the final deployment of the model. On the
client side, the data to be sent are packaged by Message Package block, analyzed in the
Type Analysis module and given a priority. At the same time, the current MS location
information is obtained by the MS location module. Each time data are sent, the above
information is obtained, and combined with the final resource allocation result and system
feedback, the MS side will form a data pool. Subsequent edge DP-DQN models will be
trained based on this.

3.2. User Request Procedure

To illustrate the network access process, we take one MS (K2N) as an example, using
the architecture in Figures 1 and 2.

Firstly, the core network controller sends the pre-trained model with the real-time
crowd state to all the physical network carriers, and then these nodes send the model to
the K2N after secondary training.

Secondly, K2N in the certain area M2 ask for a connection to send messages through
the network. Here, the message will be analyzed by the designed algorithm to give it
a classification of service type and allocated data rate at the same time. Also, K2N gets
its location (i.e., longitude, dimension and altitude) from the HEO navigation satellite as
other parameters.

Thirdly, the algorithm embedded in MS will use these parameters to calculate the most
suitable RB requirement with transmitting power. Then, K2N will employ the DP-DQN
model to decide which physical network (e.g., Satellite Network eMBB Slice) to switch in.
Here, for K2N which is located in the near-urban area, the slices allocated from the satellite
will be much more expensive than those from the cellular network.

Finally, the analysis result (service type, access network and needed RB number) will
be sent to a particular network. Available slice blocks will then be allocated to the user
to meet the demand of data rate. If the current network no longer has enough resources
due to resource requests from other users, the core network will meet its needs as far as
possible according to the principle of proximity. If this is still not satisfied (in practice,
such a scenario is very rare), feedback will be sent to the mobile station to recalculate the
appropriate access network.

3.3. Network Update Process

In our design, the update of the network will consist of two parts: the core network
controller and the MS controller. The former is mainly to update the current usage and
congestion index of each slice and network in real time, while the latter is to update the
location of MS in real time.

3.3.1. Channel State Update

The channel state monitor block will keep updating every t minutes, checking the
usage rate of each slice.

3.3.2. Positioning Update

The location monitor block will keep asking for new data from the HEO satellite every
t minutes.
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The parameter t is not concrete which will change depending on the characteristics
(e.g., speed or altitude) of the MS.

Since the whole process and decisions are made by the MS, there may be some
mistakes due to the message latency. For example, when MS performs slice selection
analysis, because the network has not had time to update the latest network situation for
MS, the slice selected by MS may be assigned to other users at this time, but MS does not
know this situation, resulting in allocation (access) failure.

Therefore, the proposed procedure contains a feedback loop which is designed to
solve the possible volatility of the network, as you can see in Figure 4. Every failure record
of allocation will be transmitted backward to the first step to lower the fail rate of the next
allocation decision.

Figure 4. Distributed network decision-making process flow.

3.4. Problem Formulation

As is mentioned above, to relieve the core network overhead, we shift some of the
work of allocation from the original core network controller to the mobile station side, that
is, the mobile station will first determine which physical slice (satellite or cellular network)
is the most suitable for itself. Considering that slices are different in the latency and the
channel atmosphere, we introduce a parameter C to describe the cost of certain slices to
help the MS make the decision.

C = [Cost] = G
(
T, R′, A(t), Pkb(t)

)
(1)

= λ1T + λ2R′ + λ3A(t) + λ4Pkb(t) (2)

where R′ denotes the actual allocated data rate of users

R′ = RGe(R, T) = R
G(R, T)

100
(3)

among which, Gij(R, T) ∈ [0, 100] is an urgency factor to describe how much content in the
package is valuable to be given the first priority, which has been fully investigated in [43–45].

The resources allocated for user access should be as small as possible under the premise
of meeting its priority and data volume, so as to improve the data utilization efficiency
of the system. Hence, the allocation procedure can be transformed to an optimization
problem.

minimize
A(t),Pkb(t),R′

(C) = minimize
A(t)

(
G
(
T, R′, A(t), Pkb(t)

))
(4)

s.t. Aij(t) ∈ [0, 1], 1 ≤ i ≤ 3, 1 ≤ j ≤ N (5)

3

∑
i=1

N

∑
j=1

Aij ≤ Cch (6)

Here, in our research, we propose three types of slices as mentioned before, thus,
T = Z+, [1, 3] which is a 1 × N array where N indicates the number of total requests.
Parameter A = R+, [0, 1] is a 3 × N array aimed to describe the state of every slice and
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RB (used, crowed, etc.) which is positively correlated with channel allocation cost in the
formula. P indicates the density of MS around a particular mobile devices.

Sorting through the optimization problems we just listed, we can get the following
formula.

P1 :minimize
A(t),Pkb(t),R′

(
λ1T + λ2R′ + λ3A(t) + λ4Pkb(t)

)
(7)

s.t.
3

∑
i=1

N

∑
j=1

Aij ≤ Cch (8)

Tij ∈ {1, 2, 3}, 1 ≤ i ≤ 3, 1 ≤ j ≤ N (9)

Aij(t) ∈ [0, 1], 1 ≤ i ≤ 3, 1 ≤ j ≤ N (10)

The problem is to find the best couple A, P and R′ to minimize the cost function.
Formula (7) restricts the maximum capacity of the logical channel, while formula (10)
defines the allocation state of the slice. Corresponding to the channel slicing problem, the
goal of each MS when asking for access to the network is to find the best physical network
to switch in reflected by A, the transmitting power P and proposed data rate R′.

However, the optimization problem listed here is a NP-hard problem which cannot
be worked out by the MS quickly. Thus, we divide the whole problem into two sub-
optimization problems: allocated data rate optimization, P2, and allocated physical network
optimization, P3.

The first optimization problem P2 is to find the optimal transmit power and the
number of resource blocks to meet the needs of users under the assumption of a physical
distribution network. In the previous section, we discussed the goal for the MS in the
resource allocation problem P1 as a minimization problem, where one of the goals is to
minimize R′. In other words, it is to make R as large as possible, but not more than R′,
which is the minimum transmission rate to meet the requirements of k service.

P2 :maximize
Pkb(t),Ø

(Rk) = ∑
b∈B

ØBkb
∑b∈B akb(t)

M
× log2 (1 +

Pkb(t)hkb(t)
σ2

k (t)
) (11)

s.t. Rk ≤ R′
k (12)

∑
b∈B

Bkb ≤ Bb (13)

∑
b∈B

Pkb ≤ Pb (14)

3

∑
i=1

N

∑
j=1

Aij(t) ≤ Cch (15)

Tij ∈ {1, 2, 3}, 1 ≤ i ≤ 3, 1 ≤ j ≤ N (16)

Aij(t) ∈ [0, 1], 1 ≤ i ≤ 3, 1 ≤ j ≤ N (17)

In the above optimization problem, the symbol χ represents the proportion of resource
panes that can actually be used in an allocated resource block.

χ =
∑b∈B bkb(t)

M
(18)

The parameter bkb(t) describe the state of each slice (i.e., whether it will be allocated
to current service T or not) which is a crucial factor in the allocation process.

bkb(t) =

{
1, if the slice has been allocated
0, else

(19)
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The second optimization problem is to select the most appropriate allocated physical
channel according to the characteristics of the users, so as to minimize the total overhead
when the transmission power and the number of allocated resource blocks are determined.

P3 :minimize
A(t)

(C) = minimize
A(t)

(
G
(
T, R′, A(t), Pkb(t)

))
(20)

s.t. Aij(t) ∈ [0, 1], 1 ≤ i ≤ 3, 1 ≤ j ≤ N (21)

3

∑
i=1

N

∑
j=1

Aij ≤ Cch (22)

The sub problems P2 and P3 will be discussed in the following sections. The whole
solving process has been illustrated in Figure 4. All the variables defined in this article are
summarized in Table 2.

Table 2. Summary of parameters.

Parameters Description

R Reference transmission rate matrix of services
Z Package size matrix of users
T Service type matrix of users
Sp Priority score matrix of users
R′ Actual allocated data rate matrix

Pkb(t) Transmitting power matrix of users
M Number of MS per unit time
Bkb Allocated bandwidth of a certain user

Pkb(t) Transmitting power of a certain user
hkb(t) Channel state array of a certain physical link
σ2

k (t) Noise power of a certain channel
Li Location parameter of a certain user
Dij Distance between two access node in Km
ρ(t) MS density of a certain location area

C Cost function of an allocation decision
Cch Capacity of a certain slice

A(t) Slice allocation states(allocated or not)
Ø Resource availability of a certain slice

S(t) User real time parameter (e.x. data amount)
PW(t) Penalty function of DP-DQN

DA Congestion Rate of slices
Lc The distance from MS to cellular access node
Lu The distance from MS to UAV access node
AS The successful access ratio of several MS
Bdc The network overhead of control panel
Bdu The network overhead of user panel

4. Data Rate Optimization

In our research, logical channels are defined from the perspective of the system, that
is, a logical channel contains different mappings of physical channels, so different resource
blocks correspond to different channel noise and raw resource allocation. Therefore, when
solving the optimization problem, the MS needs to solve R separately in several different
physical mappings and get the final optimal scheme.

Thus, the problem P2 can be conducted in these two process named as:
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• P4: First, it is assumed that in all physical mapping cases, the transmitted power of
MS is the same. On this basis, R is calculated and the optimal allocation resource block
amount is selected.

• P5: Then, when the allocated resource block is determined, the transmission power
Pkb(t) is changed to obtain the optimal transmitting rate R.

4.1. P4 Optimization

For a given transmitting power and the current slice state, the RB allocation question
can be formulated as

P4 :maximize
Ø

(Rk) = ∑
b∈B

ØBkb
∑b∈B akb(t)

M
× log2 (1 +

Phkb(t)
σ2

k (t)
) (23)

s.t. Rk ≤ R′
k (24)

∑
b∈B

Bkb ≤ Bb (25)

3

∑
i=1

N

∑
j=1

Aij(t) ≤ Cch (26)

Tij ∈ {1, 2, 3}, 1 ≤ i ≤ 3, 1 ≤ j ≤ N (27)

Aij(t) ∈ [0, 1], 1 ≤ i ≤ 3, 1 ≤ j ≤ N (28)

where Ø is a matrix of χkb.
We design an optimization Algorithm 1 for the MS to find out the proper slices named

FPCB (Fixed Power Change the Block).

Algorithm 1 Algorithm of FPCB (P4)

Require: A, P, Bkb, P (This is Inputs)
Ensure: B, A (This is Outputs)

1: Set the initiate solution B(0), P, A
2: while A is not full do
3: calculate the capacity of each RB
4: for each n ∈ [1, length(A)] do
5: if An is not full then
6: for each i ∈ [1, length(An)] do
7: allocate this slice to the MS
8: calculate the rate of this slice in the block n
9: R = R + Ri

10: end for
11: else
12: jump to the next RB
13: end if
14: Compare which of the block has a higher rate and select it as B
15: Try other kind of B
16: Renew the channel allocation A
17: end for
18: end while
19: return Outputs B, A

4.2. P5 Optimization

Now that the proper slices of RB have been found out, the task is to change the
transmitting power accordingly to get the result.

P5 :maximize
Pkb(t)

(Rk) = ∑
b∈B

ØBkb
∑b∈B akb(t)

M
× log2 (1 +

Pkb(t)h
σ2

k (t)
) (29)
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s.t. ∑
b∈B

Pkb ≤ Pb (30)

Since we assume that the data of the same service request from the same MS will all
be mapped to the same type of physical channel (for example, language information from
user A in remote areas can all be mapped to satellite channels), the channel matrix here can
be set to be the same when the transmission power is optimized, that is, the transmission
power of each resource block is the same. Thus, we change the restriction of the P3 as

s.t.Pkb =
Pb
N

(31)

5. Physical Network Optimization

In the previous section, the algorithm has given several feasible physical RBs for the
MS to switch in. The goal of this section (the third step in Figure 4) is to propose a method
to finally choose one particular network among the given choices based on the analysis of
penalty function.

We propose a new DP-DQN algorithm based on deep reinforcement learning in this
section to solve the optimization problem—select the appropriate access physical channel
to minimize the overall network cost (i.e., from the perspective of core network overhead
instead of single MS).

It is worth mentioning that the training method and use of DQN used in this study
are slightly different from the conventional situation. In this study, the training of DQN is
located in the controller side of the core network, while the actual deployment of the model
is located in the MS side. This design is because we hope to achieve an equivalent feedback
loop through core network controller training and marginal terminal deployment, so that
the mobile terminal can consider the access selection problem from the perspective of core
network overhead.

After the training is completed, DQN will be deployed to the mobile terminal. Here,
we draw on the idea of federated learning by deploying the edge decision model while
absorbing the real-time data of each mobile station for final training to improve the accuracy
of the model and the overall efficiency of the network. So we call it DP-DQN, or Distributed-
Deployed DQN.

As you can see in Figure 5, during the training process, we will simulate some of the
possible access request from the MS to the network. Then, the cost of certain actions will
be calculated based on the designed formula to estimate the overhead of this allocation
decision made on the network.

Figure 5. Proposed DP-DQN pre-training process at the side of the core network controller.

We define the actions State Space and Action Space here. Instead of the Reward
Function in the previous section, we define a Penalty Function to put the most emphasis
on the action of the MS. In other words, if the MS makes a request which will put more
burden on the core network, penalty will be given to the MS to make sure the overhead of
the network is being kept at a relatively low level.
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5.1. State Space

The state space of the proposed model is the current crowd situation of the network
which is sent in the form of periodic packages to the mobile devices. The definition of
this part is similar to that of Q-learning. The difference is that here, we focus more on the
overhead of the network as a state factor.

S(t) = A(t), k ∈ K, b ∈ B (32)

Here, in addition to slicing state information similar to traditional Q-learning and
DQN, we introduce some real-time user state information in order to better allocate network
resources (e.x. user location, transmitting power, user data amount, etc.). Thus, the state
space can be summarized as follows:

S(t) = [A(t), Pkb(t), Dk(t), R′
k(t)], k ∈ K, b ∈ B (33)

where Dk(t) = {Lc(t), Lu(t), ρ(t)}, which is the location status parameter of the mobile
device and represents the shortest distance from the mobile station to the cellular and UAV
network access point and MS density in certain areas, respectively, collected and analyzed
by the satellite navigation module.

Lc,2,1(t) =
√

d2,1(t)
2 + (h2(t)− h1(t))

2 (34)

ρ(t) =
card(U(t))

πR2 (35)

The parameters in the above two formulas can be obtained in the following ways. The
position relationships between mobile stations are shown in Figure 6.

d2,1(t) = 2rarcsin

√
sin2 ∆ϕ2,1

2
+ cosϕ1cosϕ2sin2 ∆θ2,1

2
(36)

∆ϕ2,1 = ϕ2 − ϕ1 (37)

∆θ2,1 = θ2 − θ1 (38)

U(t) = {(x, y)|
√
(xi − x)2 + (yi − y)2 < R} (39)

Figure 6. Schematic diagram of user density per unit area.
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5.2. Action Space

The action space is defined as the allocation of slices for the new access mobile devices
which can be divided into two steps:

• Give the slice choice Bkb which indicates that the MS will select which specific slicing
network to access, and also select several specific slicing resources in this network

a(t) = Bkb, k ∈ K, b ∈ B. (40)

• Renew the slice state from Akb(t) to Akb(t+).

For example, the current number of Ai,j(t) is 0 which means it is available now; the
action may allocate it to the new MS and set it to 1.

5.3. Penalty Function

The definition of a penalty function is to make the model trying best to achieve the
highest efficiency at certain circumstance. In other word, the decision will be made by the
MS from the perspective of releasing the overhead of core network.

In order to make the difference between the slices of different maps more obvious (e.x.
satellite, cellular or low altitude drone network), we define the penalty function target-that
is, we define the penalty function separately for the three types of networks.

• Penalty Function of Satellite Network

PW1(t) = −log(G′(DA, R′, Lc, Lu, Pkb(t)
)
)

= −log(DA + λ11 ∗ R′ + λ12 ∗ Lc + λ13 ∗ Lu + λ14 ∗ Pkb(t)) (41)

• Penalty Function of Cellular Network

PW2(t) = −log(G′(DA, R′, Lc, Pkb(t)
)
)

= −log(DA + λ21 ∗ R′ + λ22 ∗ Lc + λ23 ∗ Pkb(t)) (42)

• Penalty Function of UAV Network

PW3(t) = −log(G′(DA, R′, Lu, Pkb(t)
)
)

= −log(DA + λ31 ∗ R′ + λ32 ∗ Lu + λ33 ∗ Pkb(t)) (43)

If we combine these three cases into one formula, we get the following more general case.

PW(t) = −log(G′(T, R′, S(t), Pkb(t)
)
)

= −log(DA + λ1 ∗ R′ + c1 ∗ λ2 ∗ Lc + c2 ∗ λ3 ∗ Lu + λ4 ∗ Pkb(t))

(44)

Here, the parameter DA and P has been determined by the previous sections, while
λi ∈ [0, 1] is a parameter aimed to describe the sensitiveness of the system. Moreover,
Ci ∈ {0, 1} is the network label of the system, which is used to indicate the difference in
the penalty function corresponding to different physical networks (i.e., cellular network or
satellite network).

It is worth mentioning that in the process of training, the system dynamically adjusts
the value of sensitive factors according to the current network state and other information.
This is an optimization problem with only four finite variables, so it can be quickly solved
by existing optimization algorithms or grid search methods.
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6. Numerical Results

In this section, we build a simulation of the architecture we proposed in MATLAB
(Version R2020a) and Python (Version 3.10) to experimentally simulate the real allocation
decision circumstance at the MS side depending on the model deployed by the controller of
the core network so as to prove the proposed better performance. The result will be given
about the access ratio as well as the cost of the calculation resources of the devices in the
form of the CPU usage.

6.1. Simulation Procedure

The architecture of the whole experimental approach to our ideas in this study is
shown in Figure 7.

Figure 7. Simulation flow diagram: the DP-DQN model is trained in python and transferred to
MATLAB with the operating system as a bridge to simulate the process of decision model delivery.

We first define MS objects programmatically in MATLAB, and randomly generate its
arrival time, transmit power, packet size and other parameters for each object. Then, we
use python to conduct the DP-DQN reinforcement learning training proposed by us. After
obtaining the model, the operating system of PC is used as a bridge to pass the trained
model into the MATLAB function. This step also simulates the distributed deployment
process of the model trained by the core network to the user’s mobile station.

In the simulation, we assume that the maximum amount of users over a 1 h duration
is 3000, among which 1500 users are asking for a connection to send messages while the
other 1500 users are asking for slices to receive messages. The max information package
of one request will not exceed 20 GB and will not be below 2 MB. At the same time, each
message package will be given an emergence level randomly, which is a positive integer
between 1 and 3. We will define three types of service types which have different data
rates and latencies. Every user will have a reference service type. To make the simulation
more universal, all of the parameters listed above will be given randomly in the simulation
process. Meanwhile, the requests from the users have different arrival times, which will be
randomly generated in the loop. And, in our research, we assume that the arrival time of
each user obeys the Poisson process.

Also, to take the location and density of the MS, we will also arrange location (longi-
tude, latitude and altitude) for each MS (i.e., user) randomly. To simulate the scenario of
metropolises with rural areas. The generation of the location will not be absolutely random;
most of the users’ locations will be around the main city which is set as 4 in our work and
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several users will be around the small towns, which means in these kind of area the access
request will not be as much as those in metropolises.

In the table, the element SF indicates Sensitive Factor. Moreover, we will define three
types of physical channels (e.g., terrain cellular, satellite and drone network). Each channel
will be cut into three slices based on the total service types. Then, the slices will also contain
1800 or less different sub-carrier. The minimum particle have a maximum transmitting rate
of 3 MBps. In addition, λi in the table is the sensitive factor of each input parameter, which
is set as variable (non-fixed value), and experiments are conducted on different λi. Here,
we use a grid search algorithm with a step size of 0.1 to determine the most appropriate
value in a certain state, shown in Table 3.

Table 3. Summary of simulation parameter settings.

Parameter Description Value

M Total MS amount. 3000
MU Total MS uplink request amount. 1500
MD Total MS downlink request amount. 1500
Rn Total link type amount. 3
Tn Total service type amount. 3
Sm Minimum data rate of one RB. 3 MBps

RBm Maximum RB amount of one slice. 1600
Um Maximum data amount of one request. 2 GBps
λ1 SF of MS resources request. alterable
λ2 SF of MS transmitting power. alterable
λ3 SF of MS distance to base station. alterable
λ4 SF of MS distance to UAV devices. alterable

λpoission Minimum data rate of one RB. alterable
SMT Total simulation span. 1 hour

All of the slices which have been allocated to users will be recorded in an array until
the process of transmitting messages has been finished.

6.2. Network Access Ratio Performance

As we mentioned in the previous chapters, we introduced the concept of simulation
time in the design of the system simulation model, which is the generation of random
numbers for the user request issue time. In other words, when the simulation duration is
determined, changing the number of access users is equivalent to changing the user access
request per unit time, that is, the number of user access densities in the time domain.

In order to better show the difference between decision-making methods, we selected
four groups of data samples as comparative experiments towards the proposed method.
Also, we set different SFs of the penalty function during the simulation, considering the
existence of multiple parameters that may have different impacts on the system. Because
there are not many combinations of SFs, they can be easily found by periodic grid search in
practical systems. Here, we chose four typical sets of SFs for presentation summarized in
Table 4.
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Table 4. Summary of SF setting in Figure 8.

Parameter Value (a) Value (b) Value (c) Value (d)

λ1 0.50 0.50 0.70 0.50
λ2 0.50 0.50 0.80 0.80
λ3 0.50 0.80 −0.80 −0.60
λ4 0.50 0.50 0.50 −0.30

(a) (b)

(c) (d)

Figure 8. MS successful access ratio of proposed slicing method with different user amounts in the
circumstances of different sensitive factors summarized in Table 4. Since the differences of sensitivity
factors in (a–c) are relatively small, the impact of different parameters on the system cannot be
reflected, so its effect is slightly lower than that of (d).

As shown in Figure 8, the method without any advanced resource allocation called
Random Access here has the lowest access ratio. Also, the basic access resource allocation
algorithm powered by Q-learning is shown, that is, the so-called “Channel Cost” method
proposed by many scholars in the past. It can be clearly seen that our proposed DP-DQN
method has great advantages over other methods, especially when the unit time access
volume gradually increases. It is worth mentioning that in this group of experiments, while
changing the number of users making requests per unit time, the number of resources
available for deployment per unit time in the control network remains unchanged, and the
arrival time of users is subject to the same random process (Poisson process).

Secondly, we fixed the number of users unchanged, changed the number of resources
in the frequency domain (i.e., the amount of total resource blocks) and adopted the SF pairs
that worked best in the previous experiment. It can be seen that our proposed resource
allocation method has a higher access ratio than the original methods, shown in Figure 9.
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Compared with the experimental group, it is still consistent with the situation just now,
and it can be seen that the method we proposed has obvious advantages in the number
of resources from 600 to 1000. Especially when the number of resources is relatively short
compared to the number of access users, our decision-making method can see a rapid
increase in the access success rate, which shows that the method has excellent robustness
in the face of sudden large access.

Figure 9. MS successful access ratio of proposed slicing allocation method with different RB amounts.

6.3. Network Overhead Performance

Finally, to further verify the superiority of our proposed method, we define a network
overhead function in two aspects (i.e., user panel and control panel). Figure 10 shows the
corresponding network overhead of these two panels for different user access quantities. It
can be seen that with the same user access volume, the proposed method causes the least
network overhead.

Network user panel overhead, that is, the burden brought by the data service carried
in the network, which can be measured by the data flow in the network, as shown in the
following formula.

Bdu = E(
RBused
RBtotal

) = E(
∑k∈M Bkb

Cch
) (45)

The control surface overhead is defined by the transmission volume of the signaling,
as shown in the following formula.

I ≤ −log(
1
L
) (46)

Idmax = −log(
1
L
)M (47)

Iactual ≤
∞

∑
i=0

−log(
1
Li
)MASi = −log(

1
L
)M

∞

∑
i=0

ASi (48)

Bdc = 10log(
Iactual
Idmax

) (49)

where L indicates the total signaling type in order to describe the cost of a single message
on the control panel.
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By the way, since in this study we tried to design a way that can marginalize the
decision-making process to reduce the overhead on the core network controller, which may
challenge the computing power of the mobile station, we also conducted experiments on
the CPU computing load in experiments and simulations. Table 5 shows the CPU and cache
usage rate during the simulation loop. The results show that the average mobile device is
fully capable of running the model generated in our proposed way, which is lower than
what many other edge computing-related studies require for mobile devices [46–50].

(a) (b)

Figure 10. (a) User panel overhead of proposed slicing method with different user amounts. (b) Con-
trol panel overhead of proposed slicing method with different user amounts. In the figure, we
compare our proposed approach to the current mainstream solution, which can better reduce the
network overhead with the same amount of resources and users.

Table 5. Summary of CPU parameters during simulation.

Parameter Average Value

CPU utilization 0.62
CPU base speed 2.80 GHz

CPU speed 3.62 GHz
L1 D-cache 320 KB
L2 D-cache 5.0 MB
L3 D-cache 12.0 MB

7. Discussions and Conclusions

The proposed integrated space–ground communication system architecture represents
a significant advancement in addressing the challenges of future communication networks,
particularly in managing user surge and reducing network overhead. By combining
terrestrial cellular networks, drone networks and satellite networks with slicing technology,
our architecture offers a versatile solution that enhances network efficiency and reliability.

This study introduces a novel marginal MS-assisted network resource allocation
architecture. Leveraging cellular network slicing technology, it dynamically manages
user demands and network conditions. Integration of the DP-DQN model enhances real-
time resource allocation decisions for MS, optimizing performance. Furthermore, our
proposed feedback method ensures the accuracy and adaptability of the marginalization
model, crucial for maintaining optimal network performance in dynamic environments.
Through extensive simulations, our DP-DQN-based edge decision method demonstrates
superior performance in reducing core network overhead and improving access success
rates compared to conventional approaches.

As for the analysis of the DP-DQN model in the numerical results section, we found
that taking the location information of mobile devices into account significantly improved
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the resource utilization of each network. Also, in terms of network slicing, including differ-
ent physical channels into the type of network slices also helps to improve the degree of
integration of the system. At the same time, using the new distributed MS-assisted resource
decision model, the system overhead (especially the control panel) is greatly reduced,
which gives us reason to believe that in the future communication system, compared with
the traditional centralized control, distributed decision-making will have a better prospect.

This study identifies promising future research directions for space–ground integrated
systems. Our architecture’s scalability and adaptability extend its applicability beyond
traditional networks to smart cities, disaster response, and remote sensing. As demand
for seamless connectivity grows, our approach lays a robust foundation for efficient and
resilient communication infrastructures. This research advances communication systems by
innovatively addressing network resource allocation and decision-making, bridging terres-
trial and satellite networks. Our next steps focus on enhancing system integration through
improved methods for acquiring and utilizing MS navigation and remote sensing data.
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