Effects of Fatigue and Unanticipated Factors on Knee Joint Biomechanics in Female Basketball Players during Cutting
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Sensors
2.3. Experiment Plan
2.3.1. Test Plan
2.3.2. Fatigue Protocol
2.4. Data Analysis
2.5. Statistical Analysis
3. Results
3.1. Kinematics
3.2. Kinetics
4. Discussion
4.1. Interaction between Fatigue and Unanticipated Factors
4.2. Fatigue Effects
4.3. Unanticipated Effects
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chen, R.; Wei, G. Study on Muscle Gain Among Female Basketball Players. Sports Sci. Technol. 2023, 44, 12–15. [Google Scholar] [CrossRef]
- Bao, C.; Meng, Q.; Yan, M. Analysis of biomechanical characteristics of ankle during stop-jump for basketball player. Chin. J. Appl. Mech. 2019, 36, 492–498. [Google Scholar]
- Krosshaug, T.; Nakamae, A.; Boden, B.P.; Engebretsen, L.; Smith, G.; Slauterbeck, J.R.; Hewett, T.E.; Bahr, R. Mechanisms of Anterior Cruciate Ligament Injury in Basketball: Video Analysis of 39 Cases. Am. J. Sports Med. 2007, 35, 359–367. [Google Scholar] [CrossRef] [PubMed]
- Tosarelli, F.; Buckthorpe, M.; Di Paolo, S.; Grassi, A.; Rodas, G.; Zaffagnini, S.; Nanni, G.; Della Villa, F. Video analysis of anterior cruciate ligament injuries in male professional basketball players: Injury mechanisms, situational patterns, and biomechanics. Orthop. J. Sports Med. 2024, 12, 23259671241234880. [Google Scholar] [CrossRef] [PubMed]
- Werner, B.C.; Yang, S.; Looney, A.M.; Gwathmey, F.W., Jr. Trends in pediatric and adolescent anterior cruciate ligament injury and reconstruction. J. Pediatr. Orthop. 2016, 36, 447–452. [Google Scholar] [CrossRef] [PubMed]
- Montalvo, A.M.; Schneider, D.K.; Yut, L.; Webster, K.E.; Beynnon, B.; Kocher, M.S.; Myer, G.D. “What’s my risk of sustaining an ACL injury while playing sports?” A systematic review with meta-analysis. Br. J. Sports Med. 2019, 53, 1003–1012. [Google Scholar] [CrossRef] [PubMed]
- Webster, K.E. Return to Sport and Reinjury Rates in Elite Female Athletes After Anterior Cruciate Ligament Rupture. Sports Med. 2021, 51, 653–660. [Google Scholar] [CrossRef]
- Ingram, J.G.; Fields, S.K.; Yard, E.E.; Comstock, R.D. Epidemiology of Knee Injuries among Boys and Girls in US High School Athletics. Am. J. Sports Med. 2008, 36, 1116–1122. [Google Scholar] [CrossRef] [PubMed]
- Durante, G.; Clermont, C.; Barrons, Z.; Fukuchi, C.; Stefanyshyn, D.; Wannop, J.W. The influence of longitudinal bending stiffness on running economy and biomechanics in male and female runners. Footwear Sci. 2024, 1–7. [Google Scholar] [CrossRef]
- Beel, W.; Doughty, C.; Vivacqua, T.; Getgood, A.; Willing, R. Load sharing of the deep and superficial medial collateral ligaments, the effect of a partial superficial medial collateral injury, and implications on ACL load. Am. J. Sports Med. 2024, 52, 1960–1969. [Google Scholar] [CrossRef] [PubMed]
- Zaslow, T.L.; Pace, J.L.; Mueske, N.M.; Chua, M.C.; Katzel, M.J.; Dennis, S.W.; Wren, T.A. Comparison of lateral shuffle and side-step cutting in young recreational athletes. Gait Posture 2016, 44, 189–193. [Google Scholar] [CrossRef] [PubMed]
- Potter, D.; Martin, T. Sidestep and Crossover Lower Limb Kinematics during a Prolonged Sport-like Agility Test. Available online: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4196326/ (accessed on 9 October 2014).
- Kim, J.H.; Lee, K.-K.; Ahn, K.O.; Kong, S.J.; Park, S.C.; Lee, Y.S. Evaluation of the interaction between contact force and decision making on lower extremity biomechanics during a side-cutting maneuver. Arch. Orthop. Trauma Surg. 2016, 136, 821–828. [Google Scholar] [CrossRef] [PubMed]
- Collins, J.D.; Almonroeder, T.G.; Ebersole, K.T.; O’Connor, K.M. The effects of fatigue and anticipation on the mechanics of the knee during cutting in female athletes. Clin. Biomech. 2016, 35, 62–67. [Google Scholar] [CrossRef] [PubMed]
- Borotikar, B.S.; Newcomer, R.; Koppes, R.; McLean, S.G. Combined effects of fatigue and decision making on female lower limb landing postures: Central and peripheral contributions to ACL injury risk. Clin. Biomech. 2008, 23, 81–92. [Google Scholar] [CrossRef] [PubMed]
- Kang, H. Sample size determination and power analysis using the G*Power software. J. Educ. Eval. Health Prof. 2021, 18, 17. [Google Scholar] [CrossRef] [PubMed]
- Goodie, J.L.; Larkin, K.T.; Schauss, S. Validation of Polar heart rate monitor for assessing heart rate during physical and mental stress. J. Psychophysiol. 2000, 14, 159. [Google Scholar] [CrossRef]
- Hernando, D.; Garatachea, N.; Almeida, R.; Casajus, J.A.; Bailón, R. Validation of heart rate monitor Polar RS800 for heart rate variability analysis during exercise. J. Strength Cond. Res. 2018, 32, 716–725. [Google Scholar] [CrossRef] [PubMed]
- Havens, K.L.; Sigward, S.M. Cutting mechanics: Relation to performance and anterior cruciate ligament injury risk. Med. Sci. Sports Exerc. 2015, 47, 818–824. [Google Scholar] [CrossRef]
- Sigward, S.M.; Powers, C.M. The influence of gender on knee kinematics, kinetics and muscle activation patterns during side-step cutting. Clin. Biomech. 2006, 21, 41–48. [Google Scholar] [CrossRef] [PubMed]
- Hajiloo, B.; Anbarian, M.; Esmaeili, H.; Mirzapour, M. The effects of fatigue on synergy of selected lower limb muscles during running. J. Biomech. 2020, 103, 109692. [Google Scholar] [CrossRef] [PubMed]
- Tsai, L.-C.; Sigward, S.M.; Pollard, C.D.; Fletcher, M.J.; Powers, C.M. Effects of fatigue and recovery on knee mechanics during side-step cutting. Med. Sci. Sports Exerc. 2009, 41, 1952–1957. [Google Scholar] [CrossRef] [PubMed]
- Jiang, X.; Yang, X.; Zhou, H.; Baker, J.S.; Gu, Y. Prolonged running using bionic footwear influences lower limb biomechanics. Healthcare 2021, 9, 236. [Google Scholar] [CrossRef]
- Liu, H.; Wu, X.; Wu, Y. Fatigue factors affect the biomechanics of non-contact injuries of the anterior cruciate ligament of the knee. Chin. J. Tissue Eng. Res. 2014, 18, 1101–1108. [Google Scholar]
- Delp, S.L.; Anderson, F.C.; Arnold, A.S.; Loan, P.; Habib, A.; John, C.T.; Guendelman, E.; Thelen, D.G. OpenSim: Open-Source Software to Create and Analyze Dynamic Simulations of Movement. IEEE Trans. Biomed. Eng. 2007, 54, 1940–1950. [Google Scholar] [CrossRef] [PubMed]
- DeMers, M.S.; Pal, S.; Delp, S.L. Changes in tibiofemoral forces due to variations in muscle activity during walking. J. Orthop. Res. 2014, 32, 769–776. [Google Scholar] [CrossRef] [PubMed]
- Pataky, T.; Vanrenterghem, J.; Robinson, M. Statistical Parametric Mapping. In Neuroscience Databases: A Practical Guid; Springer: Berlin/Heidelberg, Germany, 2017. [Google Scholar]
- Khalid, A.J.; Ian Harris, S.; Michael, L.; Joseph, H.; Qu, X. Effects of neuromuscular fatigue on perceptual-cognitive skills between genders in the contribution to the knee joint loading during side-stepping tasks. J. Sports Sci. 2015, 33, 1322–1331. [Google Scholar] [CrossRef] [PubMed]
- Mclean, S.G.; Samorezov, J.E. Fatigue-Induced ACL Injury Risk Stems from a Degradation in Central Control. Med. Sci. Sports Exerc. 2009, 41, 1661–1672. [Google Scholar] [CrossRef] [PubMed]
- Larwa, J.; Stoy, C.; Chafetz, R.S.; Boniello, M.; Franklin, C. Stiff landings, core stability, and dynamic knee valgus: A systematic review on documented anterior cruciate ligament ruptures in male and female athletes. Int. J. Environ. Res. Public Health 2021, 18, 3826. [Google Scholar] [CrossRef] [PubMed]
- Houck, J.R.; Duncan, A.; Haven, K.E.D. Comparison of frontal plane trunk kinematics and hip and knee moments during anticipated and unanticipated walking and side step cutting tasks. Gait Posture 2006, 24, 314–322. [Google Scholar] [CrossRef] [PubMed]
- McLean, S.G.; Lipfert, S.W. Effect of Gender and Defensive Opponent on the Biomechanics of Sideste. Med. Sci. Sports Exerc. 2004, 36, 1008. [Google Scholar] [CrossRef] [PubMed]
- Dos’ Santos, T.; Thomas, C.; Comfort, P.; Jones, P.A. The effect of angle and velocity on change of direction biomechanics: An angle-velocity trade-off. Sports Med. 2018, 48, 2235–2253. [Google Scholar] [CrossRef] [PubMed]
- Ford, K.R.; Myer, G.D.; Hewett, T.E. Valgus Knee Motion during Landing in High School Female and Male Basketball Players. Med. Sci. Sports Exerc. 2003, 35, 1745–1750. [Google Scholar] [CrossRef] [PubMed]
- Ahmadi, S.; Campoli, G.; Yavari, S.A.; Sajadi, B.; Wauthle, R.; Schrooten, J.; Weinans, H.; Zadpoor, A. Mechanical behavior of regular open-cell porous biomaterials made of diamond lattice unit cells. J. Mech. Behav. Biomed. Mater. 2014, 34, 106–115. [Google Scholar] [CrossRef] [PubMed]
- Park, E.J.; Lee, J.H.; Ryue, J.J.; Sohn, J.H.; Lee, K.K. Influence of Anticipation on Landing Patterns during Side-Cutting Maneuver in Female Collegiate Soccer Players. Korean J. Sport Biomech. 2011, 21, 391–395. [Google Scholar] [CrossRef]
Variables (°) | Pre-Fatigue | Post-Fatigue | Fatigue | Anticipated | Fatigue × Anticipated | ||
---|---|---|---|---|---|---|---|
Anticipated | Unanticipated | Anticipated | Unanticipated | ||||
Knee flexion angle (sidestep cutting) | −28.25 (5.68) | −26.38 (3.60) | 25.31 (7.76) | −26.25 (6.58) | 0.554 | 0.936 | 0.52 |
Knee adduction angle (sidestep cutting) | 1.2 (0.76) | 0.89 (1.79) | 4.76 (4.19) | 3.98 (1.05) | 0.582 | 0.457 | 0.165 |
Knee rotation angle (sidestep cutting) | −1.13 (1.77) | −3.80 (1.63) | −9.03 (1.68) | −6.50 (1.32) | 0.388 | 0.026 * | 0.953 |
Knee flexion angle (lateral shuffle) | −26.84 (5.73) | −26.52 (6.49) | 27.07 (5.27) | −26.52 (6.49) | 0.956 | 0.811 | 0.95 |
Knee adduction angle (lateral shuffle) | 1.21 (2.65) | 4.35 (1.34) | 1.76 (1.63) | −0.52 (1.23) | 0.024 * | 0.457 | 0.582 |
Knee rotation angle (lateral shuffle) | −7.68 (1.17) | −3.50 (0.82) | 10.37 (2.21) | −11.74 (1.65) | 0.091 | 0.014 * | 0.581 |
Variables (°) | Pre-Fatigue | Post-Fatigue | Fatigue | Anticipated | Fatigue × Anticipated | ||
---|---|---|---|---|---|---|---|
Anticipated | Unanticipated | Anticipated | Unanticipated | ||||
Knee flexion angle (sidestep cutting) | −36.23 (10.76) | −32.17 (7.36) | −35.88 (5.86) | −33.97 (9.87) | 0.864 | 0.188 | 0.624 |
Knee adduction angle (sidestep cutting) | −3.3 (3.52) | 0.87 (1.46) | −0.16 (3.06) | −0.73 (3.13) | 0.381 | 0.015 * | 0.058 |
Knee rotation angle (sidestep cutting) | −4.07 (9.97) | −9.37 (3.97) | −9.95 (3.36) | −8.21 (3.26) | 0.284 | 0.034 * | 0.259 |
Knee flexion angle (lateral shuffle) | −32.92 (7.64) | −40.35 (8.98) | −32.86 (4.86) | −38.65 (8.34) | 0.279 | <0.01 * | 0.949 |
Knee adduction angle (lateral shuffle) | −6.94 (1.10) | −1.18 (4.78) | 0.22 (3.08) | −3.40 (2.24) | 0.043 * | <0.01 * | 0.344 |
Knee rotation angle (lateral shuffle) | 4.30 (3.44) | −3.82 (1.86) | −4.82 (2.69) | −5.40 (3.63) | 0.104 | 0.02 * | 0.189 |
Variables | Pre-Fatigue | Post-Fatigue | Fatigue | Anticipated | Fatigue × Anticipated | ||
---|---|---|---|---|---|---|---|
Anticipated | Unanticipated | Anticipated | Unanticipated | ||||
LGRF first peak/BW (N·m·kg−1) (sidestep) | 3.85 (1.78) | 4.05 (2.04) | 5.05 (2.05) | 4.92 (2.68) | 0.106 | 0.002 * | 0.819 |
VGRF first peak/BW (N·m·kg−1) (sidestep) | 3.78 (0.70) | 4.84 (0.90) | 5.23 (1.15) | 6.06 (1.72) | <0.01* | 0.022 | 0.756 |
PHGRF first peak/BW (N·m·kg−1) (sidestep) | −5.22 (1.55) | −5.82 (3.64) | −6.89 (2.66) | −6.56 (5.09) | 0.277 | 0.884 | 0.620 |
LGRF first peak/BW (N·m·kg−1) (shuffle) | 3.58 (1.42) | 4.15 (1.88) | 4.01 (2.23) | 5.90 (1.65) | 0.094 | 0.035 * | 0.237 |
VGRF first peak/BW (N·m·kg−1) (shuffle) | 3.94 (0.81) | 4.75 (0.74) | 5.45 (0.90) | 6.09 (1.27) | <0.01* | 0.057 | 0.805 |
PHGRF first peak /BW (N·m·kg−1) (shuffle) | 11.50 (19.02) | −6.67 (2.96) | −7.19 (3.25) | −9.20 (4.08) | 0.775 | 0.307 | 0.671 |
Flexion moment (N·m·kg−1) (sidestep) | −3.45 (0.34) | −0.09 (0.45) | 0.18 (1.37) | 0.76 (1.66) | 0.339 | 0.331 | 0.658 |
Adduction moment (N·m·kg−1) (sidestep) | 4.02 (1.94) | −2.08 (2.35) | −0.99 (1.97) | −0.56 (0.72) | 0.013 * | 0.006 * | 0.066 |
Rotation moment (N·m·kg−1) (sidestep) | 2.92 (3.95) | 0.37 (0.71) | 0.31 (1.12) | −0.04 (0.09) | 0.284 | 0.034 * | 0.259 |
Flexion moment (N·m·kg−1) (shuffle) | −0.03 (0.32) | 1.25 (0.47) | 0.65 (0.52) | −0.01 (0.37) | 0.080 | <0.01 * | 0.151 |
Adduction moment (N·m·kg−1) (shuffle) | 3.48 (1.86) | 4.20 (2.89) | −0.04 (1.4) | 0.32 (1.63) | 0.708 | 0.003 * | 0.904 |
Rotation moment (N·m·kg−1) (shuffle) | 0.88 (0.54) | 0.92 (0.90) | 0.22 (0.25) | −0.05 (0.46) | 0.909 | 0.006 * | 0.949 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, A.; Gao, S.; Huang, L.; Chen, H.; Zhang, Q.; Sun, D.; Gu, Y. Effects of Fatigue and Unanticipated Factors on Knee Joint Biomechanics in Female Basketball Players during Cutting. Sensors 2024, 24, 4759. https://doi.org/10.3390/s24144759
Zhu A, Gao S, Huang L, Chen H, Zhang Q, Sun D, Gu Y. Effects of Fatigue and Unanticipated Factors on Knee Joint Biomechanics in Female Basketball Players during Cutting. Sensors. 2024; 24(14):4759. https://doi.org/10.3390/s24144759
Chicago/Turabian StyleZhu, Aojie, Shunxiang Gao, Li Huang, Hairong Chen, Qiaolin Zhang, Dong Sun, and Yaodong Gu. 2024. "Effects of Fatigue and Unanticipated Factors on Knee Joint Biomechanics in Female Basketball Players during Cutting" Sensors 24, no. 14: 4759. https://doi.org/10.3390/s24144759
APA StyleZhu, A., Gao, S., Huang, L., Chen, H., Zhang, Q., Sun, D., & Gu, Y. (2024). Effects of Fatigue and Unanticipated Factors on Knee Joint Biomechanics in Female Basketball Players during Cutting. Sensors, 24(14), 4759. https://doi.org/10.3390/s24144759