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Abstract: Surface subsidence hazards in mining areas are common geological disasters involving
issues such as vegetation degradation and ground collapse during the mining process, which also
raise safety concerns. To address the accuracy issues of traditional prediction models and study
methods for predicting subsidence in open-pit mining areas, this study first employed 91 scenes
of Sentinel-1A ascending and descending orbits images to monitor long-term deformations of a
phosphate mine in Anning City, Yunnan Province, southwestern China. It obtained annual average
subsidence rates and cumulative surface deformation values for the study area. Subsequently, a two-
dimensional deformation decomposition was conducted using a time-series registration interpolation
method to determine the distribution of vertical and east–west deformations. Finally, three prediction
models were employed: Back Propagation Neural Network (BPNN), BPNN optimized by Genetic
Algorithm (GA-BP), and BPNN optimized by Artificial Bee Colony Algorithm (ABC-BP). These
models were used to forecast six selected time series points. The results indicate that the BPNN model
had Mean Absolute Errors (MAE) and Root Mean Squared Errors (RMSE) within 7.6 mm, while the
GA-BP model errors were within 3.5 mm, and the ABC-BP model errors were within 3.7 mm. Both
optimized models demonstrated significantly improved accuracy and good predictive capabilities.

Keywords: Sentinel-1A; SBAS-InSAR; two-dimensional deformation decomposition; subsidence
prediction; optimization algorithm

1. Introduction

Open-pit mining has advantages such as lower costs and higher recovery rates. While
it can generate substantial economic benefits, it also leads to vegetation degradation in
mining areas and pollution of the surrounding environment. Continued mining activities
may cause ground subsidence, collapses, landslides, and other hazards, posing threats
to production and the safety of people and property in mining regions [1–9]. Therefore,
extensive ground subsidence monitoring in mining areas is crucial for ensuring normal
production activities and safeguarding the safety of people and property [10].

Currently, surface deformation monitoring typically utilizes traditional instruments
for elevation and distance measurements, such as conventional precise leveling and RTK
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surveying methods [11–13]. However, these methods require significant manpower and
resources, and the monitoring data obtained are point-specific, unable to accurately reflect
the overall condition of slopes. The development of Interferometric Synthetic Aperture
Radar (InSAR) technology has progressed rapidly. Compared to traditional methods,
InSAR offers advantages such as high efficiency and high accuracy. It has been widely
applied in regional surface deformation monitoring, landslide prediction, earthquake
deformation, and other fields [14]. Time-series InSAR technology effectively overcomes
issues such as temporal and spatial decorrelation, atmospheric delays, and terrain effects
on differencing, enabling high-precision surface deformation measurements. It facilitates
continuous deformation monitoring over time and can simultaneously monitor large areas
and multiple targets, offering advantages like low cost, high sampling density, and all-
weather monitoring capability. Effective time-series deformation monitoring has gradually
become the primary method for large-scale surface deformation monitoring [15]. Liu
et al. [16] conducted an investigation using Permanent Scatterer Interferometry (PSI) and
Small Baseline Subset (SBAS) techniques to analyze mining-induced subsidence in Sanshan
Island, China. Their InSAR results showed that both methods identified similar subsidence
patterns and areas, with a maximum Line-of-Sight (LOS) subsidence rate of approximately
49 mm/year. They found that PSI generally provided higher subsidence values compared
to SBAS results when analyzing subsidence displacements at representative locations
within the mining area. In another study by Gourmelen et al. [17] in a mining area in the
Crescent Valley, NV, USA, SBAS-InSAR was employed to measure deformation velocities.
Their findings indicated that the observed LOS displacement of up to 25 cm was caused by
both vertical and horizontal deformations. They also detected a horizontal displacement
rate of approximately 8 mm/year at a distance of 10 km from GPS stations. These studies
demonstrate the application of advanced InSAR techniques in monitoring mining-induced
subsidence and deformation velocities, highlighting their capability to provide detailed
and precise measurements over large areas and varying terrain conditions.

The InSAR technique based on single-orbit SAR data can only capture one-dimensional
deformation information along the LOS. When the deformation direction is parallel to the
LOS, monitoring is most effective. However, if the deformation direction is perpendicular
to the LOS, the InSAR technique is unable to detect any deformation. Surface deformation
occurs in three-dimensional space, and one-dimensional deformation cannot accurately
reflect the true state of the deforming body. Therefore, conducting two-dimensional and
three-dimensional deformation studies based on InSAR technology is necessary and prac-
tically significant. Gray et al. [18] used D-InSAR technology to obtain one-dimensional
deformation fields in the LOS direction from both ascending and descending orbits in
the northern part of Ellesmere Island, Canada. By establishing a deformation model
based on the spatial characteristics observed by SAR satellites, they combined the two
one-dimensional deformation fields to derive high-precision two-dimensional deformation
fields in the vertical and east–west directions. Samsonov et al. [19] utilized Multidimen-
sional Small Baseline Subset InSAR (MSBAS-InSAR) technology to process SAR data with
different parameters, extracting the surface two-dimensional deformation rate field in the
Virunga volcanic region, Congo. Shahzad et al. [20] used InSAR Point Target Analysis
(IPTA) technology to compute the surface two-dimensional deformation field in Abbot-
tabad, Pakistan, using ascending and descending orbits Sentinel-1A data. These studies
demonstrate that combining Sentinel-1A ascending and descending orbit data is sufficient
to compute the surface two-dimensional deformation field, and this approach has been
widely adopted in deformation analysis studies.

To mitigate potential deformation threats in mining areas, it is crucial to conduct
predictive research on surface deformation. In recent years, machine learning has become
a common method for predicting subsidence in mining areas. Common models include
Support Vector Machines (SVM), BPNN, Convolutional Neural Networks (CNN), and
Recurrent Neural Networks (RNN). These models can be broadly categorized into two
types: single-model predictions and hybrid approaches. Ma et al. [21] proposed a method
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for predicting mine subsidence using InSAR technology combined with Long Short-Term
Memory (LSTM) networks. The prediction results showed a maximum absolute error of less
than 2 cm and a maximum relative error of less than 6%, indicating that integrating InSAR
technology with the LSTM algorithm is an effective and robust method for predicting mine
subsidence. Chen et al. [22] used LSTM to establish a prediction model based on time-series
InSAR deformation data. They compared the results with RNN. The comparison indicated
that LSTM provided more accurate predictions at the point scale than RNN.

The other category involves using composite models or optimized models for predic-
tive research. Ding et al. [23] developed a settlement monitoring and dynamic prediction
model by combining InSAR technology with the Golden Section Method-Holt-Winters
(GSM-HW) model. The experimental results demonstrated that the GSM-HW prediction
model addresses the parameter optimization deficiencies of the single HW model, achieving
maximum fitting and prediction accuracies of 96.9% and 98.4%, respectively. He et al. [24]
proposed a unified Convolutional Neural Network with Peephole Long Short-Term Mem-
ory (CNN-PhLSTM) to predict surface deformation in the Jinchuan mining area in Gansu
Province, China. The proposed model was evaluated using metrics such as MAE. This
indicates that composite or optimized models generally offer higher accuracy than single
models in subsidence prediction studies and have become widely used methods for surface
subsidence prediction.

SBAS-InSAR, as a mature technology, has been widely applied in monitoring surface
deformation in mining areas. Open-pit mining sites typically feature extensive mining
slopes and waste dump slopes, where deformations occur in three-dimensional space. The
LOS deformation results may not accurately reflect the true deformation state. Additionally,
because surface deformation in open-pit mines often exhibits complex and nonlinear charac-
teristics, neural networks, with their strong nonlinear mapping capabilities, are well-suited
for handling highly complex information, unclear factor relationships, and ambiguous
background knowledge. Models like CNN and RNN require large amounts of training data
and substantial training time and computational resources, making them more complex to
implement. In contrast, this study’s point data samples are fewer and structurally simpler,
making the use of BPNN more straightforward and efficient. Given that the BPNN model
tends to converge slowly and can easily get trapped in local minima [25], while GA and
ABC algorithm optimizations have shown better performance [26,27], GA and ABC algo-
rithms are selected to optimize the weights and thresholds of the BPNN model to improve
prediction accuracy.

In summary, this paper utilizes SBAS-InSAR technology to process Sentinel-1A as-
cending and descending orbit images covering the study area. Based on the cumulative
subsidence values obtained from these orbits, the paper conducts a two-dimensional de-
composition study of surface deformation in mining areas. Subsequently, the study predicts
subsidence at characteristic points using BPNN models, namely the GA-BP and ABC-BP
models, comparing their predictions with those of a standalone BPNN model to analyze
the reliability and feasibility of the two optimization algorithms used in this research.
Furthermore, the study summarizes the impact of rainfall on surface subsidence, discusses
the differences between prediction methods based on various influencing factors, and
provides insights that could aid in the identification and prevention of subsidence hazards
in open-pit mining areas.

2. Materials and Methods
2.1. Study Area

Anning City is located in the northwest of Kunming, Yunnan Province, China, just
32 km from the main urban area of Kunming. It borders the Xishan District of Kunming
to the northeast, the Jinning District of Kunming to the southeast, and the Yimen County
of Yuxi City and Lufeng City of Chuxiong Prefecture to the west. Covering an area of
approximately 1301.8 km2, Anning is a crucial passage to cities such as Chuxiong, Dali,
Baoshan, Lijiang, and Shangri-La. The overall terrain within the city is relatively flat,
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with most areas having slopes of less than 20◦. The highest elevation is 2617.7 m, and the
lowest is 1690.2 m, with the general topography sloping from south to north, resulting in a
significant relative elevation difference.

Anning City is rich in mineral resources, with phosphate, iron, salt, and geothermal
water being the primary resources. The mining economy, based on these resources, forms
the foundational and pillar industries for Anning’s industrial and tourism sectors. The
concentrated phosphate mining area is located southwest of Anning City, covering approx-
imately 200.43 hectares, with coordinates ranging from 102◦20′57′′ to 102◦25′41′′ E and
24◦48′29′′ to 24◦52′41′′ N. The specific location is shown in Figure 1.
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Figure 1. Overview map of the study area. (a) The approximate location of the study area (The red
star) in Yunnan Province, China; (b) The extent and specific positioning of the mining area; (c) A field
photo of a slope at an abandoned soil disposal site in the mining area.

In terms of topographical features, the mining area is situated in the central Yunnan
Plateau, within the Dianchi Rift Basin, characterized by dissected middle mountain land-
forms predominantly shaped by structural erosion. Climatically, the area experiences a
subtropical highland monsoon climate due to its low latitude and high altitude, marked by
distinct wet and dry seasons, concentrated rainfall, simultaneous occurrence of rain and
heat during the same season, and small annual temperature variations but large diurnal
temperature differences.

According to data from the Anning Meteorological Bureau, the average annual tem-
perature in the mining area is 14.7 ◦C, with ample and evenly distributed sunshine. The
hottest month is July, with an average temperature of 20.1 ◦C, while the coldest month is
January, with an average temperature of 7.2 ◦C. The average ground temperature over the
years is 18 ◦C, with an average of 225 frost-free days per year. The average annual rainfall
is 886.5 mm, ranging from a maximum of 1161.8 mm to a minimum of 553.9 mm. The rainy
season (May to October) accounts for 87% of the annual precipitation, while the dry season
(November to April) contributes 13%, as shown in Figure 2.
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Figure 2. Average monthly temperature and precipitation over the years.

The area exhibits intense structural activity, resulting in fragmented rock formations
due to both structural movements and weathering effects. Despite relatively good veg-
etation cover, surface water easily infiltrates downwards, triggering geological hazards
such as land subsidence and collapse landslides. Human engineering activities within the
region, notably mining operations and road construction, contribute significantly to slope
instability along weak structural planes, posing challenges for engineering projects.

2.2. Datasets
2.2.1. Sentinel-1A Synthetic Aperture Radar Data

The Sentinel-1 satellite carries a C-band synthetic aperture radar and is part of the
European Space Agency’s Copernicus program (GMES) [28]. Comprising two satellites,
Sentinel-1A and Sentinel-1B, it provides all-weather, day-and-night Earth observation
capabilities, continuously capturing global imagery with a revisit cycle of 12 days.

This study utilizes a total of 91 scenes of Sentinel-1A Single Look Complex (SLC) data,
including 46 ascending orbit scenes, spanning from 20 May 2020, to 17 May 2023, and
45 descending orbit scenes, spanning from 10 May 2020, to 31 May 2023. The imaging mode
is IW, with VV polarization, a range resolution of 5 m, and an azimuth resolution of 20 m.
The specific dates of the ascending and descending orbit images are listed in Tables 1 and 2.

Table 1. Date of Sentinel-1A ascending images.

Number Date Number Date Number Date Number Date

1 20 May 2020 13 16 March 2021 25 29 December 2021 37 13 October 2022
2 13 June 2020 14 9 April 2021 26 22 January 2022 38 6 November 2022
3 7 July 2020 15 3 May 2021 27 15 February 2022 39 30 November 2022
4 12 August 2020 16 27 May 2021 28 11 March 2022 40 24 December 2022
5 5 September 2020 17 20 June 2021 29 4 April 2022 41 17 January 2023
6 29 September 2020 18 14 July 2021 30 28 April 2022 42 10 February 2023
7 23 October 2020 19 7 August 2021 31 22 May 2022 43 6 March 2023
8 16 November 2020 20 31 August 2021 32 15 June 2022 44 30 March 2023
9 10 December 2020 21 24 September 2021 33 9 July 2022 45 23 April 2023
10 3 January 2021 22 18 October 2021 34 2 August 2022 46 17 May 2023
11 27 January 2021 23 11 November 2021 35 26 August 2022
12 20 February 2021 24 5 December 2021 36 19 September 2022
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Table 2. Date of Sentinel-1A descending images.

Number Date Number Date Number Date Number Date

1 10 May 2020 13 22 February 2021 25 19 December 2021 37 8 November 2022
2 3 June 2020 14 18 March 2021 26 24 January 2022 38 2 December 2022
3 27 June 2020 15 11 April 2021 27 17 February 2022 39 7 January 2023
4 21 July 2020 16 5 May 2021 28 25 March 2022 40 31 January 2023
5 14 August 2020 17 10 June 2021 29 18 April 2022 41 24 February 2023
6 7 September 2020 18 4 July 2021 30 12 May 2022 42 20 March 2023
7 1 October 2020 19 28 July 2021 31 5 June 2022 43 13 April 2023
8 25 October 2020 20 21 August 2021 32 29 June 2022 44 7 May 2023
9 18 November 2020 21 14 September 2021 33 23 July 2022 45 31 May 2023
10 12 December 2020 22 8 October 2021 34 16 August 2022
11 5 January 2021 23 1 November 2021 35 9 September 2022
12 29 January 2021 24 25 November 2021 36 3 October 2022

2.2.2. Digital Elevation Model (DEM)

The Shuttle Radar Topography Mission (SRTM), a joint effort by NASA and the Na-
tional Geospatial-Intelligence Agency (NGA), was conducted aboard a spacecraft launched
on 11 February 2000. Over 222 h and 23 min, it covered latitudes from 60◦ north to 60◦

south, producing radar image data that covers over 80% of the Earth’s land surface, totaling
more than 11.9 million square kilometers. The data volume collected by the SRTM system
amounted to approximately 9.8 terabytes. After over two years of processing, a DEM was
created. Starting from 2003, these data products have been publicly available, continually
revised and improved. The latest version, processed by CIAT (International Center for
Tropical Agriculture) using advanced interpolation algorithms, effectively fills gaps in the
original 90-m resolution dataset. SRTM terrain data is categorized into SRTM1 and SRTM3,
representing 30-m and 90-m resolution data, respectively. For this experiment, NASA’s
SRTM-DEM with 30-m resolution was utilized to mitigate terrain phase effects [29].

2.2.3. POD Precise Orbit Ephemerides

Orbital information is crucial in InSAR data processing, playing a vital role in data
preprocessing. Residual fringes in interferograms contain orbital errors, which can be
effectively removed using precise satellite orbital data. POD Precise Orbit Ephemerides
is the most accurate orbital data product, but it has a release delay of 21 days. A file is
generated daily, with positioning accuracy better than 5 cm [30]. Given the large time
span and high accuracy requirements, this study uses POD Precise Orbit Ephemerides
corresponding to the imagery to improve orbital accuracy and remove orbital errors,
yielding more precise monitoring results.

2.2.4. Generic Atmospheric Correction Online Service (GACOS) Data

GACOS utilizes the Iterative Tropospheric Decomposition (ITD) model to separate
vertically stratified components and horizontally correlated turbulent components from
the total tropospheric delay. It generates high spatial resolution water vapor delay maps,
removing atmospheric noise phases, which are used to correct InSAR measurements and
other applications [31]. This study selected 91 GACOS data sets that completely cover the
study area, corresponding to the dates of SAR images from ascending and descending
orbits, aiming to mitigate the atmospheric effects on InSAR monitoring results.

2.2.5. Rainfall Data

The rainfall data used in the Section 4 was downloaded from https://rp5.ru/ (accessed
on 26 June 2024), where the original data consists of precipitation values measured at 3-h
intervals. To align these values with the time series of settlement at prediction points, this
study aggregated the precipitation values on a monthly basis. This yielded a dataset of

https://rp5.ru/
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monthly precipitation totals for the study area from May 2020 to May 2023, covering a span
of 37 months.

2.3. Principles of Small Baseline Subset InSAR Technology

Berardino et al. [32] introduced the SBAS-InSAR technique in 2002, which effectively
reduces phase noise and errors, mitigates spatial decorrelation, adds redundant observa-
tions, and enables joint solving to obtain temporal deformation sequences for deformation
information. Assume that S images completely covering the study area are acquired over
the time period from t1 to ts. One of these images is selected as the super master image.
Then, based on parameters such as spatial baseline and temporal baseline, N differential
interferograms are generated, where N satisfies the following formula:

S
2
≪ N ≪ S(S − 1)

2
(1)

For two images taken at times tA and tB(tA < tB), assume that the i-th differential
interferogram (i = 1, 2, . . ., N) is generated. After removing or mitigating the error phase
influences other than the deformation phase and assuming the deformation rates between
different interferograms are vk,k+1, the deformation phase for the period from tA to tB is
given by Equation (2):

δφi(x, r) =
4π
λ

tB−1

∑
k=tA

(tk+1 − tk)vk,k+1 (2)

In the equation, λ represents the wavelength; for a given pixel in the i-th differential in-
terferogram with azimuth and range coordinates (x, r), δφi(x, r) denotes the interferometric
phase of that pixel.

Utilizing Singular Value Decomposition (SVD) to analyze N differential interferograms,
thereby deriving deformation velocity values for different SAR image time series. The
specific processing steps are shown in Figure 3.
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2.4. Principles of Two-Dimensional Deformation Decomposition

Conventional InSAR technology monitors surface deformation, with its observations
representing the deformation occurring between the acquisition times of two images. This
deformation value only represents the projection of deformation in various directions of
the surface onto the radar line of sight and does not reflect the actual state of surface
deformation. Due to the near-polar orbit characteristics of existing on-orbit radars, their
ability to monitor north–south direction deformation is relatively weak. Therefore, by
ignoring the north–south deformation component in the radar line of sight direction
and combining ascending and descending InSAR observations, it is possible to derive
the two-dimensional surface deformation field in the vertical and horizontal east–west
directions [33].

To obtain the two-dimensional surface deformation field, the relationship between
InSAR observations and the vertical and horizontal east–west deformation components is
first analyzed. The spatial geometric characteristics of SAR satellite observations are shown
in Figure 4.
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From the above figure, it can be understood that the relationship between LOS defor-
mation and three-dimensional deformation satisfies Equation (3) [34]:

DLOS = DU cos θ− DN sin θ cos(φ− 3
2π)− DE sin θ sin(φ− 3

2π)

=
[
cos θ− sin θ cos(φ− 3

2π)− sin θ sin(φ− 3
2π)

] DU
DN
DE

 (3)

In this equation, DLOS represents the Line-of-Sight deformation, DU DN DE denote the
vertical, north–south, and east–west deformations, respectively. θ is the radar incidence
angle, φ is the satellite heading angle, and φ− 3

2π is the projection direction of the LOS in
the horizontal plane.

Currently, radar satellites in orbit tend to fly with their flight direction close to due
north. Due to satellite system configurations, the imaging geometry diversity of radar
satellite data is limited, resulting in InSAR monitoring being insensitive to north–south
deformations. To ensure the accuracy of least squares calculations, a common practice
is to neglect the north–south deformation in the above model and solve for vertical and
east–west deformations using data from two orbits satellites.
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Equation (3) represents the decomposition of LOS deformation in three-dimensional
directions for a single orbit. When joint ascending and descending orbits observation data
are used for two-dimensional surface deformation decomposition, it can be formulated in
matrix form as shown in Equation (4) [34]:[

DLOS1

DLOS2

]
=

[
cos θ1 − sin θ1 sin(φ1 − 3

2π)

cos θ2 − sin θ2 sin(φ2 − 3
2π)

][
DU

DE

]
(4)

2.5. Principle of Prediction Models
2.5.1. Back Propagation Neural Network

The BPNN is an algorithm that resolves weight adjustments in multi-layer neural
networks through error backpropagation, making it one of the most widely applied neural
network models. Its network structure comprises input layers, hidden layers, and output
layers, with the learning process consisting of two main parts: forward propagation of
information and backward propagation of errors [35]. The specific parameters of the
algorithms are shown in Table 3.

Table 3. BPNN Parameters.

Parameters Value

Epochs 300
MES Goal 1 × 10−6

Learning Rate 0.1
Minimum Performance Gradient 1 × 10−7

Maximum Validation Failures 6
Display Frequency 25

Number of Input Neurons 5
Number of Sigmoid Hidden Layer Neurons 5

Number of Output Neurons 1
Input-to-Hidden Layer Activation Function tansig

Hidden-to-Output Layer Activation Function purelin
Learning Function trainlm

During forward propagation, input information passes sequentially from the input
layer through the hidden layers to the output layer. If the output layer does not yield the
desired result, the error variation of the output layer is computed, and gradient descent
is employed to initiate backward propagation. Through the neural network, errors are
propagated back along the original path, thereby further modifying the weights of neurons
at each layer. Once this process completes, input information is reintroduced into the
network via the input layer, and the above process is repeated. Iterative adjustments to
neuron weights continue until the sum of squared errors of the neural network is minimized
to meet the error target or reaches a preset iteration limit (Figure 5).

2.5.2. BPNN Optimized by Genetic Algorithm

The Genetic Algorithm is a population-based search optimization algorithm [36]. It
uses binary encoding to represent numerous optimization variables and combines the
binary-encoded strings of these variables to form chromosomes. According to the principle
of “survival of the fittest”, chromosomes are randomly selected from the initial population
to undergo crossover and mutation operations. Through successive iterations of evolution,
the newly generated population eventually contains the optimal solution or an individual
close to the optimal solution. The optimization process is illustrated in Figure 6. The
specific parameters of the algorithms are shown in Table 4.
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Table 4. GA Parameters.

Parameters Value

Population Sizes 50
Generations 200

Mutation Rate 0.1
Crossover Rate 0.8

Selection Function Parameters 0.09

The specific steps are as follows:

(1) Construct the BPNN model, determine the number of nodes in each layer, and nor-
malize the input data.

(2) Set the main parameters of the GA optimization algorithm, including the maximum
number of generations (G), crossover probability (Pc), mutation probability (Pm), and
population size (NP).

(3) Calculate the fitness of each individual and use selection, crossover, and mutation
principles to optimize the initial weights and thresholds of the BPNN.

(4) Ensure that the initial weights and threshold indicators of the BPNN model are opti-
mal, then perform gradient descent to search the solution space for these parameters
and update the weights and thresholds.

(5) If the accuracy condition is met, output the optimal solution; otherwise, proceed to
the next iteration until the optimal solution is found.

2.5.3. BPNN Optimized by Artificial Bee Colony Algorithm

The Artificial Bee Colony algorithm is a global optimization search algorithm inspired
by the efficient foraging behavior of bees in finding high-quality nectar sources. The
optimization process is divided into three phases: the employed bee phase, the onlooker
bee phase, and the scout bee phase [37]. Bees and honey sources are the two core elements
of the ABC model. Scout bees are tasked with finding honey sources, while employed
bees and onlooker bees are responsible for exploiting these sources. Employed bees locate
honey sources, assess their size and quantity, and release signals marking paths to attract
more bees for exploitation. Onlooker bees mark and search for new honey sources nearby,
focusing on higher-quality ones. If a honey source is exploited consistently for a period,
new scout bees are dispatched to find alternative sources, maximizing honey collection
efficiency. In optimization problems, honey source locations represent potential solutions,
and the quantity of honey sources corresponds to their fitness as solutions. Bees search
near the hive for honey sources; rich sources signal positively to guide more bees, while
poor sources signal negatively to deter them. The abundance of artificial honey sources
indicates better solution quality, guiding the bee swarm toward optimal solutions. The
optimization process is illustrated in Figure 7. The specific parameters of the algorithms
are shown in Table 5.

Table 5. ABC Parameters.

Parameters Value

Population Sizes 30
Maximum Iterations 100

Neighborhood Search Parameter [−1, 1]
Limit Parameter 5
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The specific steps are as follows:

(1) Construct the BPNN model, determine the number of nodes in each layer, and nor-
malize the input data.

(2) Set the parameters of the ABC algorithm, including population size (N), maximum
number of iterations (M), upper bound (xj) and lower bound (yj) of the search space,
and the dimension of the solution (D).

(3) Set the initial weights and thresholds of the BPNN according to the solution dimension
(D). Define the position of the i-th employed bee’s random search solution as dij, and
search for new solutions in its vicinity and record the positions.

dij = nj + rand(0, 1)(xj − nj) (5)

In the equation, nj represents the lower bound of the search range for the j-th element
of each solution while xj represents the upper bound of the search range for the j-th
element of each solution.

(4) Calculate the fitness value ( fi) of the solution and use the roulette wheel algorithm to
compute the probability (pi) of each solution being selected, choosing the optimal solution.

pi =
fi

N
∑

i=1
f

(6)

(5) Onlooker bees use a greedy algorithm to update the position eij of the previously best
solution. If no better solution is found in the vicinity, increment the record count for
that solution.
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eij = dij +φ(dij − dkj)(k = 1, 2 · · · , N; k ̸= i) (7)

In the equation, φ is a random number within the range of [−1, 1], and dkj represents
a neighboring solution.

(6) Save the optimal solution and determine whether to discard a solution based on
the number of times it has been recorded. If a solution is discarded, the scout bees
randomly generate a new solution using Equation (5).

(7) If the number of times a solution is recorded is greater than or equal to the maximum
number of iterations, output the optimal solution. Otherwise, proceed to the next
iteration until the optimal solution is found.

2.6. Evaluation Metrics

To verify the accuracy of surface subsidence predictions in mining areas and assess
the reliability of the model, two evaluation metrics, MAE and RMSE, will be employed in
the experiments.

(1) MAE:

MAE =
1
m

m

∑
i=1

|yi − y∗i | (8)

(2) RMSE:

RMSE =

√
1
m

m

∑
i=1

(
yi − y∗i

)2 (9)

In Equations (8) and (9), where m is the number of samples, yi represents the actual
values of the samples, and y∗i denotes the predicted values of the samples. MAE is used to
evaluate the accuracy of the model, preventing the problem of error cancellation among
discrepancies. A smaller MAE indicates a better fit between predicted and actual values,
thus indicating higher model accuracy. On the other hand, RMSE assesses model accuracy
by measuring the magnitude of deviations between predicted and actual values. A smaller
RMSE suggests less deviation between predicted and actual values.

3. Results
3.1. Data Processing

To systematically study the characteristics of surface deformation in the southwestern
phosphate mining area of Anning City, this paper utilizes SARscape 5.6.2 software to con-
duct SBAS-InSAR processing. A total of 91 scenes of Sentinel-1A data were selected, with
46 ascending orbit scenes spanning from 20 May 2020, to 17 May 2023, and 45 descending
orbit scenes spanning from 10 May 2020, to 31 May 2023. By setting the temporal and spatial
baselines, 178 interferometric pairs were generated from the ascending orbit data, and
174 pairs from the descending orbit data. GACOS data were imported, and interferograms
were generated using the Delaunay MCF unwrapping method and Goldstein filtering. If
the coherence of the differential interferograms obtained after SBAS-InSAR processing
is high, the sequence information is geocoded after orbit refinement, re-flattening, first
inversion, and second inversion steps, resulting in deformation rate values in the LOS
direction for both ascending and descending orbits.

3.2. Distribution Characteristics of Subsidence in Mining Areas

Within the mining area, there are approximately six major subsidence zones, desig-
nated as A, B, C, D, E, and F, as shown in Figure 8.
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Figure 8. Average annual rate of deformation. (a) Ascending orbit deformation rate; (b) Descending
orbit deformation rate; (c) Optical image of subsidence Area C; (d) Slopes of abandoned soil fields
within subsidence Areas A and B; (e) Optical image of subsidence Area D.

Based on the results from the ascending orbit data, subsidence in zone D exhibits the
most severe conditions, with a maximum subsidence rate of approximately 68 mm/year.
Other areas show lower maximum subsidence values compared to zone D: zone A reaches
a maximum subsidence rate of 42 mm/year, zone B reaches 39 mm/year, zone C reaches
51 mm/year, zone E reaches 46 mm/year, and zone F reaches 47 mm/year, as depicted
in Figure 3. From the descending orbit data, zone C shows the most severe subsidence
conditions, with a maximum subsidence rate of approximately 53 mm/year. Other areas
exhibit lower maximum subsidence values compared to zone C: zone A reaches a maximum
subsidence rate of 30 mm/year, zone B reaches 38 mm/year, zone D reaches 52 mm/year,
zone E reaches 39 mm/year, and zone F reaches 44 mm/year. Overall, zones C and D are
identified as the most severely affected subsidence areas within the entire study area, with
subsidence funnels located primarily in the overburden disposal areas and reclamation
zones. Optical imagery reveals that significant restoration efforts have been undertaken in
these areas, with most showing varying degrees of vegetation cover except for a few areas
where the ground remains exposed.

The temporal cumulative deformation from the ascending orbit images is shown in
Figure 9. From Figure 9, it is evident that each subsidence zone began to exhibit noticeable
subsidence and gradually expanded from 20 May 2020, to 22 May 2022. The cumulative
subsidence within these zones showed an increasing trend during this period. From
22 May 2022, to 17 May 2023, the expansion of the subsidence zones gradually halted,
but the cumulative subsidence continued to increase. Among these, zone D recorded the
highest maximum subsidence value, reaching up to 211 mm. Zone A had a maximum
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subsidence value of 130 mm; zone B, 121 mm; zone C, 147 mm; zone E, 133 mm; and
zone F, 157 mm.
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The temporal cumulative deformation from the descending orbit images is shown in
Figure 10. From Figure 10, it is clear that each subsidence zone began to exhibit noticeable
subsidence and gradually expanded from 10 May 2020, to 12 May 2022. The cumulative
subsidence within these zones showed an increasing trend during this period. From
12 May 2022, to 31 May 2023, the expansion of the subsidence zones gradually ceased,
but the cumulative subsidence continued to increase. Among these, zone C recorded the
highest maximum subsidence value, approximately 158 mm. Zone A had a maximum
subsidence value of around 110 mm; zone B, around 115 mm; zone D, around 141 mm;
zone E, around 105 mm; and zone F, around 124 mm.



Sensors 2024, 24, 4770 16 of 25

Sensors 2024, 24, x FOR PEER REVIEW 16 of 26 
 

 

The temporal cumulative deformation from the descending orbit images is shown in 
Figure 10. From Figure 10, it is clear that each subsidence zone began to exhibit noticeable 
subsidence and gradually expanded from 10 May 2020, to 12 May 2022. The cumulative 
subsidence within these zones showed an increasing trend during this period. From 12 
May 2022, to 31 May 2023, the expansion of the subsidence zones gradually ceased, but 
the cumulative subsidence continued to increase. Among these, zone C recorded the 
highest maximum subsidence value, approximately 158 mm. Zone A had a maximum 
subsidence value of around 110 mm; zone B, around 115 mm; zone D, around 141 mm; 
zone E, around 105 mm; and zone F, around 124 mm. 

 
Figure 10. The accumulated deformation value from descending orbit. 

3.3. Two-Dimensional Decomposition of Surface Deformation 
Surface 2D deformation inversion experiments were conducted using the sequential, 

cumulative deformation values obtained from ascending and descending orbit 
perspectives. MATLAB R2022a software was utilized, employing a cubic spline function 
method to interpolate descending orbit data based on time intervals from ascending orbit 
data. Using Equation (4), the sequential, cumulative deformation values in the vertical and 
east–west directions for the study area were computed. The decomposed results of the 
final cumulative deformation values in these two directions are presented in Figure 11. 

Based on the vertical deformation results of the mining area, the region with the 
highest vertical deformation values remains in Area D, consistent with the results from 
the ascending orbit perspective, indicating it as the most severely subsided area. 

Figure 10. The accumulated deformation value from descending orbit.

3.3. Two-Dimensional Decomposition of Surface Deformation

Surface 2D deformation inversion experiments were conducted using the sequential,
cumulative deformation values obtained from ascending and descending orbit perspec-
tives. MATLAB R2022a software was utilized, employing a cubic spline function method
to interpolate descending orbit data based on time intervals from ascending orbit data.
Using Equation (4), the sequential, cumulative deformation values in the vertical and
east–west directions for the study area were computed. The decomposed results of the final
cumulative deformation values in these two directions are presented in Figure 11.

Based on the vertical deformation results of the mining area, the region with the
highest vertical deformation values remains in Area D, consistent with the results from the
ascending orbit perspective, indicating it as the most severely subsided area. Specifically,
Area A shows maximum vertical subsidence of 107 mm, Area B of 117 mm, Area C of
151 mm, Area E of 119 mm, and Area F of 121 mm, whereas Area D exhibits the highest
vertical subsidence reaching 190 mm. Regarding the east–west deformation results of
the mining area, the maximum eastward deformation observed is 106 mm, while the
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maximum westward deformation is 107 mm. Overall, Area D exhibits the most severe
east–west deformation compared to other subsided areas, with a maximum westward
deformation of 74 mm and a maximum eastward deformation of 102 mm. Specifically,
in Area A, the maximum westward deformation is 62 mm and eastward deformation is
73 mm; in Area B, westward deformation is 54 mm and eastward deformation is 50 mm; in
Area C, westward deformation is 60 mm and eastward deformation is 69 mm; in Area E,
westward deformation is 49 mm and eastward deformation is 105 mm; in Area F, westward
deformation is 56 mm and eastward deformation is 66 mm.
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Using MATLAB R2022a, time series points were extracted from the vertical deforma-
tion raster data. One time series point was selected in each of the six major subsidence
areas, labeled P1, P2, P3, P4, P5, P6, P7, and P8, as shown in Figure 11a.

Figure 12 shows the 2D deformation values over time for the selected points. The
vertical and east–west deformation trends for each point exhibit significant differences.
Due to the varying degrees of subsidence, each point effectively reflects the subsidence
trend in its respective area, providing good representativeness. Therefore, P1 through P8
can be used as predictive points for future subsidence analysis.

3.4. Analysis of Subsidence Prediction Results

Based on the vertical subsidence values from the time series in Figure 11 (correspond-
ing to the red points), the 87-period data of the eight predictive points were split into
training and testing sets in approximately an 8:2 ratio. The first 70 periods were used as the
training set input for the prediction model, while the subsequent 17 periods formed the
testing set, as illustrated in Figure 13.

To better reflect the error comparison between the monitored and predicted values for
points P1 to P8, two metrics, MAE and RMSE, were employed to evaluate the accuracy and
reliability of the model predictions, as shown in Table 6.
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Table 6. Comparison of the prediction accuracy of models.

Point
BPNN GA-BP ABC-BP

MAE/mm RMSE/mm MAE/mm RMSE/mm MAE/mm RMSE/mm

P1 4.07 4.40 2.93 3.16 1.57 1.77
P2 4.25 4.58 2.99 3.45 2.88 3.30
P3 4.31 4.61 2.23 2.37 1.61 1.89
P4 6.41 7.58 2.04 2.50 2.50 3.13
P5 6.36 7.14 2.88 3.20 2.36 3.09
P6 4.61 5.05 3.10 3.40 2.57 2.92
P7 5.88 6.76 2.84 2.53 2.92 3.64
P8 4.90 5.86 2.34 2.82 2.12 2.55

This study uses MATLAB R2022a software to conduct subsidence prediction experi-
ments in mining areas. To compare and verify the predictive capability of the BPNN model,
two optimized models, GA-BP and ABC-BP, were further used to predict eight character-
istic points. The comparison between SBAS-InSAR monitoring values and the predicted
values from the BPNN, GA-BP, and ABC-BP models is shown in Figure 14. Among the
predictions for the eight characteristic points using the BPNN model, the predictions for
points P1 and P2 are more accurate, with MAEs less than 4.3 mm and RMSEs less than
4.6 mm. However, the prediction accuracy for points P4 and P5 is relatively poor compared
to points P7 and P8, with MAEs greater than 6.3 mm and RMSEs greater than 7.1 mm.

The predictions of the GA-BP and ABC-BP models for the eight characteristic points
exhibit strong consistency with SBAS-InSAR monitoring results. Specifically, the GA-BP
model achieves a maximum MAE of 3.10 mm and a maximum RMSE of 3.45 mm, while the
ABC-BP model maintains an MAE below 2.92 mm and a maximum RMSE not exceeding
3.64 mm. Across all eight points, the GA-BP model averages an MAE of 2.67 mm and an
RMSE of 2.93 mm, whereas the ABC-BP model averages an MAE of 2.32 mm and an RMSE
of 2.79 mm. These averaged precision metrics indicate that the ABC-BP model performs
slightly better, demonstrating superior predictive results compared to the GA-BP model.
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In the predictions for the eight characteristic points, the BPNN models optimized by
GA and ABC consistently outperform the traditional BPNN model in terms of accuracy
and trend. This further validates that the GA-BP and ABC-BP models are reliable methods
for subsidence prediction in mining areas, offering significant practical value.

4. Discussion
4.1. The Impact of Rainfall on Subsidence

Rainfall has a significant impact on surface stability, especially in open-pit mining
areas and spoil tips. Rain increases soil moisture content, reducing friction between soil
particles and causing the soil to soften, which increases its fluidity and plasticity. When soil
moisture reaches a certain level, soil stability decreases. Heavy rainfall can also raise the
groundwater level. In open-pit mining areas, if the groundwater level rises close to or above
the surface, it increases the water pressure on surface and subsurface structures, thereby
reducing the soil’s bearing capacity. This makes the area prone to surface subsidence,
landslides, and collapses [38].

To further elucidate the relationship between surface deformation and rainfall, this
study conducts an overlay analysis of cumulative vertical deformation at eight feature
points with rainfall data. As depicted in Figure 15, all selected subsidence points exhibit
nonlinear sinking and show a strong correlation with rainfall. Deformation fluctuates
in response to variations in rainfall, accelerating notably with increased precipitation.
During periods of elevated rainfall, notably from June to August 2020, June to August
2021, and May to September 2022, surface deformation in the mining area intensifies
significantly following peak rainfall events. This suggests that the impact of rainfall on
surface deformation typically manifests after a certain delay, as water infiltrates the ground,
altering soil moisture content and triggering expansion and contraction, thus resulting in
surface deformation. Concurrently, rainfall replenishes groundwater, causing the water
table to rise, and interactions between groundwater and the surface contribute to surface
deformations such as uplift or subsidence. Therefore, the influence of rainfall on surface
deformation often exhibits a lag effect [39].
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Among the subsidence points, P3, P4, P5, P6, P7, and P8 show rapid subsidence. In
contrast, the P1 and P2 subsidence points exhibit relatively gradual subsidence, but the
subsidence rate sharply accelerates from May to September 2022. As seen in the figure, the
study area experienced abundant rainfall from May to September 2022, with the highest
monthly rainfall of 1009.9 mm occurring in August. This indicates that the excessive rainfall
during this period caused the accelerated subsidence at the P1 and P2 points.

4.2. The Current Limitations of Study
4.2.1. Potential Biases in Interferometric Synthetic Aperture Radar Monitoring Experiments

This study utilizes Sentinel-1A ascending and descending orbit images for surface
subsidence monitoring in mining areas. However, Sentinel-1A data has low resolution.
As SAR satellite data, such as LT-1 in the L-band and GF-3 in the C-band, becomes more
abundant, applications for surface subsidence monitoring based on these SAR images need
further exploration. Future research could benefit from higher-resolution SAR images to
incorporate multi-source data. During interferometric processing, registration using SRTM
DEM at 30-m resolution introduces DEM errors. The low resolution of the DEM limits data
accuracy. Additionally, since SAR satellite image acquisition and DEM data retrieval occur
at different times, there is a significant discrepancy between the referenced DEM elevation
and actual elevation, which needs consideration in further studies.

In this study, the widely used SAR processing software SARscape was chosen. In future
research, it would be beneficial to explore other mature software tools simultaneously to
enhance monitoring accuracy through advancements in model algorithms and processing
techniques. Moreover, within the mining area, there are numerous low-coherence regions
where mature SBAS techniques still fail to detect many points. Subsequent research could
address this issue using methods such as DS-InSAR.

The study did not collect concurrent leveling or GPS data for external accuracy val-
idation. Acquiring external observational data corresponding to the study area would
complement this aspect of the work. Additionally, the spatiotemporal analysis of subsi-
dence areas in this study has certain limitations. Future efforts should involve gathering
data on mining progress schedules to better support the analysis of monitoring results.

4.2.2. Limitations of the Predictive Model and Directions for Future Research

Zhou et al. proposed a method for constructing prediction models from a multi-factor
perspective [35]. They pointed out that existing prediction models overly rely on subsidence
data. The principle of these models is to input the obtained subsidence data into a specific
model to derive a prediction value, which does not achieve true prediction in the real
sense. Therefore, in their research, they used SBAS-InSAR technology to process the study
area, obtaining maps of subsidence regions and annual subsidence rates. They identified
the influencing factors of surface subsidence in mining areas, performed a grey relational
analysis between these influencing factors and the monitored values, and identified the
optimal influencing factors. These factors were used as the input layer of the prediction
network, with subsidence values as the output layer. This approach allowed them to
construct a prediction function model for influencing factors and subsidence rates and to
learn the optimal parameters through this model.

This predictive method considers the influence of multiple factors on subsidence but
cannot forecast the multi-period subsidence trend at specific points within subsidence areas.
This study attempted this predictive approach, but due to the small scope of the study
area and the limited diversity in certain data (such as lithological data at 1:200,000 scale),
there were only two distinct values within the mining area. This limitation resulted in
overly homogeneous training samples, preventing precise prediction. Moreover, obtaining
more accurate influencing factor data was hindered by various reasons. Consequently, the
study opted to use subsidence values from time-series points as the training set for fitting
and prediction. However, this approach overly relied on subsidence data from the same
points, incapable of predicting other areas within the subsidence region and challenging
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for large-scale subsidence area forecasting. Therefore, finding a method to overcome the
shortcomings of existing prediction models, integrating multiple influencing factors, and
conducting long-term sequence forecasting remains a crucial challenge in current ground
subsidence prediction efforts.

This study employed the traditional BPNN model, optimized using GA and ABC,
resulting in more accurate predictions. Future research could consider using models
such as LSTM for deeper time series prediction, exploring the predictive capabilities
of different models to enhance prediction accuracy. As shown in Figure 10, with the
increase in the number of monitoring periods, the differences between the predicted
values of the three models and the InSAR monitoring values have significantly increased
compared to earlier periods. When the number of prediction periods is too high, prediction
accuracy declines. This indicates that the prediction model in this study is more suitable
for short-term predictions, and models suitable for longer time series predictions require
further exploration.

5. Conclusions

This study combined ascending and descending orbit data from Sentinel-1A to conduct
surface deformation monitoring using SBAS-InSAR technology in the mining area. It
obtained the annual average surface deformation rates and time series deformation results
for the area. Based on the vertical cumulative deformation results derived from two-
dimensional deformation decomposition, the study used BPNN and optimized models
(GA-BP and ABC-BP) to predict subsidence values at deformation points. The following
conclusions were drawn:

(1) The SBAS-InSAR monitoring results indicate that continuous subsidence has occurred
in the study area since May 2020. By May 2023, six distinct deformation zones had
been identified, all forming subsidence funnels. The ascending orbit results show
that the D subsidence zone has the highest annual subsidence rate, approximately
68 mm/year, with a cumulative subsidence of about 211 mm. The descending orbit
results indicate that the C subsidence zone has the highest annual subsidence rate,
approximately 53 mm/year, with a maximum cumulative subsidence of around
155 mm. According to the vertical deformation results for the mining area, the D zone
also exhibits the highest vertical deformation value, reaching 190 mm. The maximum
vertical subsidence values in other areas range from 107 mm to 151 mm. The east–west
deformation results for the mining area show that the D zone has the most severe east–
west deformation compared to other subsidence zones, with the maximum westward
deformation being 74 mm and the maximum eastward deformation being 102 mm. In
other areas, the maximum westward deformation ranges from 49 mm to 62 mm, and
the maximum eastward deformation ranges from 50 mm to 105 mm. Therefore, it is
evident that both the vertical and east–west deformation values in the D subsidence
zone are higher than those in other areas. Special attention should be paid to the
stability of the surface in this zone during subsequent mining activities to prevent
potential disasters.

(2) Based on the vertical cumulative subsidence values, neural network prediction models
were used to forecast outcomes. It was found that the traditional BPNN model had
maximum MAE and RMSE values of 6.41 mm and 7.58 mm, respectively. In contrast,
the GA-BP model and ABC-BP model showed superior MAE and RMSE values.
Specifically, the GA-BP model improved MAE values by 28% to 68% and RMSE
values by 25% to 67% over the BPNN model. Similarly, the ABC-BP model increased
MAE values by 32% to 63% and RMSE values by 28% to 60% over the BPNN model.
Across all eight points evaluated, the GA-BP model averaged an MAE of 2.67 mm and
an RMSE of 2.93 mm, while the ABC-BP model averaged an MAE of 2.32 mm and an
RMSE of 2.79 mm, slightly outperforming the GA-BP model. These results indicate
that the optimized BPNN prediction models are highly applicable for forecasting
mining-induced subsidence, particularly when compared with decomposed vertical
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subsidence data, demonstrating their accuracy and suitability for use in mining
subsidence prediction.
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